1
|
Wang K, Hu Y, Nie J, Zeng Q, Hu Y, Wu H. Chicken hnRNPK suppresses interferon production, thereby enhancing IBDV replication. Res Vet Sci 2025; 184:105527. [PMID: 39765197 DOI: 10.1016/j.rvsc.2025.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025]
Abstract
Heterogeneous ribonucleoprotein K (hnRNPK) is a well-known RNA-binding protein initially identified for its role in inhibiting the growth of various human tumors. Members of the hnRNP family have also been implicated in both interferon production and RNA virus replication. However, the role of chicken hnRNPK (chhnRNPK) in the replication of Infectious Bursal Disease Virus (IBDV) remains unclear. In this study, we identified chhnRNPK as a protein that interacts with genomic double-stranded RNA (dsRNA). Following IBDV infection, chhnRNPK was recruited to the virus replication complex in the cytoplasm. Furthermore, chhnRNPK expression inhibited dsRNA-induced interferon production, specifically at the mitochondrial antiviral signaling protein (MAVS) step. Overexpression of chhnRNPK significantly enhanced virus replication, while knockdown of chhnRNPK increased dsRNA-induced interferon production and subsequently disrupted IBDV replication. Collectively, these findings suggest that chhnRNPK promotes IBDV replication by interacting with genomic dsRNA, highlighting a novel host factor that regulates viral replication.
Collapse
Affiliation(s)
- Ke Wang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China
| | - Ying Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China
| | - Jiangjiang Nie
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China
| | - Qinghua Zeng
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China
| | - Yu Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Wang Z, Chen Y, Chen Y, Chen R, Wang W, Hu S, Li Y, Chen H, Wei P, He X. Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication. Front Cell Infect Microbiol 2025; 14:1529159. [PMID: 39872942 PMCID: PMC11770046 DOI: 10.3389/fcimb.2024.1529159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role. However, the underlying mechanisms that enable IBDV to block the IRF7 pathway remain unclear. In this study, we found that IRF7 and IFN-β expression were suppressed in DF-1 cells during infection with very virulent IBDV (vvIBDV), but not with attenuated IBDV, while the virus continued to replicate. Overexpression of IRF7 inhibits IBDV replication while knocking down IRF7 promotes IBDV replication. Overexpression of IRF7 couldn't compensate the IRF7 protein level in vvIBDV-infected cells, which suggested that IRF7 protein was degraded by IBDV infection. By using inhibitors, the degradation of IRF7 was found to be related to the proteasome pathway. Further study revealed that IRF7 was observed to interact and colocalize with the IBDV VP3 protein. Consistent with IBDV infection results, IBDV VP3 protein was observed to inhibit the IRF7-IFN-β expression, affect the degradation of IRF7 protein via proteasome pathway. All these results suggest that the IBDV exploits IRF7 by affecting its expression and proteasome degradation via the viral VP3 protein to facilitate viral replication in the cells. These findings revealed a novel mechanism that IBDV uses to evade host antiviral defense.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yang Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yanyan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Rui Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, China
| | - Shichen Hu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Yang H, Zhang M, Wang S, Peng D, Martinez-Sobrido L, Ye C. Establishment of minigenomes for infectious bursal disease virus. Vet Res 2024; 55:162. [PMID: 39695895 DOI: 10.1186/s13567-024-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 12/20/2024] Open
Abstract
Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes. Under the control of the RNA polymerase I promoter, the translation of IBDV MG is controlled by the viral proteins VP1 and VP3. Interestingly, IBDV B MG shows greater activity than does IBDV A MG. Moreover, the sense IBDV B MG was expressed at a higher level than the antisense IBDV B MG. In agreement with our previous findings, the translation of IBDV B MG controlled by VP1 and VP3 is independent of the cellular translation machinery components eukaryotic initiation factor (eIF)4E and eIF4G, but intact VP1 polymerase activity, VP3 dsRNA-binding activity, and the interaction between VP1 and VP3 are indispensable for both sense and antisense IBDV B MG activity. In addition, ribavirin, which inhibits IBDV replication, inhibits IBDV B MG activity in a dose-dependent manner. Collectively, the IBDV MG established in this study provides a powerful tool to investigate IBDV intracellular replication and transcription and virus‒host interactions and facilitates high-throughput screening for the identification of IBDV antivirals.
Collapse
Affiliation(s)
- Hui Yang
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Mingrui Zhang
- Wenzhou Medical University, Affiliated Hospital 1, Wenzhou, Zhejiang, China
| | - Sanying Wang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Chengjin Ye
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
4
|
Ferrero DS, Gimenez MC, Sagar A, Rodríguez JM, Castón JR, Terebiznik MR, Bernadó P, Verdaguer N. Structure of the aminoterminal domain of the birnaviral multifunctional VP3 protein and its unexplored critical role. PNAS NEXUS 2024; 3:pgae521. [PMID: 39677362 PMCID: PMC11645250 DOI: 10.1093/pnasnexus/pgae521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
To overcome their limited genetic capacity, numerous viruses encode multifunctional proteins. The birnavirus VP3 protein plays key roles during infection, including scaffolding of the viral capsid during morphogenesis, recruitment, and regulation of the viral RNA polymerase, shielding of the double-stranded RNA genome and targeting of host endosomes for genome replication, and immune evasion. The dimeric form of VP3 is critical for these functions. In previous work, we determined the X-ray structure of the central domains (D2-D3) of VP3 from the infectious bursal disease virus (IBDV). However, the structure and function of the IBDV VP3 N-terminal domain (D1) could not be determined at that time. Using integrated structural biology approaches and functional cell assays, here we characterize the IBDV VP3 D1 domain, unveiling its unexplored roles in virion stability and infection. The X-ray structure of D1 shows that this domain folds in four α-helices arranged in parallel dimers, which are essential for maintaining the dimeric arrangement of the full-length protein. Combining small-angle X-ray scattering analyses with molecular dynamics simulations allowed us to build a structural model for the D1-D3 domains. This model consists of an elongated structure with high flexibility in the D2-D3 connection, keeping D1 as the only driver of VP3 dimerization. Using reverse genetics tools, we show that the obliteration of D1 domain prevents the VP3 scaffold function during capsid assembly and severely impacts IBDV infection. Altogether, our study elucidates the structure of the VP3 D1 domain and reveals its role in VP3 protein dimerization and IBDV infection.
Collapse
Affiliation(s)
- Diego Sebastian Ferrero
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028 Barcelona, Spain
| | - María Cecilia Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM and CNRS, 34090 Montpellier, France
| | - Javier María Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), C Darwin, 3, 28049 Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), C Darwin, 3, 28049 Madrid, Spain
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM and CNRS, 34090 Montpellier, France
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Deng T, Du L, Ding S, Peng X, Chen W, Yan Y, Hu B, Zhou J. Protein kinase Cdc7 supports viral replication by phosphorylating Avibirnavirus VP3 protein. J Virol 2023; 97:e0112523. [PMID: 37902398 PMCID: PMC10688373 DOI: 10.1128/jvi.01125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The Avibirnavirus infectious bursal disease virus is still an important agent which largely threatens global poultry farming industry economics. VP3 is a multifunctional scaffold structural protein that is involved in virus morphogenesis and the regulation of diverse cellular signaling pathways. However, little is known about the roles of VP3 phosphorylation during the IBDV life cycle. In this study, we determined that IBDV infection induced the upregulation of Cdc7 expression and phosphorylated the VP3 Ser13 site to promote viral replication. Moreover, we confirmed that the negative charge addition of phosphoserine on VP3 at the S13 site was essential for IBDV proliferation. This study provides novel insight into the molecular mechanisms of VP3 phosphorylation-mediated regulation of IBDV replication.
Collapse
Affiliation(s)
- Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Shuxiang Ding
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wenjing Chen
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
8
|
Diaz-Beneitez E, Cubas-Gaona LL, Candelas-Rivera O, Benito-Zafra A, Sánchez-Aparicio MT, Miorin L, Rodríguez JF, García-Sastre A, Rodríguez D. Interaction between chicken TRIM25 and MDA5 and their role in mediated antiviral activity against IBDV infection. Front Microbiol 2022; 13:1068328. [PMID: 36519174 PMCID: PMC9742432 DOI: 10.3389/fmicb.2022.1068328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens (Gallus gallus) severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis. It has been described that recognition of the dsRNA IBDV genome by MDA5, the only known cytoplasmic pattern recognition receptor for viral RNA in chickens, leads to type I IFN production. Here, we confirm that TRIM25, an E3 ubiquitin ligase that leads to RIG-I activation in mammalian cells, significantly contributes to positively regulate MDA5-mediated activation of the IFN-inducing pathway in chicken DF-1 cells. Ectopic expression of chTRIM25 together with chMDA5 or a deletion mutant version exclusively harboring the CARD domains (chMDA5 2CARD) enhances IFN-β and NF-ĸB promoter activation. Using co-immunoprecipitation assays, we show that chMDA5 interacts with chTRIM25 through the CARD domains. Moreover, chTRIM25 co-localizes with both chMDA5 and chMDA5 2CARD, but not with chMDA5 mutant proteins partially or totally lacking these domains. On the other hand, ablation of endogenous chTRIM25 expression reduces chMDA5-induced IFN-β and NF-ĸB promoter activation. Interestingly, ectopic expression of either wild-type chTRIM25, or a mutant version (chTRIM25 C59S/C62S) lacking the E3 ubiquitin ligase activity, restores the co-stimulatory effect of chMDA5 in chTRIM25 knockout cells, suggesting that the E3-ubiquitin ligase activity of chTRIM25 is not required for its downstream IFN-β and NF-ĸB activating function. Also, IBDV-induced expression of IFN-β, Mx and OAS genes was reduced in chTRIM25 knockout as compared to wild-type cells, hence contributing to the enhancement of IBDV replication. Enhanced permissiveness to replication of other viruses, such as avian reovirus, Newcastle disease virus and vesicular stomatitis virus was also observed in chTRIM25 knockout cells. Additionally, chTRIM25 knockout also results in reduced MAVS-induced IFN-β promoter stimulation. Nonetheless, similarly to its mammalian counterpart, chTRIM25 overexpression in wild-type DF-1 cells causes the degradation of ectopically expressed chMAVS.
Collapse
Affiliation(s)
- Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Oscar Candelas-Rivera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Ana Benito-Zafra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Maria Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based MedicineI at Mount Sinai, Icahn School of Medicine, New York, NY, United States
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
9
|
Zhu Q, Su M, Wei S, Shi D, Li L, Wang J, Sun H, Wang M, Li C, Guo D, Sun D. Up-regulated 60S ribosomal protein L18 in PEDV N protein-induced S-phase arrested host cells promotes viral replication. Virus Res 2022; 321:198916. [PMID: 36084747 PMCID: PMC9446558 DOI: 10.1016/j.virusres.2022.198916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus subverts the host cell cycle to create a favorable cellular environment that enhances viral replication in host cells. Previous studies have revealed that nucleocapsid (N) protein of the coronavirus porcine epidemic diarrhea virus (PEDV) interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication. However, the mechanism by which viral replication is increased in the PEDV N protein-induced S-phase arrested cells remains unknown. In the current study, the protein expression profiles of PEDV N protein-induced S-phase arrested Vero E6 cells and thymidine-induced S-phase arrested Vero E6 cells were characterized by tandem mass tag-labeled quantitative proteomic technology. The effect of differentially expressed proteins (DEPs) on PEDV replication was investigated. The results indicated that a total of 5709 proteins, including 20,560 peptides, were identified, of which 58 and 26 DEPs were identified in the PEDV N group and thymidine group, respectively (P < 0.05; ratio ≥ 1.2 or ≤ 0.8). The unique DEPs identified in the PEDV N group were mainly involved in DNA replication, transcription, and protein synthesis, of which 60S ribosomal protein L18 (RPL18) exhibited significantly up-regulated expression in the PEDV N protein-induced S-phase arrested Vero E6/IPEC-J2 cells and PEDV-infected IPEC-J2 cells (P < 0.05). Further studies revealed that the RPL18 protein could significantly enhance PEDV replication (P < 0.05). Our findings reveal a mechanism regarding increased viral replication when the PEDV N protein-induced host cells are in S-phase arrest. These data also provide evidence that PEDV maintains its own replication by utilizing protein synthesis-associated ribosomal proteins.
Collapse
Affiliation(s)
- Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shan Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Corresponding author
| |
Collapse
|
10
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
11
|
Abstract
SUMOylation is a reversible posttranslational modification involved in the regulation of diverse biological processes. Growing evidence suggests that virus infection can interfere with the SUMOylation system. In the present study, we discovered that apoptosis inhibitor 5 (API5) is a SUMOylated protein. Amino acid substitution further identified that Lys404 of API5 was the critical residue for SUMO3 conjugation. Moreover, we found that Avibirnavirus infectious bursal disease virus (IBDV) infection significantly decreased SUMOylation of API5. In addition, our results further revealed that viral protein VP3 inhibited the SUMOylation of API5 by targeting API5 and promoting UBC9 proteasome-dependent degradation through binding to the ubiquitin E3 ligase TRAF3. Furthermore, we revealed that wild-type but not K404R mutant API5 inhibited IBDV replication by enhancing MDA5-dependent IFN-β production. Taken together, our data demonstrate that API5 is a UBC9-dependent SUMOylated protein and deSUMOylation of API5 by viral protein VP3 aids in viral replication.
Collapse
|
12
|
Inhibition of Antiviral Innate Immunity by Avibirnavirus VP3 via Blocking TBK1-TRAF3 Complex Formation and IRF3 Activation. mSystems 2021; 6:6/3/e00016-21. [PMID: 33975961 PMCID: PMC8125067 DOI: 10.1128/msystems.00016-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type I interferon plays a critical role in the host response against virus infection, including Avibirnavirus. However, many viruses have developed multiple strategies to antagonize the innate host antiviral immune response during coevolution with the host. In this study, we first identified that K33-linked polyubiquitination of lysine-155 of TRAF3 enhances the interaction with TBK1, which positively regulates the host IFN immune response. The host innate immune system develops various strategies to antagonize virus infection, and the pathogen subverts or evades host innate immunity for self-replication. In the present study, we discovered that Avibirnavirus infectious bursal disease virus (IBDV) VP3 protein significantly inhibits MDA5-induced beta interferon (IFN-β) expression by blocking IRF3 activation. Binding domain mapping showed that the CC1 domain of VP3 and the residue lysine-155 of tumor necrosis factor receptor-associated factor 3 (TRAF3) are essential for the interaction. Furthermore, we found that the CC1 domain was required for VP3 to downregulate MDA5-mediated IFN-β production. A ubiquitination assay showed that lysine-155 of TRAF3 was the critical residue for K33-linked polyubiquitination, which contributes to the formation of a TRAF3-TBK1 complex. Subsequently, we revealed that VP3 blocked TRAF3-TBK1 complex formation through reducing K33-linked polyubiquitination of lysine-155 on TRAF3. Taken together, our data reveal that VP3 inhibits MDA5-dependent IRF3-mediated signaling via blocking TRAF3-TBK1 complex formation, which improves our understanding of the interplay between RNA virus infection and the innate host antiviral immune response. IMPORTANCE Type I interferon plays a critical role in the host response against virus infection, including Avibirnavirus. However, many viruses have developed multiple strategies to antagonize the innate host antiviral immune response during coevolution with the host. In this study, we first identified that K33-linked polyubiquitination of lysine-155 of TRAF3 enhances the interaction with TBK1, which positively regulates the host IFN immune response. Meanwhile, we discovered that the interaction of the CC1 domain of the Avibirnavirus VP3 protein and the residue lysine-155 of TRAF3 reduced the K33-linked polyubiquitination of TRAF3 and blocked the formation of the TRAF3-TBK1 complex, which contributed to the downregulation of host IFN signaling, supporting viral replication.
Collapse
|
13
|
Ma ST, Wang YS, Wang XL, Xia XX, Bi ZW, Wang JY, Zhu YM, Ouyang W, Qian J. Mass spectrometry-based proteomic analysis of potential infectious bursal disease virus VP3-interacting proteins in chicken embryo fibroblasts cells. Virus Genes 2021; 57:194-204. [PMID: 33559837 DOI: 10.1007/s11262-021-01828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
The structural protein VP3 of infectious bursal disease virus (IBDV) plays a critical role in viral assembly, replication, immune escape, and anti-apoptosis. Interaction between VP3 and host protein factors can affect stages in the viral replication cycle. In this study, 137 host proteins interacting with VP3 protein were screened through liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. The functions and relevance of the proteins were obtained through bioinformatics analysis. Most VP3-interacting proteins were linked to binding, catalytic activity, and structural molecular activity, and performed functions in cell parts and cells. Biological functions of VP3-interacting proteins were mainly relevant to "Cytoskeleton", "Translation", and "Signal transduction mechanisms", involving ribosomes, "Tight junction", regulation of actin cytoskeleton, and other pathways. Six potential VP3-interacting proteins in host cells were knocked down, and vimentin, myosin-9, and annexin A2 were found to be related to IBDV replication. This study would help explore regulatory pathways and cellular mechanisms in IBDV-infected cells, and also provided clues for the in-depth study of VP3 biological functions and IBDV replication or pathogenesis.
Collapse
Affiliation(s)
- Sun-Ting Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Yong-Shan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Xiao-Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing-Xia Xia
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Zhen-Wei Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing-Yu Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Yu-Mei Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China
| | - Wei Ouyang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China.
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
14
|
Wang S, Xie L, Xie Z, Wan L, Huang J, Deng X, Xie ZQ, Luo S, Zeng T, Zhang Y, Zhang M, Zhou L. Dynamic Changes in the Expression of Interferon-Stimulated Genes in Joints of SPF Chickens Infected With Avian Reovirus. Front Vet Sci 2021; 8:618124. [PMID: 33614762 PMCID: PMC7892438 DOI: 10.3389/fvets.2021.618124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Avian reovirus (ARV) can induce many diseases as well as immunosuppression in chickens, severely endangering the poultry industry. Interferons (IFNs) play an antiviral role by inducing the expression of interferon-stimulated genes (ISGs). The effect of ARV infection on the expression of host ISGs is unclear. Specific-pathogen-free (SPF) chickens were infected with ARV strain S1133 in this study, and real time quantitative PCR was used to detect changes in the dynamic expression of IFNs and common ISGs in joints of SPF chickens. The results showed that the transcription levels of IFNA, IFNB, and several ISGs, including myxovirus resistance (MX), interferon-induced transmembrane protein 3 (IFITM3), protein kinase R (PKR), oligoadenylate synthase (OAS), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), interferon-stimulated gene 12 (ISG12), virus inhibitory protein (VIPERIN), interferon-alpha-inducible protein 6 (IFI6), and integrin-associated protein (CD47), were upregulated in joints on days 1-7 of infection (the levels of increase of MX, IFIT5, OAS, VIPERIN, ISG12, and IFI6 were the most significant, at hundreds-fold). In addition, the expression levels of the ISGs encoding zinc finger protein 313 (ZFP313), and DNA damage-inducible transcript 4 (DDIT4) increased suddenly on the 1st or 2nd day, then decreased to control levels. The ARV viral load in chicken joints rapidly increased after 1 day of viral challenge, and the viral load remained high within 6 days of viral challenge. The ARV viral load sharply decreased starting on day 7. These results indicate that in SPF chicken joints, many ISGs have mRNA expression patterns that are basically consistent with the viral load in joints. IFNA, IFNB, and the ISGs MX, IFITM3, PKR, OAS, IFIT5, ISG12, VIPERIN, IFI6, and CD47 play important roles in defending against ARV invasion, inhibiting ARV replication and proliferation, and promoting virus clearance. These results enrich our understanding of the innate immune response mechanisms of hosts against ARV infection and provide a theoretical basis for prevention and control of ARV infection.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhi qin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Shirokov DA, Manuvera VA, Miroshina OA, Dubovoi AS, Samuseva GN, Dmitrieva ME, Lazarev VN. Generation of recombinant VP3 protein of infectious bursal disease virus in three different expression systems, antigenic analysis of the obtained polypeptides and development of an ELISA test. Arch Virol 2020; 165:1611-1620. [PMID: 32405826 DOI: 10.1007/s00705-020-04650-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Infectious bursal disease virus (IBDV), which infects young chickens, is one of the most important pathogens that harm the poultry industry. Evaluation of the immune status of birds before and after vaccination is of great importance for controlling the disease caused by this virus. Therefore, the development of low-cost and easy-to-manufacture test systems for IBDV antibody detection remains an urgent issue. In this study, three expression systems (bacteria, yeast, and human cells) were used to produce recombinant VP3 protein of IBDV. VP3 is a group-specific antigen and hence may be a good candidate for use in diagnostic tests. Comparison of the antigenic properties of the obtained polypeptides showed that the titres of antibodies raised in chickens against bacteria- or human-cell-derived recombinant VP3 were high, whereas the antibody level against yeast-derived recombinant VP3 was low. The results of an enzyme-linked immunosorbent assay (ELISA) of sera from IBDV-infected chickens demonstrated that the recombinant VP3 produced in E. coli would be the best choice for use in test systems.
Collapse
Affiliation(s)
- Dmitriy A Shirokov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation.
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russian Federation.
| | - Valentin A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Olga A Miroshina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Alexandr S Dubovoi
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Galina N Samuseva
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Margarita E Dmitrieva
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Vassili N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| |
Collapse
|
16
|
Anjum FR, Anam S, Rahman SU, Ali S, Aslam MA, Rizvi F, Asif M, Abdullah RM, Abaidullah M, Shakir MZ, Goraya MU. Anti-chicken type I IFN countermeasures by major avian RNA viruses. Virus Res 2020; 286:198061. [PMID: 32561378 DOI: 10.1016/j.virusres.2020.198061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken innate immune system and are considered potent antiviral agents against avian viral pathogens. Chicken type I IFNs are divided into three subtypes namely, chIFN-α, chIFN-β, and chIFN-κ. Viral pathogen-associated molecular patterns (PAMPs) recognized by their corresponding specific PRRs (pattern recognition receptors) induce the expression of chicken type I IFNs. Interaction of chicken type I IFNs with their subsequent IFN receptors results in the activation of the JAK-STAT pathway, which in turn activates hundreds of chicken interferon-stimulated genes (chISGs). These chISGs establish an antiviral state in neighboring cells and prevent the replication and dissemination of viruses within chicken cells. Chicken type I IFNs activate different pathways that constitute major antiviral innate defense mechanisms in chickens. However, evolutionary mechanisms in viruses have made them resistant to these antiviral players by manipulating host innate immune pathways. This review focuses on the underlying molecular mechanisms employed by avian RNA viruses to counteract chicken type I IFNs and chISGs through different viral proteins. This may help to understand host-pathogen interactions and the development of novel therapeutic strategies to control viral infections in poultry.
Collapse
Affiliation(s)
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Farzana Rizvi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Abaidullah
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | | | | |
Collapse
|
17
|
Effects of infectious bursal disease virus infection on interferon and antiviral gene expression in layer chicken bursa. Microb Pathog 2020; 144:104182. [PMID: 32247644 DOI: 10.1016/j.micpath.2020.104182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Layer chickens were artificially challenged with infectious bursal disease virus (IBDV), and the kinetics of IFN-λ and antiviral genes in the bursa were explored using quantitative real-time PCR. Data showed that after the chickens were infected with IBDV, the virus load in the bursa of the Fabricius peaked at 96 h and gradually decreased. The relative mRNA expression levels of IFN-λ and antiviral genes (zinc-finger antiviral protein [ZAP], interferon alpha-inducible protein 6 [IFI6], laboratory of genetics and physiology 2 [LGP2], virus inhibitory protein [Viperin], and Mx) of the infected group dramatically increased at 24-168 h compared with those of the negative-infected group. Furthermore, the ZAP mRNA expression peaked at 24 h (3.97-fold). The Viperin mRNA transcript level was highest at 48 h (384.60-fold). The mRNA expression levels of IFI6 (96.31-fold), LGP2 (18.29-fold), and Mx (88.85-fold) peaked at 72 h, and that of IFN-λ was most remarkable at 96 h (2978.81-fold). Furthermore, the ZAP change rule was significantly positively correlated with the change rule of the IBDV load. The mRNA expression levels of IFN-λ and antiviral genes (ZAP, IFI6, LGP2, Viperin, and Mx) increased as the virus expression increased and then decreased. These results further corroborated that the IBDV infection seriously interfered with the chicken's innate immune response.
Collapse
|
18
|
Rapid Generation of Attenuated Infectious Bursal Disease Virus from Dual-Promoter Plasmids by Reduction of Viral Ribonucleoprotein Activity. J Virol 2020; 94:JVI.01569-19. [PMID: 31915284 DOI: 10.1128/jvi.01569-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
Infectious bursal disease virus (IBDV) of the Birnaviridae family leads to immunosuppression of young chickens by destroying B cells in the bursa of Fabricius (BFs). Given the increasing number of variant IBDV strains, we urgently require a method to produce attenuated virus for vaccine development. To accomplish this goal, the dual-promoter plasmids in which the RNA polymerase II and RNA polymerase I (Pol I) promoters were placed upstream of the IBDV genomic sequence, which was followed by mouse Pol I terminator and a synthetic polyadenylation signal, were developed for rapid generation of IBDV. This approach did not require trans-supplementation of plasmids for the expression of VP1 and VP3, the main components of IBDV ribonucleoprotein (RNP). Based on the finding in this study that the IBDV RNP activity was partially retained by VP1-FLAG, we successfully rescued the replication-competent IBDV/1FLAG expressing VP1-FLAG. Compared with its parental counterpart, IBDV/1FLAG formed smaller size plaques in cultured cells and induced the same 100% immune protection in vivo However, neither retarded development nor severe BFs lesion was observed in the IBDV/1FLAG-inoculated chickens. Collectively, this is the first report that viral RNP activity was affected by the addition of an epitope tag on the componential viral proteins. Furthermore, this work demonstrates the rapid generation of attenuated IBDV from dual-promoter plasmids via reducing viral RNP activity by a fused FLAG tag on the C terminus of VP1. This would be a convenient strategy to attenuate epidemic variant IBDV strains for rapid and efficient vaccine development.IMPORTANCE Immunosuppression in chickens as a result of infectious bursal disease virus (IBDV) infection leads to significant economic losses in the poultry industry worldwide every year. Currently, vaccination is still the best way to prevent the prevalence of IBDV. However, with the occurrence of increasing numbers of variant IBDV strains, it is challenging to develop antigen-matched live attenuated vaccine. Here, we first developed a dual-promoter reverse-genetic system for the rapid generation of IBDV. Using this system, the attenuated IBDV/1FLAG expressing VP1-FLAG, which displays the decreased viral RNP activity, was rescued. Moreover, IBDV/1FLAG inoculation induced a similar level of neutralizing antibodies to that of its parental counterpart, protecting chickens against lethal challenge. Our study, for the first time, describes a dual-promoter reverse-genetic approach for the rapid generation of attenuated IBDV while maintaining entire parental antigenicity, suggesting a potential new method to attenuate epidemic variant IBDV strains for vaccine development.
Collapse
|
19
|
Xu ZY, Yu Y, Liu Y, Ou CB, Zhang YH, Liu TY, Wang QX, Ma JY. Differential expression of pro-inflammatory and anti-inflammatory genes of layer chicken bursa after experimental infection with infectious bursal disease virus. Poult Sci 2020; 98:5307-5314. [PMID: 31222288 DOI: 10.3382/ps/pez312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/19/2019] [Indexed: 12/20/2022] Open
Abstract
Infectious bursal disease (IBD) is one of the most prevalent infectious diseases caused by IBD virus (IBDV), which results in bursal necrosis and immunosuppression that cause severe damage to the immune system in chickens. Cytokines are important mediators and regulators of both types of host responses. In the present study, layer chickens were artificially challenged with IBDV, and the differential expression of inflammatory genes was explored by using quantitative real-time PCR, which offered basic data for further study of IBDV pathogenesis. Data showed that after IBDV infection, the virus load in the bursa of Fabricius (BF) peaked at 96 h and then gradually decreased. Compared with those of the negative-infected group, the mRNA expression levels of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-7, IL-8, tumor necrosis factor [TNF]-α, transforming growth factor [TGF]-β) and anti-inflammatory cytokine IL-10 in the infected group increased to varying degrees at 12 to 192 h, respectively. Furthermore, the IL-1β mRNA expression peaked at 48 h; the mRNA transcript levels of IL-6, IL-8, and IL-10 were the highest at 96 h; TNF-α mRNA expression peaked at 120 h; the IL-7 mRNA expression peaked at 144 h; and the TGF-β mRNA transcript level was the highest at 192 h. Taken together, these observations indicated that along with the change pattern of IBDV proliferation in BF, the mRNA expression of cytokines (IL-1β, IL-6, IL-7, IL-8, IL-10, TNF-α, TGF-β) obviously increased, and the kinetics of each of these cytokines was different. The kinetics of IL-6/IL-10 mRNA expression ratio was significantly positively correlated with that of the virus load. These results suggest that IBDV infection seriously interferes with the natural immune response mediated by inflammatory cytokines in chickens.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Liu
- Army Eighty-three Group Army Hospital, Xinxiang 453000, China
| | - Chang-Bo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan-Hong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ting-Yu Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qiu-Xia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jin-You Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
20
|
Zhang Y, Hu B, Li Y, Deng T, Xu Y, Lei J, Zhou J. Binding of Avibirnavirus VP3 to the PIK3C3-PDPK1 complex inhibits autophagy by activating the AKT-MTOR pathway. Autophagy 2019; 16:1697-1710. [PMID: 31885313 DOI: 10.1080/15548627.2019.1704118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy/autophagy is a host natural defense response. Viruses have developed various strategies to subvert autophagy during their life cycle. Recently, we revealed that autophagy was activated by binding of Avibirnavirus to cells. In the present study, we report the inhibition of autophagy initiated by PIK3C3/VPS34 via the PDPK1-dependent AKT-MTOR pathway. Autophagy detection revealed that viral protein VP3 triggered inhibition of autophagy at the early stage of Avibirnavirus replication. Subsequent interaction analysis showed that the CC1 domain of VP3 disassociated PIK3C3-BECN1 complex by direct interaction with BECN1 and blocked autophagosome formation, while the CC3 domain of VP3 disrupted PIK3C3-PDPK1 complex via directly binding to PIK3C3 and inhibited both formation and maturation of autophagosome. Furthermore, we found that PDPK1 activated AKT-MTOR pathway for suppressing autophagy via binding to AKT. Finally, we proved that CC3 domain was critical for role of VP3 in regulating replication of Avibirnavirus through autophagy. Taken together, our study identified that Avibirnavirus VP3 links PIK3C3-PDPK1 complex to AKT-MTOR pathway and inhibits autophagy, a critical step for controlling virus replication. ABBREVIATIONS ATG14/Barkor: autophagy related 14; BECN1: beclin 1; CC: coiled-coil; ER: endoplasmic reticulum; hpi: hours post-infection; IBDV: infectious bursal disease virus; IP: co-immunoprecipitation; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PDPK1: 3-phosphoinositid-dependent protein kinase-1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SQSTM1: sequestosome 1; vBCL2: viral BCL2 apoptosis regulator.
Collapse
Affiliation(s)
- Yina Zhang
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| | - Yahui Li
- MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China
| | - Yuting Xu
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China
| | - Jing Lei
- MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| |
Collapse
|
21
|
Ye C, Yu Z, Xiong Y, Wang Y, Ruan Y, Guo Y, Chen M, Luan S, Zhang E, Liu H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction. FASEB J 2018; 33:286-300. [PMID: 29979632 DOI: 10.1096/fj.201800062rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious bursal disease virus (IBDV) infection triggers the induction of type I IFN, which is mediated by melanoma differentiation-associated protein 5 recognition of the viral genomic double-stranded RNA (dsRNA). However, the mechanism of IBDV overcoming the type I IFN antiviral response remains poorly characterized. Here, we show that IBDV genomic dsRNA selectively binds to the host cellular RNA binding protein Staufen1 (STAU1) in vitro and in vivo. The viral dsRNA binding region was mapped to the N-terminal moiety of STAU1 (residues 1-468). Down-regulation of STAU1 impaired IBDV replication and enhanced IFN-β transcription in response to IBDV infection, while having little effect on the viral attachment to the host cells and cellular entry. Conversely, overexpression of STAU1 but not the IBDV dsRNA-binding deficient STAU1 mutant (469-702) led to a suppression of IBDV dsRNA-induced IFN-β promoter activity. Moreover, we found that the binding of STAU1 to IBDV dsRNA decreased the association of melanoma differentiation-associated protein 5 but not VP3 with the IBDV dsRNA in vitro. Finally, we showed that STAU1 and VP3 suppressed IFN-β gene transcription in response to IBDV infection in an additive manner. Collectively, these findings provide a novel insight into the evasive strategies used by IBDV to escape the host IFN antiviral response.-Ye, C., Yu, Z., Xiong, Y., Wang, Y., Ruan, Y., Guo, Y., Chen, M., Luan, S., Zhang, E., Liu, H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction.
Collapse
Affiliation(s)
- Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Zhaoli Yu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yina Ruan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yueping Guo
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Mianmian Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Shilu Luan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Enli Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Hebin Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
22
|
Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha. J Virol 2018. [PMID: 29540594 DOI: 10.1128/jvi.00364-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the Birnaviridae family and is the etiological agent of a highly contagious and immunosuppressive disease (IBD) that affects domestic chickens (Gallus gallus). IBD or Gumboro disease leads to high rates of morbidity and mortality of infected animals and is responsible for major economic losses to the poultry industry worldwide. IBD is characterized by a massive loss of IgM-bearing B lymphocytes and the destruction of the bursa of Fabricius. The molecular bases of IBDV pathogenicity are still poorly understood; nonetheless, an exacerbated cytokine immune response and B cell depletion due to apoptosis are considered main factors that contribute to the severity of the disease. Here we have studied the role of type I interferon (IFN) in IBDV infection. While IFN pretreatment confers protection against subsequent IBDV infection, the addition of IFN to infected cell cultures early after infection drives massive apoptotic cell death. Downregulation of double-stranded RNA (dsRNA)-dependent protein kinase (PKR), tumor necrosis factor alpha (TNF-α), or nuclear factor κB (NF-κB) expression drastically reduces the extent of apoptosis, indicating that they are critical proteins in the apoptotic response induced by IBDV upon treatment with IFN-α. Our results indicate that IBDV genomic dsRNA is a major viral factor that contributes to the triggering of apoptosis. These findings provide novel insights into the potential mechanisms of IBDV-induced immunosuppression and pathogenesis in chickens.IMPORTANCE IBDV infection represents an important threat to the poultry industry worldwide. IBDV-infected chickens develop severe immunosuppression, which renders them highly susceptible to secondary infections and unresponsive to vaccination against other pathogens. The early dysregulation of the innate immune response led by IBDV infection and the exacerbated apoptosis of B cells have been proposed as the main factors that contribute to virus-induced immunopathogenesis. Our work contributes for the first time to elucidating a potential mechanism driving the apoptotic death of IBDV-infected cells upon exposure to type I IFN. We provide solid evidence about the critical importance of PKR, TNF-α, and NF-κB in this phenomenon. The described mechanism could facilitate the early clearance of infected cells, thereby aiding in the amelioration of IBDV-induced pathogenesis, but it could also contribute to B cell depletion and immunosuppression. The balance between these two opposing effects might be dramatically affected by the genetic backgrounds of both the host and the infecting virus strain.
Collapse
|
23
|
VP1 and VP3 Are Required and Sufficient for Translation Initiation of Uncapped Infectious Bursal Disease Virus Genomic Double-Stranded RNA. J Virol 2018; 92:JVI.01345-17. [PMID: 29093101 DOI: 10.1128/jvi.01345-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a bisegmented double-strand RNA (dsRNA) virus of the Birnaviridae family. While IBDV genomic dsRNA lacks a 5' cap, the means by which the uncapped IBDV genomic RNA is translated effectively is unknown. In this study, we describe a cap-independent pathway of translation initiation of IBDV uncapped RNA that relies on VP1 and VP3. We show that neither purified IBDV genomic dsRNA nor the uncapped viral plus-sense RNA transcripts were directly translated and rescued into infectious viruses in host cells. This defect in translation of the uncapped IBDV genomic dsRNA was rescued by trans-supplementation of the viral proteins VP1 and VP3 which was dependent on both the intact polymerase activity of VP1 and the dsRNA binding activity of VP3. Deletion analysis showed that both 5' and 3' untranslated regions (UTRs) of IBDV dsRNA were essential for VP1/VP3-dependent translation initiation. Significantly, VP1 and VP3 could also mediate the recovery of infectious IBDV from the authentic minus-sense strand of IBDV dsRNA. Moreover, downregulation or inhibition of the cap-binding protein eIF4E did not decrease but, rather, enhanced the VP1/VP3-mediated translation of the uncapped IBDV RNA. Collectively, our findings for the first time reveal that VP1 and VP3 compensate for the deficiency of the 5' cap and replace eIF4E to confer upon the uncapped IBDV RNA the ability to be translated and rescued into infectious viruses.IMPORTANCE A key point of control for virus replication is viral translation initiation. The current study shows that the uncapped IBDV RNA cannot be translated into viral proteins directly by host translation machinery and is thus noninfectious. Our results constitute the first direct experimental evidence that VP1 and VP3 are required and sufficient to initiate translation of uncapped IBDV genomic RNA by acting as a substitute for cap and replacing the cap-binding protein eIF4E. Significantly, VP1/VP3 mediate the recovery of infectious IBDV not only from the plus-sense strand but also from the minus-sense strand of the IBDV dsRNA. These findings provide not only new insights into the molecular mechanisms of the life cycle of IBDV but also a new tool for an alternative strategy for the recovery of IBDV from both the plus- and the minus-sense strands of the viral genomic dsRNA.
Collapse
|
24
|
Wang B, Duan X, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. The association of ribosomal protein L18 (RPL18) with infectious bursal disease virus viral protein VP3 enhances viral replication. Virus Res 2017; 245:69-79. [PMID: 29273342 DOI: 10.1016/j.virusres.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). IBDV VP3 is a multifunctional protein playing a key role in virus assembly and pathogenesis. To investigate the role of VP3 in pathogenesis, we transfected DF-1 cells with pRK5-FLAG-vp3 and found that VP3 enhanced type I interferon expression and suppressed IBDV replication. Furthermore we found that VP3 interacted with chicken Ribosomal Protein L18 (chRPL18) in host cells and knockdown of chRPL18 by RNAi significantly promoted Type I interferon expression and inhibited IBDV replication. Moreover, our data show that chicken double-stranded RNA-activated protein kinase (chPKR) interacted with both VP3 and chRPL18. Thus chRPL18 in association with VP3 and chPKR affects viral replication.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Qin Y, Xu Z, Wang Y, Li X, Cao H, Zheng SJ. VP2 of Infectious Bursal Disease Virus Induces Apoptosis via Triggering Oral Cancer Overexpressed 1 (ORAOV1) Protein Degradation. Front Microbiol 2017; 8:1351. [PMID: 28769911 PMCID: PMC5515827 DOI: 10.3389/fmicb.2017.01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 01/30/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by IBD virus (IBDV). Cell apoptosis triggered by IBDV contributes to the dysfunction of immune system in host. VP2 of IBDV is known to induce cell death but the underlying mechanism remains unclear. Here we demonstrate that VP2 interacts with the oral cancer overexpressed 1 (ORAOV1), a potential oncoprotein. Infection by IBDV or ectopic expression of VP2 causes a reduction of cellular ORAOV1 and induction of apoptosis, so does knockdown of ORAOV1. In contrast, over-expression of ORAOV1 leads to the inhibition of VP2- or IBDV-induced apoptosis, accompanied with the decreased viral release (p < 0.05). Thus, VP2-induced apoptosis during IBDV infection is mediated by interacting with and reducing ORAOV1, a protein that appears to act as an antiapoptotic molecule and restricts viral release early during IBDV infection.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Zhichao Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
26
|
Mosley YYC, Wu CC, Lin TL. A free VP3 C-terminus is essential for the replication of infectious bursal disease virus. Virus Res 2017; 232:77-79. [PMID: 28189698 DOI: 10.1016/j.virusres.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
Abstract
Green fluorescent protein (GFP) has been successfully incorporated into the viral-like particles of infectious bursal disease virus (IBDV) with a linker at the C-terminus of VP3 in a baculovirus system. However, when the same locus in segment A was used to express GFP by a reverse genetic (RG) system, no viable GFP-expressing IBDV was recovered. To elucidate the underlying mechanism, cDNA construct of segment A with only the linker sequence (9 amino acids) was applied to generate RG IBDV virus (rIBDV). Similarly, no rIBDV was recovered. Moreover, when the incubation after transfection was extended, wildtype rIBDV without the linker was recovered suggesting a free C-terminus of VP3 might be necessary for IBDV replication. On the other hand, rIBDV could be recovered when additional sequence (up to 40 nucleotides) were inserted at the 3' noncoding region (NCR) adjacent to the stop codon of VP3, suggesting that the burden of the linker sequence was not in the stretched genome size but the disruption of the VP3 function. Finally, when the stop codon of VP3 was deleted in segment A to extend the translation into the 3' NCR without introducing additional genomic sequence, no rIBDV was recovered. Our data suggest that a free VP3 C-terminus is essential for IBDV replication.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Ching Ching Wu
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Tsang Long Lin
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Qin Y, Zheng SJ. Infectious Bursal Disease Virus-Host Interactions: Multifunctional Viral Proteins that Perform Multiple and Differing Jobs. Int J Mol Sci 2017; 18:E161. [PMID: 28098808 PMCID: PMC5297794 DOI: 10.3390/ijms18010161] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease caused by IBD virus (IBDV). The consequent immunosuppression increases susceptibility to other infectious diseases and the risk of subsequent vaccination failure as well. Since the genome of IBDV is relatively small, it has a limited number of proteins inhibiting the cellular antiviral responses and acting as destroyers to the host defense system. Thus, these virulence factors must be multifunctional in order to complete the viral replication cycle in a host cell. Insights into the roles of these viral proteins along with their multiple cellular targets in different pathways will give rise to a rational design for safer and effective vaccines. Here we summarize the recent findings that focus on the virus-cell interactions during IBDV infection at the protein level.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Gamil AAA, Xu C, Mutoloki S, Evensen Ø. PKR Activation Favors Infectious Pancreatic Necrosis Virus Replication in Infected Cells. Viruses 2016; 8:v8060173. [PMID: 27338445 PMCID: PMC4926193 DOI: 10.3390/v8060173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 01/17/2023] Open
Abstract
The double-stranded RNA-activated protein kinase R (PKR) is a Type I interferon (IFN) stimulated gene that has important biological and immunological functions. In viral infections, in general, PKR inhibits or promotes viral replication, but PKR-IPNV interaction has not been previously studied. We investigated the involvement of PKR during infectious pancreatic necrosis virus (IPNV) infection using a custom-made rabbit antiserum and the PKR inhibitor C16. Reactivity of the antiserum to PKR in CHSE-214 cells was confirmed after IFNα treatment giving an increased protein level. IPNV infection alone did not give increased PKR levels by Western blot, while pre-treatment with PKR inhibitor before IPNV infection gave decreased eukaryotic initiation factor 2-alpha (eIF2α) phosphorylation. This suggests that PKR, despite not being upregulated, is involved in eIF2α phosphorylation during IPNV infection. PKR inhibitor pre-treatment resulted in decreased virus titers, extra- and intracellularly, concomitant with reduction of cells with compromised membranes in IPNV-permissive cell lines. These findings suggest that IPNV uses PKR activation to promote virus replication in infected cells.
Collapse
Affiliation(s)
- Amr A A Gamil
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Cheng Xu
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Stephen Mutoloki
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Øystein Evensen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| |
Collapse
|
29
|
Infectious Bursal Disease Virus VP3 Upregulates VP1-Mediated RNA-Dependent RNA Replication. J Virol 2015; 89:11165-8. [PMID: 26311889 DOI: 10.1128/jvi.00218-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022] Open
Abstract
Genome replication is a critical step in virus life cycles. Here, we analyzed the role of the infectious bursal disease virus (IBDV) VP3, a major component of IBDV ribonucleoprotein complexes, on the regulation of VP1, the virus-encoded RNA-dependent RNA polymerase (RdRp). Data show that VP3, as well as a peptide mimicking its C-terminal domain, efficiently stimulates the ability of VP1 to replicate synthetic single-stranded RNA templates containing the 3' untranslated regions (UTRs) from the IBDV genome segments.
Collapse
|
30
|
Lin W, Zhang Z, Xu Z, Wang B, Li X, Cao H, Wang Y, Zheng SJ. The association of receptor of activated protein kinase C 1(RACK1) with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2 (VDAC2) inhibits apoptosis and enhances viral replication. J Biol Chem 2015; 290:8500-10. [PMID: 25583988 DOI: 10.1074/jbc.m114.585687] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Our previous report indicates that IBDV VP5 induces apoptosis via interaction with voltage-dependent anion channel 2 (VDAC2). However, the underlying molecular mechanism is still unclear. We report here that receptor of activated protein kinase C 1 (RACK1) interacts with both VDAC2 and VP5 and that they could form a complex. We found that overexpression of RACK1 inhibited IBDV-induced apoptosis in DF-1 cells and that knockdown of RACK1 by small interfering RNA induced apoptosis associated with activation of caspases 9 and 3 and suppressed IBDV growth. These results indicate that RACK1 plays an antiapoptotic role during IBDV infection via interaction with VDAC2 and VP5, suggesting that VP5 sequesters RACK1 and VDAC2 in the apoptosis-inducing process.
Collapse
Affiliation(s)
- Wencheng Lin
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhichao Xu
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5. J Virol 2014; 88:11154-65. [PMID: 25031338 DOI: 10.1128/jvi.01115-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. IMPORTANCE MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway.
Collapse
|
32
|
Apoptotic response of chicken embryonic fibroblast cells to infectious bursal disease virus infections reflects viral pathogenicity. In Vitro Cell Dev Biol Anim 2014; 50:858-64. [DOI: 10.1007/s11626-014-9783-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
33
|
Rescue of infectious birnavirus from recombinant ribonucleoprotein complexes. PLoS One 2014; 9:e87790. [PMID: 24498196 PMCID: PMC3907549 DOI: 10.1371/journal.pone.0087790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Birnaviruses are unconventional members of the icosahedral double-stranded (dsRNA) RNA virus group. The main differential birnavirus trait is the lack of the inner icosahedral transcriptional core, a ubiquitous structure conserved in all other icosahedral dsRNA viruses, that shelters the genome from cellular dsRNA sensors and provide the enzymatic machinery to produce and extrude mature messenger RNAs. In contrast, birnaviral particles enclose ribonucleoprotein (RNP) complexes formed by the genome segments, the dsRNA-binding VP3 polypeptide and the virus-encoded RNA polymerase (RdRp). The presence of RNPs suggests that the birnavirus replication program might exhibit significant differences with respect to those of prototypal dsRNA viruses. However, experimental evidences supporting this hypothesis are as yet scarce. Of particular relevance for the understanding of birnavirus replication is to determine whether RNPs act as intracellular capsid-independent transcriptional units. Our study was focused to answer this question using the infectious bursal disease virus (IBDV), the best characterized birnavirus, as model virus. Here, we describe the intracellular assembly of functional IBDV RNPs in the absence of the virus-encoded VP2 capsid polypeptide. Recombinant RNPs are generated upon coexpression of the IBDV VP1 and RdRp polypeptides and transfection of purified virus dsRNA. Presented data show that recombinant RNPs direct the expression of the IBDV polypeptide repertoire and the production of infectious virus in culture cells. Results described in this report constitute the first direct experimental evidence showing that birnaviral RNPs are intracellularly active in the absence of the virus capsid. This finding is consistent with presented data indicating that RNP formation precedes virus assembly in IBDV-infected cells, and supports the recently proposed IBDV replication model entailing the release of RNPs during the initial stages of the infection. Indeed, results presented here also support the previously proposed evolutionary connection between birnaviruses and positive-strand single-stranded RNA viruses.
Collapse
|
34
|
Ingrao F, Rauw F, Lambrecht B, van den Berg T. Infectious Bursal Disease: a complex host-pathogen interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:429-38. [PMID: 23567344 DOI: 10.1016/j.dci.2013.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 05/06/2023]
Abstract
Infectious Bursal Disease (IBD) is caused by a small, non-enveloped virus, highly resistant in the outside environment. Infectious Bursal Disease Virus (IBDV) targets the chicken's immune system in a very comprehensive and complex manner by destroying B lymphocytes, attracting T cells and activating macrophages. As an RNA virus, IBDV has a high mutation rate and may thus give rise to viruses with a modified antigenicity or increased virulence, as emphasized during the last decades. The molecular basis of pathogenicity and the exact cause of clinical disease and death are still poorly understood, as it is not clearly related to the severity of the lesions and the extent of the bursal damage. Recent works however, pointed out the role of an exacerbated innate immune response during the early stage of the infection with upregulated production of promediators that will induce a cytokine storm. In the case of IBDV, immunosuppression is both a direct consequence of the infection of specific target immune cells and an indirect consequence of the interactions occurring in the immune network of the host. Recovery from disease or subclinical infection will be followed by immunosuppression with more serious consequences if the strain is very virulent and infection occurs early in life. Although the immunosuppression caused by IBDV is principally directed towards B-lymphocytes, an effect on cell-mediated immunity (CMI) has also been demonstrated therefore increasing the impact of IBDV on the immunocompetence of the chicken. In addition to its zootechnical impact and its role in the development of secondary infections, it may affect the immune response of the chicken to subsequent vaccinations, essential in all types of intensive farming. Recent progress in the field of avian immunology has allowed a better knowledge of the immunological mechanisms involved in the disease but also should give improved tools for the measurement of immunosuppression in the field situation. Although satisfactory protection may be provided by the induction of high neutralizing antibody titres, interference from parental antibodies with vaccination has become the most important obstacle in the establishment of control programs. In this context, recombinant HVT and immune complex vaccines show promising results.
Collapse
Affiliation(s)
- Fiona Ingrao
- Avian Virology & Immunology Unit, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | | | | | | |
Collapse
|