1
|
Cai W, He Y, Li G, Zhang D, Chen Z, Jin S, Zhang Y, Chen Z. Association between S100A12 and risk of peripheral arterial disease in patients with dyslipidemia: a cross-sectional study. BMC Cardiovasc Disord 2025; 25:313. [PMID: 40269701 DOI: 10.1186/s12872-025-04752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE S100A12 acts as a pro-inflammatory agent in vivo, with a close relationship with plaque formation in patients with acute coronary syndrome (ACS), end-stage renal disease, and diabetes. Peripheral arterial disease (PAD) can lead to mobility difficulties and ultimately disability and amputation. The association between S100A12 and risk of peripheral arterial disease remains unclear. This study aims to investigate the association between S100A12 and the risk of PAD in patients with dyslipidemia. METHODS From March 2023 to June 2024, 478 patients were included in this cross-sectional study. They were divided into PAD group (n = 105) and control group (n = 373) according to the presence or absence of PAD (The diagnosis of PAD is a combination of the patient's clinical symptoms, imaging evidence and ankle-brachial index). Plasma S100A12 was detected by available kit. General information, disease history, smoking history, and laboratory indicators were collected from both groups. The relationship between S100A12 and the risk of PAD was analyzed using statistical methods. RESULTS Levels of S100A12 were significantly higher in the PAD group of dyslipidemia [0.22 (0.13,1.49) ng/cL vs. 0.13 (0.10,0.18)ng/cL, p value < 0.001]. Univariate and multivariate logistic regression analyses suggested that the risk of PAD was significantly higher with increasing levels of S100A12 [Odd ratio (OR) (95%CI) = 2.264 (1.681, 3.047), p value < 0.05]. In addition, lower high-density lipoprotein cholesterol (HDL-C) level and diabetes mellitus (DM) were independent risk factors for PAD [OR (95%CI) = 0.388 (0.186,0.809), p value = 0.012; OR = 2.375 (1.527,3.695), p value < 0.001]. Subgroup analysis suggested that S100A12 was significantly and positively associated with the risk of PAD in all subgroups, regardless of whether HDL-C levels < 1.03 mmol/L, age > 60 years, and presence of diabetes or hypertension. Restricted cubic spline (RCS) curves suggested that the correlation between S100A12 and the risk of PAD was nonlinear (p-non-linear value < 0.05). The RCS curves showed that the positive correlation between S100A12 and the risk of PAD was stronger when the S100A12 level was less than 1.00ng/cL. CONCLUSION In conclusion, elevated S100A12 level is an independent risk factor for PAD in patients with dyslipidemia. In different subgroups, S100A12 was significantly and positively associated with the risk of PAD after adjusting for different factors. There is a non-linear relationship between S100A12 and the risk of PAD, with a stronger positive correlation at S100A12 levels below 1.00ng/cL. These findings implied that S100A12 is a potential biomarker for identifying patients with dyslipidemia who are at high risk of developing PAD. They also implied that S100A12 levels can be routinely monitored in dyslipidemic populations for the early detection of PAD and to guide the management of PAD. Finally, the results of this study emphasize that inflammation in dyslipidemia patients plays an important role in the development of PAD, suggesting that lipid control and immunomodulation may be effective in the prevention of PAD. CLINICAL TRIAL NUMBER MR-35-24-038431.
Collapse
Affiliation(s)
- Wenyu Cai
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian, 362200, P.R. China
| | - Yilin He
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P.R. China
| | - Guohua Li
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian, 362200, P.R. China
| | - Dengqing Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian, 362200, P.R. China
| | - Zimin Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian, 362200, P.R. China
| | - Shijia Jin
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P.R. China
| | - Yifan Zhang
- Department of Critical Care Unit, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P.R. China.
| | - Zhong Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian, 362200, P.R. China.
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P.R. China.
| |
Collapse
|
2
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
3
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Protective Effects of High-Density Lipoprotein on Cancer Risk: Focus on Multiple Myeloma. Biomedicines 2024; 12:514. [PMID: 38540127 PMCID: PMC10967848 DOI: 10.3390/biomedicines12030514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/03/2025] Open
Abstract
Lipid metabolism is intrinsically linked to tumorigenesis. And one of the most important characteristics of cancer is the modification of lipid metabolism and its correlation with oncogenic signaling pathways within the tumors. Because lipids function as signaling molecules, membrane structures, and energy sources, lipids are essential to the development of cancer. Above all, the proper immune response of tumor cells depends on the control of lipid metabolism. Changes in metabolism can modify systems that regulate carcinogenesis, such as inflammation, oxidative stress, and angiogenesis. The dependence of various malignancies on lipid metabolism varies. This review delves into the modifications to lipid metabolism that take place in cancer, specifically focusing on multiple myeloma. The review illustrates how changes in different lipid pathways impact the growth, survival, and drug-responsiveness of multiple myeloma cells, in addition to their interactions with other cells within the tumor microenvironment. The phenotype of malignant plasma cells can be affected by lipid vulnerabilities, and these findings offer a new avenue for understanding this process. Additionally, they identify novel druggable pathways that have a major bearing on multiple myeloma care.
Collapse
Affiliation(s)
- Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (A.A.); (G.M.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Giuseppe Mirabile
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (A.A.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
4
|
Kleimann P, Irschfeld LM, Grandoch M, Flögel U, Temme S. Trained Innate Immunity in Animal Models of Cardiovascular Diseases. Int J Mol Sci 2024; 25:2312. [PMID: 38396989 PMCID: PMC10889825 DOI: 10.3390/ijms25042312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Acquisition of immunological memory is an important evolutionary strategy that evolved to protect the host from repetitive challenges from infectious agents. It was believed for a long time that memory formation exclusively occurs in the adaptive part of the immune system with the formation of highly specific memory T cells and B cells. In the past 10-15 years, it has become clear that innate immune cells, such as monocytes, natural killer cells, or neutrophil granulocytes, also have the ability to generate some kind of memory. After the exposure of innate immune cells to certain stimuli, these cells develop an enhanced secondary response with increased cytokine secretion even after an encounter with an unrelated stimulus. This phenomenon has been termed trained innate immunity (TI) and is associated with epigenetic modifications (histone methylation, acetylation) and metabolic alterations (elevated glycolysis, lactate production). TI has been observed in tissue-resident or circulating immune cells but also in bone marrow progenitors. Risk-factors for cardiovascular diseases (CVDs) which are associated with low-grade inflammation, such as hyperglycemia, obesity, or high salt, can also induce TI with a profound impact on the development and progression of CVDs. In this review, we briefly describe basic mechanisms of TI and summarize animal studies which specifically focus on TI in the context of CVDs.
Collapse
Affiliation(s)
- Patricia Kleimann
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
| | - Lisa-Marie Irschfeld
- Department of Radiation Oncology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Institute of Translational Pharmacology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Ulrich Flögel
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Kim MJ, Song H, Koh Y, Lee H, Park HE, Choi SH, Yoon JW, Choi SY. Clonal hematopoiesis as a novel risk factor for type 2 diabetes mellitus in patients with hypercholesterolemia. Front Public Health 2023; 11:1181879. [PMID: 37457265 PMCID: PMC10345505 DOI: 10.3389/fpubh.2023.1181879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Clonal hematopoiesis of indeterminate potential (CHIP) is associated with atherosclerosis and cardiovascular disease. It has been suggested that CHIP may be related to diabetes, so we investigated the association between CHIP and new-onset type 2 diabetes. Methods This study included 4,047 subjects aged >=40 years without diabetes. To detect CHIP, targeted gene sequencing of genomic DNA from peripheral blood cells was performed. The incidence of new-onset type 2 diabetes during the follow-up period was evaluated. Results Of the total subjects, 635 (15.7%) had CHIP. During the median follow-up of 5.1 years, the incidence of new-onset diabetes was significantly higher in CHIP carriers than in subjects without CHIP (11.8% vs. 9.1%, p = 0.039). In a univariate analysis, CHIP significantly increased the risk of new-onset diabetes (HR 1.32, 95% CI 1.02-1.70, p = 0.034), but in a multivariate analysis, it was not significant. The CHIP-related risk of new onset diabetes differed according to LDL cholesterol level. In the hyper-LDL cholesterolemia group, CHIP significantly increased the risk of diabetes (HR 1.64, 95% CI 1.09-2.47, p = 0.018), but it did not increase the risk in the non-hyper-LDL cholesterolemia group. The subjects with CHIP and hyper-LDL-cholesterolemia had approximately twice the risk of diabetes than subjects without CHIP and with low LDL cholesterol (HR 2.05, 95% CI 1.40-3.00, p < 0.001). Conclusion The presence of CHIP was a significant risk factor for new-onset type 2 diabetes, especially in subjects with high LDL cholesterol. These results show the synergism between CHIP and high LDL cholesterol as a high-risk factor for diabetes.
Collapse
Affiliation(s)
- Min Joo Kim
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Song
- Genome Opinion Incorporation, Seoul, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genome Opinion Incorporation, Seoul, Republic of Korea
| | - Heesun Lee
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Eun Park
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yan C, Ma X, Lam SM, Zhang Y, Cao Y, Dong Y, Su L, Shui G, Feng Y. Exendin-4 attenuates atherosclerosis progression via controlling hematopoietic stem/progenitor cell proliferation. J Mol Cell Biol 2023; 15:mjad014. [PMID: 36866528 PMCID: PMC10478625 DOI: 10.1093/jmcb/mjad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/01/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Beyond glycemic control, applications of glucagon-like peptide-1 receptor (GLP-1r) agonists (GLP-1 RAs) inhibit inflammation and plaque development in murine atherosclerotic models. However, whether they modulate hematopoietic stem/progenitor cells (HSPCs) to prohibit skewed myelopoiesis in hypercholesteremia remains unknown. In this study, GLP-1r expression in fluorescence-activated cell sorting (FACS)-sorted wild-type HSPCs was determined by capillary western blotting. Bone marrow cells (BMCs) of wild-type or GLP-1r-/- mice were transplanted into lethally irradiated low-density lipoprotein receptor deficient (LDLr-/-) recipients followed by high-fat diet (HFD) for chimerism analysis by FACS. In parallel, LDLr-/- mice were placed on HFD for 6 weeks and then treated with saline or Exendin-4 (Ex-4) for another 6 weeks. HSPC frequency and cell cycle were analyzed by FACS, and intracellular metabolite levels were assessed by targeted metabolomics. The results demonstrated that HSPCs expressed GLP-1r and transplantation of GLP-1r-/- BMCs resulted in skewed myelopoiesis in hypercholesterolemic LDLr-/- recipients. In vitro, Ex-4 treatment of FACS-purified HSPCs suppressed cell expansion and granulocyte production induced by LDL. In vivo, Ex-4 treatment inhibited plaque progression, suppressed HSPC proliferation, and modified glycolytic and lipid metabolism in HSPCs of hypercholesteremic LDLr-/- mice. In conclusion, Ex-4 could directly inhibit HSPC proliferation induced by hypercholesteremia.
Collapse
Affiliation(s)
- Cen Yan
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Xiaojuan Ma
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuejie Zhang
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Yu Cao
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Yuan Dong
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Li Su
- Neuroscience Research Institute, Peking University Center of Medical and Health Analysis, Peking University, Beijing 100191, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingmei Feng
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
8
|
Role of reactive oxygen species in regulating 27-hydroxycholesterol-induced apoptosis of hematopoietic progenitor cells and myeloid cell lines. Cell Death Dis 2022; 13:916. [PMID: 36316327 PMCID: PMC9622808 DOI: 10.1038/s41419-022-05360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that contain an additional hydroxy, epoxide, or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain of the cholesterol molecule. 27-Hydroxycholesterol (27HC) is a side-chain oxysterol that is oxygenated at the 27th carbon atom of cholesterol. The oxysterol (27HC) is produced via oxidation by sterol 27-hydroxylase (CYP27A1) and metabolized via oxysterol 7a-hydroxylase (CYP7B1) for bile acid synthesis in the liver. A previous study has demonstrated that treatment with the alternative Estrogen receptor alpha (ERα) ligand 27HC induces ERα-dependent hematopoietic stem cell (HSC) mobilization. In addition, Cyp27a1-deficient mice demonstrate significantly reduced 27HC levels and HSC mobilization. Here, we report that exogenous 27HC treatment leads to a substantial reduction in the hematopoietic stem and progenitor cell (HSPC) population owing to significantly increased reactive oxygen species (ROS) levels and apoptosis in the bone marrow (BM). However, 27HC does not influence the population of mature hematopoietic cells in the BM. Furthermore, exogenous 27HC treatment suppresses cell growth and promotes ROS production and apoptosis in leukemic cells. Moreover, acute myeloid leukemia (AML) patients with high CYP7B1 expression (expected to have inhibition of 27HC) had significantly shorter survival than those with low CYP7B1 expression (expected to have an elevation of 27HC). Single-cell RNA-sequencing (scRNA seq) analysis revealed that the expression of CYP7B1 was significantly increased in AML patients. Thus, our study suggests that 27HC may serve as a potent agent for regulating pools of HSPCs and may have an application as a novel therapeutic target for hematological malignancies. Collectively, pharmacological inhibition of CYP7B1 (expected to have an elevation of 27HC) would potentially have fewer long-term hematological side effects, particularly when used in combination with chemotherapy or radiation for the treatment of leukemia patients.
Collapse
|
9
|
Liu Q, Dong H, Li Y, Shen Y, Hong Y, Chen Y, Liu S, Wu X, Liu W, Hu H, Zhao Y, Lin S, Shen Y, Zhou Y, Ye B, Wu D. Apolipoprotein-A is a potential prognostic biomarker for severe aplastic anemia patients treated with ATG-based immunosuppressive therapy: a single-center retrospective study. Lipids Health Dis 2022; 21:93. [PMID: 36192750 PMCID: PMC9531379 DOI: 10.1186/s12944-022-01703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background Anti-thymoglobulin (ATG)-based immunosuppressive treatment (IST) is the standard first-line management for patients with severe AA/very severe AA (SAA/VSAA) and is not suitable for allogeneic stem cell transplantation. The response predictor was not fully investigated. Objective The present study attempted to explore other characteristics, such as serum lipid changes, during ATG-based IST and analyzed their significance in predicting IST response and survival. Methods A total of 61 newly diagnosed SAA/VSAA patients who received ATG-based IST were enrolled from January 2011 to June 2019. The blood lipid levels, immunoglobulins, and peripheral T lymphocytes were retrospectively collected, and their correlations with IST response, estimated 8.5-year overall survival (OS) and event-free survival (EFS) were analyzed. Results The overall response (OR)/complete remission (CR) at 3, 6, and 9 months was 24.6%/6.6%, 52.5%/14.8%, and 65.6%/23.0%, respectively. Based on the 9-month response effect, patients were divided into IST-response (IST-R) and IST-nonresponse (IST-NR) groups. The subgroup baseline characteristics showed that the disease severity grade, absolute neutrophil granulocyte count (ANC), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein-A (Apo-A) differed between the IST-R and IST-NR groups. Patients with lower Apo-A (< 1.205 g/L) level pretreatment had a better event-free survival (EFS), and a moderate negative correlation was established between the pretreatment Apo-A and 9-month response (P = 0.004). In addition, the T-cell subset and immunoglobulin analyses showed that the responsive patients had a low serum IgA level, which decreased further after therapy. Additionally, a moderate negative correlation was established between the 3-month IgA and 9-month response (P = 0.006). Conclusion Serum Apo-A is a prognostic biomarker for newly diagnosed < 60-year-old SAA/VSAA patients who received ATG-based IST (registered at chictr.org.cn as # ChiCTR2100052979). Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01703-0.
Collapse
Affiliation(s)
- Qi Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijie Dong
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Respiratory Medicine, Haining Traditional Chinese Medical Hospital of Zhejiang Province, Haining, Zhejiang, China
| | - Yuzhu Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingying Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Yilei Hong
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Shan Liu
- Department of Clinical Evaluation Center, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaolian Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Wenbin Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Huijin Hu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Yuechao Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Shenyun Lin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Yiping Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Yuhong Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China
| | - Baodong Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China. .,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China.
| | - Dijiong Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China. .,Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005), Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Savla SR, Prabhavalkar KS, Bhatt LK. Liver X Receptor: a potential target in the treatment of atherosclerosis. Expert Opin Ther Targets 2022; 26:645-658. [PMID: 36003057 DOI: 10.1080/14728222.2022.2117610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Liver X receptors (LXRs) are master regulators of atherogenesis. Their anti-atherogenic potential has been attributed to their role in the inhibition of macrophage-mediated inflammation and promotion of reverse cholesterol transport. Owing to the significance of their anti-atherogenic potential, it is essential to develop and test new generation LXR agonists, both synthetic and natural, to identify potential LXR-targeted therapeutics for the future. AREAS COVERED This review describes the role of LXRs in atherosclerotic development, provides a summary of LXR agonists and future directions for atherosclerosis research. We searched PubMed, Scopus and Google Scholar for relevant reports, from last 10 years, using atherosclerosis, liver X receptor, and LXR agonist as keywords. EXPERT OPINION LXRα has gained widespread recognition as a regulator of cholesterol homeostasis and expression of inflammatory genes. Further research using models of cell type-specific knockout and specific agonist-targeted LXR isoforms is warranted. Enthusiasm for therapeutic value of LXR agonists has been tempered due to LXRα-mediated induction of hepatic lipogenesis. LXRα agonism and LXRβ targeting, gut-specific inverse LXR agonists, investigations combining LXR agonists with other lipogenesis mitigating agents, like IDOL antagonists and synthetic HDL, and targeting ABCA1, M2 macrophages and LXRα phosphorylation, remain as promising possibilities.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| |
Collapse
|
11
|
Wong LL, Bruxvoort CG, Cejda NI, Delaney MR, Otero JR, Forsthoefel DJ. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians. Nat Commun 2022; 13:3803. [PMID: 35778403 PMCID: PMC9249923 DOI: 10.1038/s41467-022-31385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
Collapse
Affiliation(s)
- Lily L Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christina G Bruxvoort
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veteran Affairs Medical Center - Research Services, Oklahoma City, OK, USA
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Center for Biomedical Data Science, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Matthew R Delaney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jannette Rodriguez Otero
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Education, Universidad Interamericana de Puerto Rico, San Juan, Puerto Rico, USA
| | - David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
The proteome signature of cord blood plasma with high hematopoietic stem and progenitor cell count. Stem Cell Res 2022; 61:102752. [DOI: 10.1016/j.scr.2022.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
|
13
|
Georgievski A, Michel A, Thomas C, Mlamla Z, Pais de Barros JP, Lemaire-Ewing S, Garrido C, Quéré R. Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells. Cell Death Dis 2022; 13:337. [PMID: 35414137 PMCID: PMC9005650 DOI: 10.1038/s41419-022-04761-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023]
Abstract
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Anaïs Michel
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire-Ewing
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Biochimie Spécialisée, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France. .,LipSTIC Labex, Dijon, France.
| |
Collapse
|
14
|
Menendez-Gonzalez JB, Rodrigues NP. Exploring the Associations Between Clonal Hematopoiesis of Indeterminate Potential, Myeloid Malignancy, and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:73-88. [PMID: 35237959 DOI: 10.1007/978-1-0716-1924-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Outgrowth of a mutated hematopoietic stem/progenitor clone and its descendants, also known as clonal hematopoiesis, has long been considered as either a potential forerunner to hematologic malignancy or as a clinically silent phase in leukemia that antedates symptomatic disease. That definition of clonal hematopoiesis has now been expanded to encompass patients who harbor specific genetic/epigenetic mutations that lead to clonal hematopoiesis of indeterminate potential (CHIP) and, with it, a relatively heightened risk for both myeloid malignancy and atherosclerosis during aging. In this review, we provide contemporary insights into the cellular and molecular basis for CHIP and explore the relationship of CHIP to myeloid malignancy and atherosclerosis. We also discuss emerging strategies to explore CHIP biology and clinical targeting of CHIP related malignancy and cardiovascular disease.
Collapse
Affiliation(s)
- Juan Bautista Menendez-Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Almotiri A, Abdelfattah A, Rodrigues NP. Flow Cytometry Analysis of Hematopoietic Stem/Progenitor Cells and Mature Blood Cell Subsets in Atherosclerosis. Methods Mol Biol 2022; 2419:583-595. [PMID: 35237990 DOI: 10.1007/978-1-0716-1924-7_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advancing age causes physiologic decline in tissue function. In the hematopoietic system this manifests as a progressive reduction in blood or immune cell function and clonal hematopoiesis, where a mutated hematopoietic stem cell can dominate blood cell production and confer an increased propensity for myeloid malignancy. In the aging cardiovascular system, atherosclerosis causes an inflammatory cell- driven accumulation of lipid-derived plaques in major arteries which constrains blood flow and can lead to myocardial infarction and stroke. Clonal hematopoiesis in the elderly has recently been associated with a substantially increased risk of atherosclerosis-related cardiovascular disease. However, the direct association between deregulated hematopoiesis in clonal hematopoiesis and atherosclerosis is poorly defined. Herein, we describe a flow cytometry method to prospectively analyze the crucial hematopoietic stem/progenitor, inflammatory and lymphoid cell participants in atherosclerosis. This analysis can be applied to decipher the complex relationship between hematopoietic cell types involved in clonal hematopoiesis and atherosclerosis in mouse models.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Ali Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences , Hashemite University, Zarqa, Jordan
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Yang M, Yang T, Li X, Li D, Liao Z, Shen Y, Xu D, Chen L, Wen F. Clinical Predictors of High Blood Eosinophils in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2467-2474. [PMID: 34483658 PMCID: PMC8409512 DOI: 10.2147/copd.s324511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Elevated blood eosinophils have been implicated in chronic obstructive pulmonary disease (COPD) progression and exacerbation. We aim to investigate clinical predictors of high blood eosinophils in a Chinese COPD cohort. Patients and Methods We conducted a retrospective cohort study in Sichuan province, a Southwest province with high prevalence of COPD in China. All patients in this cohort were extracted from the Chinese Pulmonary Health study, a large cross-sectional study on COPD epidemiology in China. Demographics, personal and family history, living condition, spirometry and blood eosinophil counts were obtained. Univariate and multiple linear regression analyses were performed to determine predictors of high blood eosinophils. Results A total of 375 COPD patients were included in this cohort. The median absolute blood eosinophil count was 138.8 cells/μL, and the prevalence of COPD with high blood eosinophils was 66.7% and 14.7% when using the thresholds of 100 cells/μL and 300 cells/μL, respectively. Univariate analyses indicated that male gender, lower body mass index, high-density lipoprotein (HDL), lower family income, raising pets and biomass use were significantly associated with high blood eosinophils (p < 0.05). Multiple linear regression model further revealed male gender (unstandardized coefficient (B)=66.125, 95% confidence intervals (CI) 16.350 to 115.900, p=0.009), age (B=2.819, 95% CI 0.639 to 5.000, p=0.012) predicted high blood eosinophil level, whereas HDL (B=−64.682, 95% CI −123.451 to −5.914, p=0.031) was a negative predictor for high blood eosinophils. Conclusion This retrospective cohort study suggests male gender, oldness and lower HDL could be clinical predictors of high blood eosinophils in Chinese COPD patients.
Collapse
Affiliation(s)
- Mei Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaoou Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Diandian Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zenglin Liao
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Dan Xu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
18
|
LDLR expression in the cochlea suggests a role in endolymph homeostasis and cochlear amplification. Hear Res 2021; 409:108311. [PMID: 34311268 DOI: 10.1016/j.heares.2021.108311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
There is now growing evidence that hypercholesterolemia and high serum levels of low-density lipoproteins (LDL) predispose to sensorineural hearing loss. Circulating LDL-cholesterol is delivered to peripheral tissues via LDL receptor (LDLR) -mediated endocytosis. Recently, it has been shown that LDLR gene polymorphisms are associated with higher susceptibility to sudden deafness. These findings suggested that we should investigate the expression of LDLR from the postnatal maturation of the mouse cochlea until adulthood. In the cochlea of newborn mice, we observed that LDLR is mostly expressed in the lateral wall of the cochlea, especially in a band of cells directly facing the cochlear duct. Moreover, LDLR is expressed in the inner and outer hair cells, as well as in the adjacent greater epithelial ridge. In early postnatal stages, LDLR is expressed in the marginal cells of the immature stria vascularis, in the root cells of the spiral ligament, and in the adjacent outer sulcus cells. At the same time, LDLR begins to be expressed in the pillar cells of the immature organ of Corti. From the onset of hearing, LDLR is expressed in the marginal cells of the stria vascularis, in the outer sulcus cells, and in the capillaries of the adjacent spiral ligament. In the organ of Corti, LDLR is expressed in outer pillar cells and Deiters' cells, i.e. in the non-sensory supporting cells that directly surround the outer hair cells. These cells are believed to provide a mechanical coupling with the outer hair cells to modulate electromotility and cochlear amplification. In the stria vascularis of three-month-old mice, LDLR is further expressed in both marginal and intermediate cells. Overall, our results suggest that LDLR is mostly present in cochlear cells that are involved in endolymph homeostasis and cochlear amplification. Further functional studies will be needed to unravel how LDLR regulates extracellular and intracellular levels of cholesterol and lipoproteins in the cochlea, and how it could influence cochlear homeostasis.
Collapse
|
19
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
20
|
Zhuo X, Bu H, Hu K, Si Z, Chen L, Chen Y, Yang L, Jiang Y, Xu Y, Zhao P, Ma X, Tao S, Zhu Q, Cui L, Sun H, Cui Y. Differences in the reaction of hyperlipidemia on different endothelial progenitor cells based on sex. Biomed Rep 2021; 15:64. [PMID: 34155448 PMCID: PMC8212447 DOI: 10.3892/br.2021.1440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
The sex of a patient can affect the outcomes of several cardiovascular diseases, and men generally tend to experience earlier episodes of cardiovascular diseases compared with women. The progression of atherosclerosis during hyperlipidemia can be induced by reactive oxygen species (ROS) and oxidized-low-density lipoprotein (ox-LDL). By contrast, bone marrow (BM)-derived endothelial progenitor cells (EPCs) have been reported to serve a protective role against atherosclerosis. The aim of the present was to compare the effects of sex under conditions of hyperlipidemia on different populations of EPCs, and to identify the potential underlying mechanisms. EPC numbers and ROS levels in the blood and BM were measured using fluorescence activated cell sorting in male and female LDL receptor knock-out C57BL/6 mice maintained on a high-fat diet for 6 months, and in male and female wild type C57BL/6 mice following ox-LDL injection for 3 days. Female hyperlipidemic mice exhibited lower levels of plasma lipids, atherosclerotic plaque formation, intracellular EPC ROS formation and inflammatory cytokine levels. Furthermore, BM CD34+/ fetal liver kinase-1 (Flk-1+), CD34+/CD133+ and stem cell antigen-1+/Flk-1+, as well as all circulating EPCs, were maintained at higher levels in female hyperlipidemic mice. In addition, similar changes with regards to BM CD34+/Flk-1+, CD34+/CD133+, c-Kit+/CD31+ and circulating CD34+/Flk1+ and CD34+/CD133+ EPCs were observed in female mice following ox-LDL treatment. These sustained higher levels of BM and circulating EPCs in female mice with hyperlipidemia may be associated with reduced levels of ox-LDL as a result of reduced intracellular ROS formation in EPCs and decreased inflammatory cytokine production.
Collapse
Affiliation(s)
- Xiaoqing Zhuo
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250118, P.R. China
| | - Haoran Bu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ke Hu
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Zhihua Si
- Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Liming Chen
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yufan Jiang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yixin Xu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Peng Zhao
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shufei Tao
- Ross University School of Medicine, Barbados 60515, Barbados
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
21
|
Weighty choices: selecting optimal G-CSF doses for stem cell mobilization to optimize yield. Blood Adv 2021; 4:706-716. [PMID: 32092138 DOI: 10.1182/bloodadvances.2019000923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023] Open
Abstract
There are limited data on the effect of donor body mass index (BMI) on peripheral blood stem cell (PBSC) mobilization response to granulocyte colony-stimulating factor (G-CSF), especially in unrelated donors. Obesity has been associated with persistent leukocytosis, elevated circulating progenitor cells, and enhanced stem cell mobilization. Therefore, we hypothesized that adequate collection of CD34+ cells may be achieved with lower doses (per kilogram of body weight) of G-CSF in donors with higher BMI compared with donors with lower BMI. Using the Center for International Blood and Marrow Transplant Research database, we evaluated the impact of donor BMI on G-CSF-mobilized PBSC yield in healthy unrelated donors. We examined 20 884 PBSC donations collected at National Marrow Donor Program centers between 2006 and 2016. We found significantly higher collection yields in obese and severely obese donors compared with normal and overweight donors. An increase in average daily G-CSF dose was associated with an increase in stem cell yield in donors with normal or overweight BMI. In contrast, an increase in average daily G-CSF dose beyond 780 μg per day in obese and 900 μg per day in severely obese donors did not increase cell yield. Pain and toxicities were assessed at baseline, during G-CSF administration, and postcollection. Obesity was associated with higher levels of self-reported donation-related pain and toxicities in the pericollection and early postdonation recovery periods. This study suggests a maximum effective G-CSF dose for PBSC mobilization in obese and severely obese donors, beyond which higher doses of G-CSF add no increased yield.
Collapse
|
22
|
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22052529. [PMID: 33802600 PMCID: PMC7961492 DOI: 10.3390/ijms22052529] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.
Collapse
Affiliation(s)
- Amin Javadifar
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Sahar Rastgoo
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93338 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| |
Collapse
|
23
|
Yildirim Simsir I, Donmez A, Kabaroglu C, Yavasoglu I, Basol G, Gungor A, Comert Ozkan M, Saygili F, Bolaman Z, Tombuloglu M. The effect of serum lipid levels on peripheral blood hematopoietic stem cell levels. Transfus Apher Sci 2021; 60:103074. [PMID: 33574011 DOI: 10.1016/j.transci.2021.103074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are limited numbers of available retrospective studies on various hematological diseases treated with stem cell mobilization therapy. In the present study, we aimed to demonstrate the effects of serum lipid levels on peripheral blood CD34+ (PBCD34+) cell counts as well as the changes in serum lipid levels during stem cell mobilization process. METHOD PBCD34+ cell counts were compared between hypercholesterolemic patients and healthy individuals. Additionally, total cholesterol (TChol), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), and triglyceride (TG) levels were measured from healthy donors who underwent stem cell mobilization, at different time points (prior to filgrastim [phase 1], prior to apheresis [phase II], and the first week following apheresis [phase III]. RESULTS In the hypercholesterolemia group, the PBCD34+ cell count was found to be higher among patients with elevated LDL-C (2.6 ± 0.35/μL vs. 1.7 ± 0.17/μL, p = 0.003) and TChol (2.6 ± 0.34/μL vs. 1.7 ± 0.14/μL, p = 0.006) in comparison to the healthy controls. In the mobilization group, phase II HDL-C levels (35.3 ± 2.8 mg/dL) were found to be lower than both phase I (45.6 ± 2.1 mg/dL) and phase III (44.5 ± 2.6 mg/dL) (p = 0.007). Phase II TChol levels (183.5 ± 10.0 mg/dL) were lower than both phase I (216.8 ± 8.5 mg/dL) and phase III (212.2 ± 8.4 mg/dL) (p = 0.02). At phase II, there was an inverse correlation between PBCD34+ cell count and HDL-C (r = - 0.57, p = 0.003). DISCUSSION Our results indicate that, while increased LDL-C level is the determinant of baseline PBCD34+ cell count, reduced HDL-C is the determinant of PBCD34+ cell count during mobilization process.
Collapse
Affiliation(s)
- Ilgin Yildirim Simsir
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, 35100, Turkey.
| | - Ayhan Donmez
- Ege University Medical Faculty, Division of Hematology, Izmir, Turkey
| | - Ceyda Kabaroglu
- Ege University Medical Faculty, Division of Clinical Biochemistry, Izmir, Turkey
| | - Irfan Yavasoglu
- Adnan Menderes University Medical Faculty, Division of Hematology, Aydin, Turkey
| | - Gunes Basol
- Ege University Medical Faculty, Division of Clinical Biochemistry, Izmir, Turkey
| | - Ayşe Gungor
- Ege University Medical Faculty, Division of Hematology, Izmir, Turkey
| | | | - Fusun Saygili
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, 35100, Turkey
| | - Zahit Bolaman
- Adnan Menderes University Medical Faculty, Division of Hematology, Aydin, Turkey
| | - Murat Tombuloglu
- Ege University Medical Faculty, Division of Hematology, Izmir, Turkey
| |
Collapse
|
24
|
Harsløf M, Pedersen KM, Nordestgaard BG, Afzal S. Low High-Density Lipoprotein Cholesterol and High White Blood Cell Counts: A Mendelian Randomization Study. Arterioscler Thromb Vasc Biol 2020; 41:976-987. [PMID: 33327746 DOI: 10.1161/atvbaha.120.314983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Animal studies suggest that HDL (high-density lipoprotein) regulates proliferation and differentiation of hematopoietic stem cells. Using a Mendelian randomization approach, we tested the hypothesis that low HDL cholesterol is associated with high white blood cell counts. Approach and Results: We included 107 952 individuals aged 20 to 100 years from the Copenhagen General Population Study with information on HDL cholesterol, white blood cell counts, and 9 genetic variants associated with HDL cholesterol. In multivariable-adjusted observational analyses, HDL cholesterol was inversely associated with white blood cell counts. On a continuous scale, a 1-mmol/L (39 mg/dL) lower HDL cholesterol was associated with 5.1% (95% CI, 4.7%-5.4%) higher leukocytes, 4.5% (95% CI, 4.0%-4.9%) higher neutrophils, 5.7% (95% CI, 5.3%-6.1%) higher lymphocytes, 5.7% (95% CI, 5.3%-6.2%) higher monocytes, 14.8% (95% CI, 13.9%-15.8%) higher eosinophils, and 3.9% (95% CI, 3.1%-4.7%) higher basophils. In age- and sex-adjusted genetic analyses using the inverse-variance weighted analysis, a 1-mmol/L (39 mg/dL) genetically determined lower HDL cholesterol was associated with 2.2% (95% CI, 0.3%-4.1%) higher leukocytes, 4.3% (95% CI, 1.6%-7.1%) higher lymphocytes, 4.3% (95% CI, 2.6%-6.1%) higher monocytes, and 4.8% (95% CI, 1.2%-8.5%) higher eosinophils. Overall, the genetic associations were robust across sensitivity analyses and replicated using summary statistics from the UK Biobank with up to 350 470 individuals. CONCLUSIONS Genetic and hence lifelong low HDL cholesterol was associated with high peripheral blood leukocytes, including high lymphocytes, monocytes, and eosinophils. The concordance between observational and genetic estimates and independent replication suggest a potential causal relationship.
Collapse
Affiliation(s)
- Mads Harsløf
- The Copenhagen General Population Study at the Department of Clinical Biochemistry (M.H., K.M.P., B.G.N., S.A.), Copenhagen University Hospital, Herlev and Gentofte Hospital, Denmark
| | - Kasper M Pedersen
- The Copenhagen General Population Study at the Department of Clinical Biochemistry (M.H., K.M.P., B.G.N., S.A.), Copenhagen University Hospital, Herlev and Gentofte Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (K.M.P., B.G.N., S.A.)
| | - Børge G Nordestgaard
- The Copenhagen General Population Study at the Department of Clinical Biochemistry (M.H., K.M.P., B.G.N., S.A.), Copenhagen University Hospital, Herlev and Gentofte Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (K.M.P., B.G.N., S.A.)
| | - Shoaib Afzal
- The Copenhagen General Population Study at the Department of Clinical Biochemistry (M.H., K.M.P., B.G.N., S.A.), Copenhagen University Hospital, Herlev and Gentofte Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (K.M.P., B.G.N., S.A.)
| |
Collapse
|
25
|
Low high-density lipoprotein and increased risk of several cancers: 2 population-based cohort studies including 116,728 individuals. J Hematol Oncol 2020; 13:129. [PMID: 32998735 PMCID: PMC7528381 DOI: 10.1186/s13045-020-00963-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background Increasing evidence suggests that high-density lipoprotein (HDL) may play a role in cancer development. We tested the hypothesis that low HDL levels are associated with increased risk of cancer. Methods Individuals from two population-based cohorts, the Copenhagen General Population Study (2003–2015, N = 107 341), and the Copenhagen City Heart Study (1991–1994, N = 9387) were followed prospectively until end of 2016 to assess low plasma HDL cholesterol and apolipoprotein A1 as risk factors for cancer using Cox proportional hazard regression. Results During up to 25 years follow-up, we observed 8748 cancers in the Copenhagen General Population Study and 2164 in the Copenhagen City Heart Study. In the Copenhagen General Population Study and compared to individuals with HDL cholesterol ≥ 2.0 mmol/L (≥ 77 mg/dL), multivariable adjusted hazard ratios (HRs) for any cancer were 1.13 (95% confidence interval 1.04–1.22) for individuals with HDL cholesterol of 1.5–1.99 mmol/L (58–77 mg/dL), 1.18 (1.08–1.30) for HDL cholesterol of 1.0–1.49 mmol/L (39–58 mg/dL), and 1.29 (1.12–1.48) for individuals with HDL cholesterol < 1.0 mmol/L (< 39 mg/dL). Correspondingly, compared to individuals with apolipoprotein A1 ≥ 190 mg/dL, HRs for any cancer were 1.06 (0.96–1.17) for individuals with apolipoprotein A1 of 160–189 mg/dL, 1.18 (1.07–1.30) for apolipoprotein A1 of 130–159 mg/dL, and 1.28 (1.13–1.46) for individuals with apolipoprotein A1 < 130 mg/dL. Among 27 cancer types, low HDL cholesterol and/or apolipoprotein A1 were associated with increased risk of multiple myeloma, myeloproliferative neoplasm, non-Hodgkin lymphoma, breast cancer, lung cancer, and nervous system cancer. Results were overall similar in women and men separately, and in the Copenhagen City Heart Study. Conclusions Low HDL levels were associated with increased risk of several cancers. Increased risk was most pronounced for hematological and nervous system cancer, and to a minor extent for breast and respiratory cancer.
Collapse
|
26
|
High-fat diet intensifies MLL-AF9-induced acute myeloid leukemia through activation of the FLT3 signaling in mouse primitive hematopoietic cells. Sci Rep 2020; 10:16187. [PMID: 32999332 PMCID: PMC7528010 DOI: 10.1038/s41598-020-73020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Using a MLL-AF9 knock-in mouse model, we discovered that consumption of a high-fat diet (HFD) accelerates the risk of developing acute myeloid leukemia (AML). This regimen increases the clusterization of FLT3 within lipid rafts on the cell surface of primitive hematopoietic cells, which overactivates this receptor as well as the downstream JAK/STAT signaling known to enhance the transformation of MLL-AF9 knock-in cells. Treatment of mice on a HFD with Quizartinib, a potent inhibitor of FLT3 phosphorylation, inhibits the JAK3/STAT3, signaling and finally antagonizes the accelerated development of AML that occurred following the HFD regimen. We can therefore conclude that, on a mouse model of AML, a HFD enforces the FLT3 signaling pathway on primitive hematopoietic cells and, in turn, improves the oncogenic transformation of MLL-AF9 knock-in cells and the leukemia initiation.
Collapse
|
27
|
Schnitzler JG, Poels K, Stiekema LCA, Yeang C, Tsimikas S, Kroon J, Stroes ESG, Lutgens E, Seijkens TTP. Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes. Int J Cardiol 2020; 315:81-85. [PMID: 32387421 DOI: 10.1016/j.ijcard.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lipoproteins are important regulators of hematopoietic stem and progenitor cell (HSPC) biology, predominantly affecting myelopoiesis. Since myeloid cells, including monocytes and macrophages, promote the inflammatory response that propagates atherosclerosis, it is of interest whether the atherogenic low-density lipoprotein (LDL)-like particle lipoprotein(a) [Lp(a)] contributes to atherogenesis via stimulating myelopoiesis. METHODS & RESULTS To assess the effects of Lp(a)-priming on long-term HSPC behavior we transplanted BM of Lp(a) transgenic mice, that had been exposed to elevated levels of Lp(a), into lethally-irradiated C57Bl6 mice and hematopoietic reconstitution was analyzed. No differences in HSPC populations or circulating myeloid cells were detected ten weeks after transplantation. Likewise, in vitro stimulation of C57Bl6 BM cells for 24 h with Lp(a) did not affect colony formation, total cell numbers or myeloid populations 7 days later. To assess the effects of elevated levels of Lp(a) on myelopoiesis, C57Bl6 bone marrow (BM) cells were stimulated with lp(a) for 24 h, and a marked increase in granulocyte-monocyte progenitors, pro-inflammatory Ly6high monocytes and macrophages was observed. Seven days of continuous exposure to Lp(a) increased colony formation and enhanced the formation of pro-inflammatory monocytes and macrophages. Antibody-mediated neutralization of oxidized phospholipids abolished the Lp(a)-induced effects on myelopoiesis. CONCLUSION Lp(a) enhances the production of inflammatory monocytes at the bone marrow level but does not induce cell-intrinsic long-term priming of HSPCs. Given the short-term and direct nature of this effect, we postulate that Lp(a)-lowering treatment has the capacity to rapidly revert this multi-level inflammatory response.
Collapse
Affiliation(s)
- Johan G Schnitzler
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Lotte C A Stiekema
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Calvin Yeang
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla, CA, USA
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands; Department of Hematology, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Bleve A, Durante B, Sica A, Consonni FM. Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid Cells at the Crossroad. Int J Mol Sci 2020; 21:ijms21165845. [PMID: 32823961 PMCID: PMC7461616 DOI: 10.3390/ijms21165845] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer progression generates a chronic inflammatory state that dramatically influences hematopoiesis, originating different subsets of immune cells that can exert pro- or anti-tumor roles. Commitment towards one of these opposing phenotypes is driven by inflammatory and metabolic stimuli derived from the tumor-microenvironment (TME). Current immunotherapy protocols are based on the reprogramming of both specific and innate immune responses, in order to boost the intrinsic anti-tumoral activity of both compartments. Growing pre-clinical and clinical evidence highlights the key role of metabolism as a major influence on both immune and clinical responses of cancer patients. Indeed, nutrient competition (i.e., amino acids, glucose, fatty acids) between proliferating cancer cells and immune cells, together with inflammatory mediators, drastically affect the functionality of innate and adaptive immune cells, as well as their functional cross-talk. This review discusses new advances on the complex interplay between cancer-related inflammation, myeloid cell differentiation and lipid metabolism, highlighting the therapeutic potential of metabolic interventions as modulators of anticancer immune responses and catalysts of anticancer immunotherapy.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
- Humanitas Clinical and Research Center–IRCCS–, via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-(0)-321-375881; Fax: +39-(0)-321-375821
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| |
Collapse
|
29
|
Recent advances in understanding the role of high fat diets and their components on hematopoiesis and the hematopoietic stem cell niche. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
31
|
N-acetylcysteine differentially regulates the populations of bone marrow and circulating endothelial progenitor cells in mice with limb ischemia. Eur J Pharmacol 2020; 881:173233. [PMID: 32492379 DOI: 10.1016/j.ejphar.2020.173233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are important to tissue repair and regeneration especially after ischemic injury, and very heterogeneous in phenotypes and biological features. Reactive oxygen species are involved in regulating EPC number and function. N-acetylcysteine (NAC) inhibits ischemia-induced reactive oxygen species formation and promotes ischemic limb recovery. This study was to evaluate the effect of NAC on EPC subpopulations in bone marrow (BM) and blood in mice with limb ischemia. Limb ischemia was induced by femoral artery ligation in male C57BL/6 mice with or without NAC treatment. EPC subpopulations, intracellular reactive oxygen species production, cell proliferation and apoptosis in BM and blood cells were analyzed at baseline, day 3 (acute ischemia) and 21 (chronic) after ligation. c-Kit+/CD31+, Sca-1+/Flk-1+, CD34+/CD133+, and CD34+/Flk-1+ were used to define EPC subpopulations. Limb blood flow, function, muscle structure, and capillary density were evaluated with laser Doppler perfusion imaging, treadmill test, and immunohistochemistry, respectively, at day 3, 7, 14 and 21 post ischemia. Reactive oxygen species production in circulating and BM mononuclear cells and EPCs populations were significantly increased in BM and blood in mice with acute and chronic ischemia. NAC treatment effectively blocked ischemia-induced reactive oxygen species production in circulating and BM mononuclear cells, and selectively increased EPC population in circulation, not BM, with preserved proliferation in mice with chronic ischemia, and enhanced limb blood flow and function recovery, while preventing acute ischemia-induced increase in BM and circulating EPCs. These data demonstrated that NAC selectively enhanced circulating EPC population in mice with chronic limb ischemia.
Collapse
|
32
|
Zhang J, Cui Y, Li X, Xiao Y, Liu L, Jia F, He J, Xie X, Parthasarathy S, Hao H, Fang N. 5F peptide promotes endothelial differentiation of bone marrow stem cells through activation of ERK1/2 signaling. Eur J Pharmacol 2020; 876:173051. [PMID: 32145325 DOI: 10.1016/j.ejphar.2020.173051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
Synthetic apolipoprotein A-I (apoA-I) mimetic peptide 5F exhibits anti-atherosclerotic ability with largely unknown mechanism(s). Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in vascular integrity and function. The objective of the present study was to evaluate the effect of 5F on endothelial differentiation of BM stem cells and related mechanisms. Murine BM multipotent adult progenitor cells (MAPCs) were induced to differentiate into endothelial cells in vitro with or without 5F. The expression of endothelial markers vWF, Flk-1 and CD31 was significantly increased in the cells treated with 5F with enhanced in vitro vascular tube formation and LDL uptake without significant changes on proliferation and stem cell maker Oct-4 expression. Phosphorylated ERK1/2, not Akt, was significantly increased in 5F-treated cells. Treatment of MAPCs with PD98059 or small interfering RNA against ERK2 substantially attenuated ERK1/2 phosphorylation, and effectively prevented 5F-induced enhancement of endothelial differentiation of MAPCs. In vivo studies revealed that 5F increased EPCs number in the BM in mice after acute hindlimb ischemia that was effectively prevented with PD98059 treatment. These data supported the conclusion that 5F promoted endothelial differentiation of MAPCs through activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China; Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuqi Cui
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xin Li
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuan Xiao
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lingjuan Liu
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fengpeng Jia
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianfeng He
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaoyun Xie
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, USA
| | - Hong Hao
- Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ningyuan Fang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China.
| |
Collapse
|
33
|
Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells 2020; 9:cells9030584. [PMID: 32121535 PMCID: PMC7140394 DOI: 10.3390/cells9030584] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.
Collapse
|
34
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
35
|
Modulation of Bone and Marrow Niche by Cholesterol. Nutrients 2019; 11:nu11061394. [PMID: 31234305 PMCID: PMC6628005 DOI: 10.3390/nu11061394] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Bone is a complex tissue composing of mineralized bone, bone cells, hematopoietic cells, marrow adipocytes, and supportive stromal cells. The homeostasis of bone and marrow niche is dynamically regulated by nutrients. The positive correlation between cardiovascular disease and osteoporosis risk suggests a close relationship between hyperlipidemia and/or hypercholesterolemia and the bone metabolism. Cholesterol and its metabolites influence the bone homeostasis through modulating the differentiation and activation of osteoblasts and osteoclasts. The effects of cholesterol on hematopoietic stem cells, including proliferation, migration, and differentiation, are also well-documented and further relate to atherosclerotic lesions. Correlation between circulating cholesterol and bone marrow adipocytes remains elusive, which seems opposite to its effects on osteoblasts. Epidemiological evidence has demonstrated that cholesterol deteriorates or benefits bone metabolism depending on the types, such as low-density lipoprotein (LDL) or high-density lipoprotein (HDL) cholesterol. In this review, we will summarize the latest progress of how cholesterol regulates bone metabolism and bone marrow microenvironment, including the hematopoiesis and marrow adiposity. Elucidation of these association and factors is of great importance in developing therapeutic options for bone related diseases under hypercholesterolemic conditions.
Collapse
|
36
|
Liu L, Cui Y, Li X, Que X, Xiao Y, Yang C, Zhang J, Xie X, Cowan PJ, Tian J, Hao H, Liu Z. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. J Cell Mol Med 2019; 23:4019-4029. [PMID: 30973215 PMCID: PMC6533526 DOI: 10.1111/jcmm.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China.,Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xin Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xingyi Que
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Yuan Xiao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Chunlin Yang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Jia Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Xiaoyun Xie
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Peter J Cowan
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | - Jie Tian
- Department of Cardiology, Children's hospital of Chongqing Medical University, Chongqing, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
37
|
Zingariello M, Bardelli C, Sancillo L, Ciaffoni F, Genova ML, Girelli G, Migliaccio AR. Dexamethasone Predisposes Human Erythroblasts Toward Impaired Lipid Metabolism and Renders Their ex vivo Expansion Highly Dependent on Plasma Lipoproteins. Front Physiol 2019; 10:281. [PMID: 31019464 PMCID: PMC6458278 DOI: 10.3389/fphys.2019.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
Cultures of stem cells from discarded sources supplemented with dexamethasone, a synthetic glucocorticoid receptor agonist, generate cultured red blood cells (cRBCs) in numbers sufficient for transfusion. According to the literature, however, erythroblasts generated with dexamethasone exhibit low enucleation rates giving rise to cRBCs that survive poorly in vivo. The knowledge that the glucocorticoid receptor regulates lipid metabolism and that lipid composition dictates the fragility of the plasma membrane suggests that insufficient lipid bioavailability restrains generation of cRBCs. To test this hypothesis, we first compared the expression profiling of erythroblasts generated with or without dexamethasone. This analysis revealed differences in expression of 55 genes, 6 of which encoding proteins involved in lipid metabolism. These were represented by genes encoding the mitochondrial proteins 3-Hydroxymethyl-3-Methylglutaryl-CoA lyase, upregulated, and 3-Oxoacid CoA-Transferase1 and glycerol-3-phosphate acyltransferase1, both downregulated, and the proteins ATP-binding cassette transporter1 and Hydroxysteroid-17-Beta-Dehydrogenase7, upregulated, and cAMP-dependent protein kinase catalytic subunit beta, downregulated. This profiling predicts that dexamethasone, possibly by interfering with mitochondrial functions, impairs the intrinsic lipid metabolism making the synthesis of the plasma membrane of erythroid cells depend on lipid-uptake from external sources. Optical and electron microscopy analyses confirmed that the mitochondria of erythroblasts generated with dexamethasone are abnormal and that their plasma membranes present pebbles associated with membrane ruptures releasing exosomes and micro-vesicles. These results indicate that the lipid supplements of media currently available are not adequate for cRBCs. To identify better lipid supplements, we determined the number of erythroblasts generated in synthetic media supplemented with either currently used liposomes or with lipoproteins purified from human plasma [the total lipoprotein fraction (TL) or its high (HDL), low (LDL) and very low (VLDL) density lipoprotein components]. Both LDL and VLDL generated numbers of erythroid cells 3-2-fold greater than that observed in controls. These greater numbers were associated with 2-3-fold greater amplification of erythroid cells due both to increased proliferation and to resistance to stress-induced death. In conclusion, dexamethasone impairs lipid metabolism making ex vivo expansion of erythroid cells highly dependent on lipid absorbed from external sources and the use of LDL and VLDL as lipid supplements improves the generation of cRBCs.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Claudio Bardelli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | - Laura Sancillo
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Maria Luisa Genova
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | | | - Anna Rita Migliaccio
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| |
Collapse
|
38
|
Zhu FL, Zhang N, Ma XJ, Yang J, Sun WP, Shen YQ, Wen YM, Yuan SS, Zhao D, Zhang HB, Feng YM. Circulating Hematopoietic Stem/Progenitor Cells are Associated with Coronary Stenoses in Patients with Coronary Heart Disease. Sci Rep 2019; 9:1680. [PMID: 30737465 PMCID: PMC6368538 DOI: 10.1038/s41598-018-38298-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/20/2018] [Indexed: 11/09/2022] Open
Abstract
Inflammatory cells in atherosclerotic plaque exclusively originate from hematopoietic stem/progenitor cells (HSPCs). In this study, we investigated whether circulating HSPCs frequency related to coronary stenosis in patients with coronary heart disease (CHD). Coronary angiography was performed in 468 participants who were recruited at Cardiology Centre in LuHe Hospital from March 2016 to May 2017. Among these subjects, 344 underwent echocardiography. Mononuclear cells isolated from peripheral blood were stained with an antibody cocktail containing anti-human CD34, anti-human lineage, anti-human CD38, and anti-human CD45RA. Lineage-CD38-CD45RAdimCD34+HSPCs were quantified by flow cytometry. CHD was defined as coronary stenosis ≥50% and the extent of CHD was further categorised by coronary stenosis ≥70%. A p < 0.0031 was regarded statistically significant by the Bonferroni correction. Circulating HSPCs frequency was 1.8-fold higher in CHD patients than non-CHD participants (p = 0.047). Multivariate-adjusted logistic analysis demonstrated that HSPCs was the only marker that was associated with the odds ratio of having mild vs. severe coronary stenosis (2.08 (95% CI, 1.35-3.21), p = 0.0009). Left ventricular ejection fraction was inversely correlated with HSPCs frequency and CRP in CHD patients (p < 0.05 for both). In conclusion, HSPCs frequency in circulation is intimately related to coronary stenoses in CHD patients.
Collapse
Affiliation(s)
- Fu-Li Zhu
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Xiao-Juan Ma
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Wei-Ping Sun
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Yi-Qing Shen
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wen
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Hai-Bin Zhang
- Department of Cardiology, Beijing LuHe Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing LuHe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
High-fat diet disturbs lipid raft/TGF-β signaling-mediated maintenance of hematopoietic stem cells in mouse bone marrow. Nat Commun 2019; 10:523. [PMID: 30705272 PMCID: PMC6355776 DOI: 10.1038/s41467-018-08228-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
Despite recent in vivo data demonstrating that high-fat diet (HFD)-induced obesity leads to major perturbations in murine hematopoietic stem cells (HSC), the direct role of a HFD is not yet completely understood. Here, we investigate the direct impact of a short-term HFD on HSC and hematopoiesis in C57BL/6J mice compared with standard diet-fed mice. We detect a loss of half of the most primitive HSC in the bone marrow (BM) cells of HFD-fed mice, which exhibit lower hematopoietic reconstitution potential after transplantation. Impaired maintenance of HSC is due to reduced dormancy after HFD feeding. We discover that a HFD disrupts the TGF-β receptor within lipid rafts, associated to impaired Smad2/3-dependent TGF-β signaling, as the main molecular mechanism of action. Finally, injecting HFD-fed mice with recombinant TGF-β1 avoids the loss of HSC and alteration of the BM’s ability to recover, underscoring the fact that a HFD affects TGF-β signaling on HSC. High fat diets (HFD) are thought to perturb murine hematopoiesis as a result of obesity. Here the authors find that short-term HFD reduces hematopoietic stem cells (HSC), disrupts lipid rafts and TGF-β1 signalling. Injecting HFD-fed mice with recombinant TGF-β1 can rescue HSC loss.
Collapse
|
40
|
Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne) 2019; 10:204. [PMID: 31001203 PMCID: PMC6454151 DOI: 10.3389/fendo.2019.00204] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized.
Collapse
|
41
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
42
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
43
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
44
|
Leszczynska A, Murphy JM. Vascular Calcification: Is it rather a Stem/Progenitor Cells Driven Phenomenon? Front Bioeng Biotechnol 2018; 6:10. [PMID: 29479528 PMCID: PMC5811524 DOI: 10.3389/fbioe.2018.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular calcification (VC) has witnessed a surge of interest. Vasculature is virtually an omnipresent organ and has a notably high capacity for repair throughout embryonic and adult life. Of the vascular diseases, atherosclerosis is a leading cause of morbidity and mortality on account of ectopic cartilage and bone formation. Despite the identification of a number of risk factors, all the current theories explaining pathogenesis of VC in atherosclerosis are far from complete. The most widely accepted response to injury theory and smooth muscle transdifferentiation to explain the VC observed in atherosclerosis is being challenged. Recent focus on circulating and resident progenitor cells in the vasculature and their role in atherogenesis and VC has been the driving force behind this review. This review discusses intrinsic cellular players contributing to fate determination of cells and tissues to form ectopic cartilage and bone formation.
Collapse
Affiliation(s)
- Aleksandra Leszczynska
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - J Mary Murphy
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
45
|
van der Valk FM, Kuijk C, Verweij SL, Stiekema LCA, Kaiser Y, Zeerleder S, Nahrendorf M, Voermans C, Stroes ESG. Increased haematopoietic activity in patients with atherosclerosis. Eur Heart J 2018; 38:425-432. [PMID: 27357356 DOI: 10.1093/eurheartj/ehw246] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
Aims Experimental work posits that acute ischaemic events trigger haematopoietic activity, driving monocytosis, and atherogenesis. Considering the chronic low-grade inflammatory state in atherosclerosis, we hypothesized that haematopoietic hyperactivity is a persistent feature in cardiovascular disease (CVD). Therefore, we aimed to assess the activity of haematopoietic organs and haematopoietic stem and progenitor cells (HSPCs) in humans. Methods and results First, we performed 18F-fluorodeoxyglucose positron emission tomographic (18F-FDG PET) imaging in 26 patients with stable atherosclerotic CVD (ischaemic event >12 months ago), and 25 matched controls. In splenic tissue, 18F-FDG uptake was 2.68 ± 0.65 in CVD patients vs. 1.75 ± 0.54 in controls (1.6-fold higher; P< 0.001), and in bone marrow 3.20 ± 0.76 vs. 2.72 ± 0.46 (1.2-fold higher; P = 0.003), closely related to LDL cholesterol levels (LDLc, r = 0.72). Subsequently, we determined progenitor potential of HSPCs harvested from 18 patients with known atherosclerotic CVD and 30 matched controls; both groups were selected from a cohort of cancer patients undergoing autologous stem cell transplantation. In CVD patients, the normalized progenitor potential, expressed as the number of colony-forming units-granulocyte/monocyte (CFU-GM) colonies/CD34+ cell, was 1.6-fold higher compared with matched controls (P < 0.001). Finally, we assessed the effects of native and oxidized lipoproteins on HSPCs harvested from healthy donors in vitro. Haematopoietic stem and progenitor cells displayed a 1.5-fold increased CFU-GM capacity in co-culture with oxidized LDL in vitro (P = 0.002), which was inhibited by blocking oxidized phospholipids via E06 (P = 0.001). Conclusion Collectively, these findings strengthen the case for a chronically affected haematopoietic system, potentially driving the low-grade inflammatory state in patients with atherosclerosis.
Collapse
Affiliation(s)
- Fleur M van der Valk
- Department of Vascular Medicine, AMC, Room F4-146, PO Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Carlijn Kuijk
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone L Verweij
- Department of Vascular Medicine, AMC, Room F4-146, PO Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Lotte C A Stiekema
- Department of Vascular Medicine, AMC, Room F4-146, PO Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Y Kaiser
- Department of Vascular Medicine, AMC, Room F4-146, PO Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Hematology, AMC, Amsterdam, The Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, AMC, Room F4-146, PO Box 22660, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Mailleux J, Timmermans S, Nelissen K, Vanmol J, Vanmierlo T, van Horssen J, Bogie JFJ, Hendriks JJA. Low-Density Lipoprotein Receptor Deficiency Attenuates Neuroinflammation through the Induction of Apolipoprotein E. Front Immunol 2017; 8:1701. [PMID: 29276512 PMCID: PMC5727422 DOI: 10.3389/fimmu.2017.01701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Objective We aimed to determine the role of the low-density lipoprotein receptor (LDLr) in neuroinflammation by inducing experimental autoimmune encephalomyelitis (EAE) in ldlr knock out mice. Methods MOG35-55 induced EAE in male and female ldlr-/- mice was assessed clinically and histopathologically. Expression of inflammatory mediators and apolipoprotein E (apoE) was investigated by qPCR. Changes in protein levels of apoE and tumor necrosis factor alpha (TNFα) were validated by western blot and ELISA, respectively. Results Ldlr-/--attenuated EAE disease severity in female, but not in male, EAE mice marked by a reduced proinflammatory cytokine production in the central nervous system of female ldlr-/- mice. Macrophages from female ldlr-/- mice showed a similar decrease in proinflammatory mediators, an impaired capacity to phagocytose myelin and enhanced secretion of the anti-inflammatory apoE. Interestingly, apoE/ldlr double knock out abrogated the beneficial effect of ldlr depletion in EAE. Conclusion Collectively, we show that ldlr-/- reduces EAE disease severity in female but not in male EAE mice, and that this can be explained by increased levels of apoE in female ldlr-/- mice. Although the reason for the observed sexual dimorphism remains unclear, our findings show that LDLr and associated apoE levels are involved in neuroinflammatory processes.
Collapse
Affiliation(s)
- Jo Mailleux
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Silke Timmermans
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Jasmine Vanmol
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
47
|
Oguro H, McDonald JG, Zhao Z, Umetani M, Shaul PW, Morrison SJ. 27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy. J Clin Invest 2017; 127:3392-3401. [PMID: 28783041 DOI: 10.1172/jci94027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) is induced during pregnancy to support rapid expansion of maternal blood volume. EMH activation requires hematopoietic stem cell (HSC) proliferation and mobilization, processes that depend upon estrogen receptor α (ERα) in HSCs. Here we show that treating mice with estradiol to model estradiol increases during pregnancy induced HSC proliferation in the bone marrow but not HSC mobilization. Treatment with the alternative ERα ligand 27-hydroxycholesterol (27HC) induced ERα-dependent HSC mobilization and EMH but not HSC division in the bone marrow. During pregnancy, 27HC levels increased in hematopoietic stem/progenitor cells as a result of CYP27A1, a cholesterol hydroxylase. Cyp27a1-deficient mice had significantly reduced 27HC levels, HSC mobilization, and EMH during pregnancy but normal bone marrow hematopoiesis and EMH in response to bleeding or G-CSF treatment. Distinct hematopoietic stresses thus induce EMH through different mechanisms. Two different ERα ligands, estradiol and 27HC, work together to promote EMH during pregnancy, revealing a collaboration of hormonal and metabolic mechanisms as well as a physiological function for 27HC in normal mice.
Collapse
Affiliation(s)
- Hideyuki Oguro
- Children's Research Institute and.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiyu Zhao
- Children's Research Institute and.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Philip W Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Pulmonary and Vascular Biology and
| | - Sean J Morrison
- Children's Research Institute and.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
48
|
Cheng HS, Besla R, Li A, Chen Z, Shikatani EA, Nazari-Jahantigh M, Hammoutène A, Nguyen MA, Geoffrion M, Cai L, Khyzha N, Li T, MacParland SA, Husain M, Cybulsky MI, Boulanger CM, Temel RE, Schober A, Rayner KJ, Robbins CS, Fish JE. Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circ Res 2017. [PMID: 28637783 PMCID: PMC5542783 DOI: 10.1161/circresaha.116.310529] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Inflammation is a key contributor to atherosclerosis. MicroRNA-146a (miR-146a) has been identified as a critical brake on proinflammatory nuclear factor κ light chain enhancer of activated B cells signaling in several cell types, including endothelial cells and bone marrow (BM)-derived cells. Importantly, miR-146a expression is elevated in human atherosclerotic plaques, and polymorphisms in the miR-146a precursor have been associated with risk of coronary artery disease. OBJECTIVE To define the role of endogenous miR-146a during atherogenesis. METHODS AND RESULTS Paradoxically, Ldlr-/- (low-density lipoprotein receptor null) mice deficient in miR-146a develop less atherosclerosis, despite having highly elevated levels of circulating proinflammatory cytokines. In contrast, cytokine levels are normalized in Ldlr-/-;miR-146a-/- mice receiving wild-type BM transplantation, and these mice have enhanced endothelial cell activation and elevated atherosclerotic plaque burden compared with Ldlr-/- mice receiving wild-type BM, demonstrating the atheroprotective role of miR-146a in the endothelium. We find that deficiency of miR-146a in BM-derived cells precipitates defects in hematopoietic stem cell function, contributing to extramedullary hematopoiesis, splenomegaly, BM failure, and decreased levels of circulating proatherogenic cells in mice fed an atherogenic diet. These hematopoietic phenotypes seem to be driven by unrestrained inflammatory signaling that leads to the expansion and eventual exhaustion of hematopoietic cells, and this occurs in the face of lower levels of circulating low-density lipoprotein cholesterol in mice lacking miR-146a in BM-derived cells. Furthermore, we identify sortilin-1(Sort1), a known regulator of circulating low-density lipoprotein levels in humans, as a novel target of miR-146a. CONCLUSIONS Our study reveals that miR-146a regulates cholesterol metabolism and tempers chronic inflammatory responses to atherogenic diet by restraining proinflammatory signaling in endothelial cells and BM-derived cells.
Collapse
Affiliation(s)
- Henry S Cheng
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Rickvinder Besla
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Angela Li
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Zhiqi Chen
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Eric A Shikatani
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Maliheh Nazari-Jahantigh
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Adel Hammoutène
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - My-Anh Nguyen
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Michele Geoffrion
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Lei Cai
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Nadiya Khyzha
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Tong Li
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Sonya A MacParland
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Mansoor Husain
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Myron I Cybulsky
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Chantal M Boulanger
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Ryan E Temel
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Andreas Schober
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Katey J Rayner
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Clinton S Robbins
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.)
| | - Jason E Fish
- From the Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., S.A.M., M.H., M.I.C., C.S.R., J.E.F.); Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (H.S.C, R.B., A.L., Z.C., E.A.S., N.K., M.H., M.I.C., C.S.R., J.E.F.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (M.N.-J., A.S.); INSERM, Unit 970, Paris Cardiovascular Research Center-PARCC, France (A.H., C.M.B.); University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., M.G., K.J.R.); and Pharmacology and Nutritional Sciences, University of Kentucky, Lexington (L.C., T.L., R.E.T.).
| |
Collapse
|
49
|
Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
|
50
|
Lalefar NR, Witkowski A, Simonsen JB, Ryan RO. Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells. J Nanobiotechnology 2016; 14:66. [PMID: 27553039 PMCID: PMC4995738 DOI: 10.1186/s12951-016-0218-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palmitoleoyl moiety in the N-terminal domain. RESULTS By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co-elutes with ND. In signaling assays, Wnt3a ND induced β-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin(-) Sca-1(+) c-Kit(+) cells. Surprisingly, ND lacking Wnt3a contributed to Lin(-) Sca-1(+) c-Kit(+) cell expansion, an effect that was not mediated through β-catenin. CONCLUSIONS The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC.
Collapse
Affiliation(s)
- Nahal R Lalefar
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.,Department of Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, 747 52nd Street, Oakland, CA, 94609, USA
| | - Andrzej Witkowski
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Jens B Simonsen
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.,Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Robert O Ryan
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| |
Collapse
|