1
|
Boast AP, Wood JR, Cooper J, Bolstridge N, Perry GLW, Wilmshurst JM. DNA and spores from coprolites reveal that colourful truffle-like fungi endemic to New Zealand were consumed by extinct moa (Dinornithiformes). Biol Lett 2025; 21:20240440. [PMID: 39809323 PMCID: PMC11732427 DOI: 10.1098/rsbl.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM. As NZ lacks native land mammals (except bats), and sequestrate fungi are typically drab and mammal-dispersed, NZ's sequestrate fungi are hypothesized to be adapted for bird dispersal. However, there is little direct evidence for this hypothesis, as 41% of NZ's native land bird species became extinct since initial human settlement in the thirteenth century. Here, we report ancient DNA and spores from the inside of two coprolites of NZ's extinct, endemic upland moa (Megalapteryx didinus) that reveal consumption and likely dispersal of ECM fungi, including at least one colourful sequestrate species. Contemporary data from NZ show that birds rarely consume fungi and that the introduced mammals preferentially consume exotic fungi. NZ's endemic sequestrate fungi could therefore be dispersal limited compared with fungi that co-evolved with mammalian dispersers. NZ's fungal communities may thus be undergoing a gradual species turnover following avian mycovore extinction and the establishment of mammalian mycovores, potentially affecting forest resilience and facilitating invasion by exotic tree taxa.
Collapse
Affiliation(s)
| | - Jamie R. Wood
- School of Biological Sciences, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide, South Australia5005, Australia
- Environment Institute, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Jerry Cooper
- Manaaki Whenua-Landcare Research, Lincoln, Canterbury7640, New Zealand
| | - Nic Bolstridge
- Manaaki Whenua-Landcare Research, Lincoln, Canterbury7640, New Zealand
| | - George L. W. Perry
- School of Environment, Faculty of Science, University of Auckland, Auckland1010, New Zealand
| | | |
Collapse
|
2
|
Crisostomo-Panuera JS, Nieva ASDV, Ix-Balam MA, Díaz-Valderrama JR, Alviarez-Gutierrez E, Oliva-Cruz SM, Cumpa-Velásquez LM. Diversity and functional assessment of indigenous culturable bacteria inhabiting fine-flavor cacao rhizosphere: Uncovering antagonistic potential against Moniliophthora roreri. Heliyon 2024; 10:e28453. [PMID: 38601674 PMCID: PMC11004713 DOI: 10.1016/j.heliyon.2024.e28453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
The Peruvian Amazonian native cacao faces ongoing challenges that significantly undermine its productivity. Among them, frosty pod rot disease and cadmium accumulation result in losses that need for effective and environmentally safe strategies, such as those based on bacteria. To explore the biological resources in the cacao soil, a descriptive study was conducted to assess the diversity of culturable bacteria across three production districts in the Amazonas region: La Peca, Imaza, and Cajaruro. The study also focused on the functional properties of these bacteria, particularly those related to the major issues limiting cacao cultivation. For this purpose, 90 native bacterial isolates were obtained from the cacao rhizosphere. According to diversity analysis, the community was composed of 19 bacterial genera, with a dominance of the Bacillaceae family and variable distribution among the districts. This variability was statistically supported by the PCoA plots and is related to the pH of the soil environment. The functional assessment revealed that 56.8% of the isolates showed an antagonism index greater than 75% after 7 days of confrontation. After 15 days of confrontation with Moniliophthora roreri, 68.2% of the bacterial population demonstrated this attribute. This capability was primarily exhibited by Bacillus strains. On the other hand, only 4.5% were capable of removing cadmium, highlighting the biocontrol potential of the bacterial community. In addition, some isolates produced siderophores (13.63%), solubilized phosphate (20.45%), and solubilized zinc (4.5%). Interestingly, these traits showed an uneven distribution, which correlated with the divergence found by the beta diversity. Our results revealed a diverse bacterial community inhabiting the Amazonian cacao rhizosphere, showcasing crucial functional properties related to the biocontrol of M. roreri. The information generated serves as a significant resource for the development of further biotechnological tools that can be applied to native Amazonian cacao.
Collapse
Affiliation(s)
- Jhusephin Sheshira Crisostomo-Panuera
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Amira Susana del Valle Nieva
- Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS-CONICET-UNCA). Nuñez del Prado 366, Catamarca, Argentina
| | - Manuel Alejandro Ix-Balam
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Jorge Ronny Díaz-Valderrama
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Eliana Alviarez-Gutierrez
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Segundo Manuel Oliva-Cruz
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Liz Marjory Cumpa-Velásquez
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| |
Collapse
|
3
|
Nousias O, Zheng J, Li T, Meinhardt LW, Bailey B, Gutierrez O, Baruah IK, Cohen SP, Zhang D, Yin Y. Three de novo assembled wild cacao genomes from the Upper Amazon. Sci Data 2024; 11:369. [PMID: 38605066 PMCID: PMC11009333 DOI: 10.1038/s41597-024-03215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Theobroma cacao, the chocolate tree, is indigenous to the Amazon basin, the greatest biodiversity hotspot on earth. Recent advancement in plant genomics highlights the importance of de novo sequencing of multiple reference genomes to capture the genome diversity present in different cacao populations. In this study, three high-quality chromosome-level genomes of wild cacao were constructed, de novo assembled with HiFi long reads sequencing, and scaffolded using a reference-free strategy. These genomes represent the three most important genetic clusters of cacao trees from the Upper Amazon region. The three wild cacao genomes were compared with two reference genomes of domesticated cacao. The five cacao genetic clusters were inferred to have diverged in the early and middle Pleistocene period, approximately 1.83-0.69 million years ago. The results shown here serve as an example of understanding how the Amazonian biodiversity was developed. The three wild cacao genomes provide valuable resources for studying genetic diversity and advancing genetic improvement of this species.
Collapse
Affiliation(s)
- Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lyndel W Meinhardt
- U.S. Department of Agriculture, Sustainable Perennial Crops Laboratory, Beltsville, MD, USA
| | - Bryan Bailey
- U.S. Department of Agriculture, Sustainable Perennial Crops Laboratory, Beltsville, MD, USA
| | - Osman Gutierrez
- U.S. Department of Agriculture, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Indrani K Baruah
- U.S. Department of Agriculture, Sustainable Perennial Crops Laboratory, Beltsville, MD, USA
| | - Stephen P Cohen
- U.S. Department of Agriculture, Sustainable Perennial Crops Laboratory, Beltsville, MD, USA
| | - Dapeng Zhang
- U.S. Department of Agriculture, Sustainable Perennial Crops Laboratory, Beltsville, MD, USA.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
4
|
Lanaud C, Vignes H, Utge J, Valette G, Rhoné B, Garcia Caputi M, Angarita Nieto NS, Fouet O, Gaikwad N, Zarrillo S, Powis TG, Cyphers A, Valdez F, Olivera Nunez SQ, Speller C, Blake M, Valdez FJ, Raymond S, Rowe SM, Duke GS, Romano FE, Loor Solórzano RG, Argout X. A revisited history of cacao domestication in pre-Columbian times revealed by archaeogenomic approaches. Sci Rep 2024; 14:2972. [PMID: 38453955 PMCID: PMC10920634 DOI: 10.1038/s41598-024-53010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Humans have a long history of transporting and trading plants, contributing to the evolution of domesticated plants. Theobroma cacao originated in the Neotropics from South America. However, little is known about its domestication and use in these regions. In this study, ceramic residues from a large sample of pre-Columbian cultures from South and Central America were analyzed using archaeogenomic and biochemical approaches. Here we show, for the first time, the widespread use of cacao in South America out of its native Amazonian area of origin, extending back 5000 years, likely supported by cultural interactions between the Amazon and the Pacific coast. We observed that strong genetic mixing between geographically distant cacao populations occurred as early as the middle Holocene, in South America, driven by humans, favoring the adaptation of T. cacao to new environments. This complex history of cacao domestication is the basis of today's cacao tree populations and its knowledge can help us better manage their genetic resources.
Collapse
Affiliation(s)
- Claire Lanaud
- CIRAD, AGAP Institut, Avenue Agropolis, F-34398, Montpellier, France.
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Hélène Vignes
- CIRAD, AGAP Institut, Avenue Agropolis, F-34398, Montpellier, France
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - José Utge
- UMR 7206 Eco-anthropologie, Département Homme et Environnement, MNHN-CNRS-Université Paris Cité, Paris, France
| | - Gilles Valette
- Institut des Biomolécules Max Mousseron - (UMR IBMM), Université de Montpellier, Montpellier, France
| | - Bénédicte Rhoné
- CIRAD, AGAP Institut, Avenue Agropolis, F-34398, Montpellier, France
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | | | - Olivier Fouet
- CIRAD, AGAP Institut, Avenue Agropolis, F-34398, Montpellier, France
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Sonia Zarrillo
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Terry G Powis
- Department of Geography and Anthropology, Kennesaw State University, Kennesaw, USA
| | - Ann Cyphers
- Universidad Nacional Autónoma de México (UNAM), México, México
| | - Francisco Valdez
- Institut de Recherche pour le Développement (IRD), UMR 208 PALOC, MNHN-IRD, Paris, France
| | | | - Camilla Speller
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Michael Blake
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | | | - Scott Raymond
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Sarah M Rowe
- The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Guy S Duke
- The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | | | - Xavier Argout
- CIRAD, AGAP Institut, Avenue Agropolis, F-34398, Montpellier, France
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Lavoie A, Thomas E, Olivier A. Local working collections as the foundation for an integrated conservation of Theobroma cacao L. in Latin America. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1063266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The intraspecific diversity of cacao has traditionally been preserved in genebanks. However, these establishments face various challenges, notably insufficient funding, accession redundancy, misidentification and lack of wild cacao population samples. In natural environments, it is expected that unknown varieties of cacao may still be found, but wild populations of cacao are increasingly threatened by climate change, deforestation, habitat loss, land use changes and poor knowledge. Farmers also retain diversity, but on-farm conservation is affected by geopolitical, economic, management and cultural issues, that are influenced at multiple scales, from the household to the international market. Taking separately, ex situ, in situ and on-farm conservation have not achieved adequate conservation fostering the inclusion of all stakeholders and the broad use of cacao diversity. We analyze the use of the traditional conservation strategies (ex situ, in situ and on-farm) and propose an integrated approach based on local working collections to secure cacao diversity in the long term. We argue that national conservation networks should be implemented in countries of origin to simultaneously maximize alpha (diversity held in any given working collection), beta (the change in diversity between working collections in different regions) and gamma diversity (overall diversity in a country).
Collapse
|
6
|
Tscharntke T, Ocampo‐Ariza C, Vansynghel J, Ivañez‐Ballesteros B, Aycart P, Rodriguez L, Ramirez M, Steffan‐Dewenter I, Maas B, Thomas E. Socio-ecological benefits of fine-flavor cacao in its center of origin. Conserv Lett 2023; 16:e12936. [PMID: 38440357 PMCID: PMC10909533 DOI: 10.1111/conl.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
In the tropics, combining food security with biodiversity conservation remains a major challenge. Tropical agroforestry systems are among the most biodiversity-friendly and productive land-use systems, and 70% of cocoa is grown by >6 million smallholder farmers living on <2$ per day. In cacao's main centre of diversification, the western Amazon region, interest is growing to achieve premium prices with the conversion of high-yielding, but mostly bulk-quality cacao to native fine-flavor cacao varieties, culturally important since pre-Columbian times. Conversion to native cacao can be expected to favor adaptation to regional climate and growth conditions, and to enhance native biodiversity and ecosystem services such as biological pest control and pollination, but possibly also imply susceptibility to diseases. Experience from successful conversion of non-native cacao plantations to fine-flavor cacao agroforestry with rejuvenation by grafting and under medium-canopy cover levels (30%-40%) can ensure a smooth transition with only minor temporary productivity gaps. This includes ongoing selection programs of high yielding and disease resistant native fine-flavor cacao genotypes and organizing in cooperatives to buffer the high market volatility. In conclusion, the recent interest on converting bulk cacao to a diversity of native fine-flavor varieties in countries like Peru is a challenge, but offers promising socio-ecological perspectives.
Collapse
Affiliation(s)
- Teja Tscharntke
- Department of AgroecologyUniversity of GöttingenGöttingenGermany
| | - Carolina Ocampo‐Ariza
- Department of AgroecologyUniversity of GöttingenGöttingenGermany
- Alliance of Bioversity International and CIAT, Lima officeLimaPeru
| | - Justine Vansynghel
- Alliance of Bioversity International and CIAT, Lima officeLimaPeru
- Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgWürzburgGermany
| | | | - Pablo Aycart
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Lily Rodriguez
- Centro de conservación, investigación y manejo de áreas naturales, CIMALimaPeru
| | - Marleni Ramirez
- Alliance of Bioversity International and CIAT, Lima officeLimaPeru
| | - Ingolf Steffan‐Dewenter
- Department of Animal Ecology and Tropical BiologyBiocenter, University of WürzburgWürzburgGermany
| | - Bea Maas
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Evert Thomas
- Alliance of Bioversity International and CIAT, Lima officeLimaPeru
| |
Collapse
|
7
|
Huanel OR, Quesada-Calderón S, Ríos Molina C, Morales-González S, Saenz-Agudelo P, Nelson WA, Arakaki N, Mauger S, Faugeron S, Guillemin ML. Pre-domestication bottlenecks of the cultivated seaweed Gracilaria chilensis. Mol Ecol 2022; 31:5506-5523. [PMID: 36029170 DOI: 10.1111/mec.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean populations has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2232 single nucleotide polymorphisms (SNPs) to assess how the species' evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. Approximate Bayesian Computation (ABC) analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.
Collapse
Affiliation(s)
- Oscar R Huanel
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Suany Quesada-Calderón
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Cristian Ríos Molina
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sarai Morales-González
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Saenz-Agudelo
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France.,Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,ANID- Millennium Science Initiative Nucleus (NUTME), Las Cruces, Chile
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Wellington, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Natalia Arakaki
- Instituto del Mar del Perú, Banco de Germoplasma de Organismos Acuáticos, Chucuito, Callao, Peru
| | - Stéphane Mauger
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Sylvain Faugeron
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Marie-Laure Guillemin
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France.,Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Pastor-Soplin SH, Velásquez D, Rivas E. Utilización de los recursos genéticos en un país que es centro de origen. REVISTA PERUANA DE BIOLOGÍA 2022. [DOI: 10.15381/rpb.v29i4.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
La producción peruana de cacao representa aproximadamente el 2% de la producción mundial; con una contribución muy reconocida por la calidad y diversidad de sus sabores y aromas. De milenario origen amazónico y probada utilización de hace por lo menos 5200 años, este cultivo recién ha sido visible para el desarrollo agrario en las dos últimas décadas, cuando se le ha utilizado con relativo éxito en la sustitución de cultivos ilegales de coca ¿Y qué tanto está contribuyendo la academia a la cadena de valor del cacao? Con carácter exploratorio, se registró y analizó una muestra de 44 tesis que tenían como objeto de estudio el cacao, obtenido por sus autores en los centros de producción y parcelas de productores. La mayor parte de estas tesis (41) estuvieron destinadas a obtener títulos profesionales, dos para optar el grado de magister y uno para obtener el grado de doctorado. Estas tesis se realizaron en universidades de 13 departamentos del Perú, contando Lima con el mayor número de tesis (12). Once tesis abarcaron actividades de investigación del germoplasma para la transformación y/o la innovación del cacao, confiriéndole así valor agregado con potencial uso comercial. Estas investigaciones estuvieron relacionadas con cuatro sectores productivos con un claro potencial comercial en el mercado global de recursos genéticos. En ningún caso, las investigaciones se realizaron bajo la seguridad jurídica del sistema de acceso a recursos genéticos y participación justa y equitativa de beneficios del Protocolo de Nagoya.
Collapse
|
9
|
Bustamante DE, Motilal LA, Calderon MS, Mahabir A, Oliva M. Genetic diversity and population structure of fine aroma cacao (Theobroma cacao L.) from north Peru revealed by single nucleotide polymorphism (SNP) markers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.895056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cacao (Theobroma cacao L.) is the basis of the lucrative confectionery industry with “fine or flavour” cocoa attracting higher prices due to desired sensory and quality profiles. The Amazonas Region (north Peru) has a designation of origin, Fine Aroma Cacao, based on sensory quality, productivity and morphological descriptors but its genetic structure and ancestry is underexplored. We genotyped 143 Fine Aroma Cacao trees from northern Peru (Bagua, Condorcanqui, Jaén, Mariscal Cáceres, and Utcubamba; mainly Amazonas Region), using 192 single nucleotide polymorphic markers. Identity, group, principal coordinate, phylogenetic and ancestry analyses were conducted. There were nine pairs of matched trees giving 134 unique samples. The only match within 1,838 reference cacao profiles was to a putative CCN 51 by a Condorcanqui sample. The “Peru Uniques” group was closest to Nacional and Amelonado-Nacional genetic clusters based on FST analysis. The provinces of Bagua and Utcubamba were genetically identical (Dest = 0.001; P = 0.285) but differed from Condorcanqui (Dest = 0.016–0.026; P = 0.001–0.006). Sixty-five (49%) and 39 (29%) of the Peru Uniques were mixed from three and four genetic clusters, respectively. There was a common and strong Nacional background with 104 individuals having at least 30% Nacional ancestry. The fine aroma of cacao from Northern Peru is likely due to the prevalent Nacional background with some contribution from Criollo. A core set of 53 trees was identified. These findings are used to support the continuance of the fine or flavour industry in Peru.
Collapse
|
10
|
MaxEnt Modeling to Estimate the Impact of Climate Factors on Distribution of Pinus densiflora. FORESTS 2022. [DOI: 10.3390/f13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pinus densiflora is an important evergreen coniferous species with both economic and ecological value. It is an endemic species in East Asia. Global climate warming greatly interferes with species survival. This study explored the impact of climate change on the distribution of this species and the relationship between its geographical distribution and climate demand, so as to provide a theoretical basis for the protection of P. densiflora under the background of global warming. This research used 565 valid data points and 19 typical climatic environmental factors distributed in China, Japan, and South Korea. The potential distribution area of P. densiflora in East Asia under the last glacial maximum (LGM), mid-Holocene, the current situation and two scenarios (RCP 2.6 and RCP 8.5) in the future (2050s and 2070s) was simulated by the MaxEnt model. The species distribution model toolbox in ArcGIS software was used to analyze the potential distribution range and change of P. densiflora. The contribution rates, jackknife test and environmental variable response curves were used to assess the importance of key climate factors. The area under the receiver-operating characteristic curve (AUC) was used to evaluate model accuracy. The MaxEnt model had an excellent simulation effect (AUC = 0.982). The forecast showed that the Korean Peninsula and Japan were highly suitable areas for P. densiflora, and the area had little change. Moreover, during the LGM, there was no large-scale retreat to the south, and it was likely to survive in situ in mountain shelters. The results suggested that Japan may be the origin of P. densiflora rather than the Shandong Peninsula of China. The distribution area of P. densiflora in the mid-Holocene and future scenarios was reduced compared with the current distribution, and the reduction of future distribution was greater, indicating that climate warming will have certain negative impacts on the distribution of P. densiflora in the future. The precipitation of the warmest quarter (Bio18), temperature seasonality (Bio4), mean annual temperature (Bio1) and mean temperature of the wettest quarter (Bio8) had the greatest impact on the distribution area of P. densiflora.
Collapse
|
11
|
Wang F, Li M, Zheng H, Dong T, Zhang X. A Phylogeographical Analysis of the Beetle Pest Species Callosobruchus chinensis (Linnaeus, 1758) in China. INSECTS 2022; 13:145. [PMID: 35206719 PMCID: PMC8878040 DOI: 10.3390/insects13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
Abstract
Callosobruchus chinensis (Coleoptera Bruchidae), is a pest of different varieties of legumes. In this paper, a phylogeographical analysis of C. chinensis was conducted to provide knowledge for the prevention and control of C. chinensis. A total of 224 concatenated mitochondrial sequences were obtained from 273 individuals. Suitable habitat shifts were predicted by the distribution modelling (SDM). Phylogeny, genetic structure and population demographic history were analyzed using multiple software. Finally, the least-cost path (LCP) method was used to identify possible dispersal corridors and genetic connectivity. The SDM results suggested that the distribution of C. chinensis experienced expansion and contraction with changing climate. Spatial distribution of mtDNA haplotypes showed there was partial continuity among different geographical populations of C. chinensis, except for the Hohhot (Inner Mongolia) population. Bayesian skyline plots showed that the population had a recent expansion during 0.0125 Ma and 0.025 Ma. The expansion and divergent events were traced back to Quaternary glaciations. The LCP method confirmed that there were no clear dispersal routes. Our findings indicated that climatic cycles of the Pleistocene glaciations, unsuitable climate and geographic isolation played important roles in the genetic differentiation of C. chinensis. Human activities weaken the genetic differentiation between populations. With the change in climate, the suitable areas of C. chinensis will disperse greatly in the future.
Collapse
Affiliation(s)
- Fang Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Min Li
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China;
| | - Haixia Zheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Tian Dong
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (F.W.); (H.Z.); (T.D.)
| |
Collapse
|
12
|
Périz M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Best I, Pastor-Soplin S, Castell M, Massot-Cladera M. Influence of Consumption of Two Peruvian Cocoa Populations on Mucosal and Systemic Immune Response in an Allergic Asthma Rat Model. Nutrients 2022; 14:nu14030410. [PMID: 35276769 PMCID: PMC8840350 DOI: 10.3390/nu14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022] Open
Abstract
Different cocoa populations have demonstrated a protective role in a rat model of allergic asthma by attenuating the immunoglobulin (Ig) E synthesis and partially protecting against anaphylactic response. The aim of this study was to ascertain the effect of diets containing two native Peruvian cocoa populations (“Amazonas Peru” or APC, and “Criollo de Montaña” or CMC) and an ordinary cocoa (OC) on the bronchial compartment and the systemic and mucosal immune system in the same rat model of allergic asthma. Among other variables, cells and IgA content in the bronchoalveolar lavage fluid (BALF) and serum anti-allergen antibody response were analyzed. The three cocoa populations prevented the increase of the serum specific IgG1 (T helper 2 isotype). The three cocoa diets decreased asthma-induced granulocyte increase in the BALF, which was mainly due to the reduction in the proportion of eosinophils. Moreover, both the OC and CMC diets were able to prevent the leukocyte infiltration caused by asthma induction in both the trachea and nasal cavity and decreased the IgA in both fecal and BALF samples. Overall, these results highlight the potential of different cocoa populations in the prevention of allergic asthma.
Collapse
Affiliation(s)
- Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Ivan Best
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru;
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutracéuticos, Universidad San Ignacio de Loyola, Lima 15024, Peru
- Correspondence: (I.B.); (M.C.); Tel.: +34-93-402-4505 (M.C.)
| | - Santiago Pastor-Soplin
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru;
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.B.); (M.C.); Tel.: +34-93-402-4505 (M.C.)
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
13
|
Boulanger E, Benestan L, Guerin PE, Dalongeville A, Mouillot D, Manel S. Climate differently influences the genomic patterns of two sympatric marine fish species. J Anim Ecol 2021; 91:1180-1195. [PMID: 34716929 DOI: 10.1111/1365-2656.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Climate influences population genetic variation in marine species. Capturing these impacts remains challenging for marine fishes which disperse over large geographical scales spanning steep environmental gradients. It requires the extensive spatial sampling of individuals or populations, representative of seascape heterogeneity, combined with a set of highly informative molecular markers capable of revealing climatic-associated genetic variations. We explored how space, dispersal and environment shape the genomic patterns of two sympatric fish species in the Mediterranean Sea, which ranks among the oceanic basins most affected by climate change and human pressure. We hypothesized that the population structure and climate-associated genomic signatures of selection would be stronger in the less mobile species, as restricted gene flow tends to facilitate the fixation of locally adapted alleles. To test our hypothesis, we genotyped two species with contrasting dispersal abilities: the white seabream Diplodus sargus and the striped red mullet Mullus surmuletus. We collected 823 individuals and used genotyping by sequencing (GBS) to detect 8,206 single nucleotide polymorphisms (SNPs) for the seabream and 2,794 for the mullet. For each species, we identified highly differentiated genomic regions (i.e. outliers) and disentangled the relative contribution of space, dispersal and environmental variables (climate, marine primary productivity) on the outliers' genetic structure to test the prevalence of gene flow and local adaptation. We observed contrasting patterns of gene flow and adaptive genetic variation between the two species. The seabream showed a distinct Alboran sea population and panmixia across the Mediterranean Sea. The mullet revealed additional differentiation within the Mediterranean Sea that was significantly correlated to summer and winter temperatures, as well as marine primary productivity. Functional annotation of the climate-associated outlier SNPs then identified candidate genes involved in heat tolerance that could be examined to further predict species' responses to climate change. Our results illustrate the key steps of a comparative seascape genomics study aiming to unravel the evolutionary processes at play in marine species, to better anticipate their response to climate change. Defining population adaptation capacities and environmental niches can then serve to incorporate evolutionary processes into species conservation planning.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Benestan
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre-Edouard Guerin
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
14
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Coelho SD, Levis C, Baccaro FB, Figueiredo FOG, Pinassi Antunes A, ter Steege H, Peña-Claros M, Clement CR, Schietti J. Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS One 2021; 16:e0257875. [PMID: 34597306 PMCID: PMC8486103 DOI: 10.1371/journal.pone.0257875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/14/2021] [Indexed: 12/01/2022] Open
Abstract
Plants have been used in Amazonian forests for millennia and some of these plants are disproportionally abundant (hyperdominant). At local scales, people generally use the most abundant plants, which may be abundant as the result of management of indigenous peoples and local communities. However, it is unknown whether plant use is also associated with abundance at larger scales. We used the population sizes of 4,454 arboreal species (trees and palms) estimated from 1946 forest plots and compiled information about uses from 29 Amazonian ethnobotany books and articles published between 1926 and 2013 to investigate the relationship between species usefulness and their population sizes, and how this relationship is influenced by the degree of domestication of arboreal species across Amazonia. We found that half of the arboreal species (2,253) are useful to humans, which represents 84% of the estimated individuals in Amazonian forests. Useful species have mean populations sizes six times larger than non-useful species, and their abundance is related with the probability of usefulness. Incipiently domesticated species are the most abundant. Population size was weakly related to specific uses, but strongly related with the multiplicity of uses. This study highlights the enormous usefulness of Amazonian arboreal species for local peoples. Our findings support the hypothesis that the most abundant plant species have a greater chance to be useful at both local and larger scales, and suggest that although people use the most abundant plants, indigenous people and local communities have contributed to plant abundance through long-term management.
Collapse
Affiliation(s)
- Sara D. Coelho
- Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Carolina Levis
- Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
- Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fabrício B. Baccaro
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Fernando O. G. Figueiredo
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - André Pinassi Antunes
- RedeFauna - Rede de Pesquisa em Diversidade, Conservação e Uso da Fauna da Amazônia, Manaus, Amazonas, Brazil
- Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Hans ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Systems Ecology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marielos Peña-Claros
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Charles R. Clement
- Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Juliana Schietti
- Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
16
|
Neves Dos Santos F, Magalhães DMA, Luz EDMN, Eberlin MN, Simionato AVC. Metabolite mass spectrometry profiling of cacao genotypes reveals contrasting resistances to Ceratocystis cacaofunesta phytopathogen. Electrophoresis 2021; 42:2519-2527. [PMID: 34498763 DOI: 10.1002/elps.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Ceratocystis wilt is a lethal disease of cacao, and the search for resistant genotypes may provide the best way to deal with the disease. Resistance or susceptibility behavior of some cacao genotypes when infected by Ceratocystis cacaofunesta is not yet understood. Herein, we report an LC-MS metabolomic screening analysis based on high-resolution MS to obtain comprehensive metabolic profile associated with multivariate data analysis of PLS-DA, which was effective to classify CCN-51 and TSH-1188 as resistant genotypes to C. cacaofunesta fungus, while CEPEC2002 was classified as a susceptible one. Using reversed-phase LC method, electrospray interface, and high-resolution tandem MS by the quadrupole-TOF analyzer, the typical profiles of metabolites, such as phenylpropanoids, flavonoids, lipids, alkaloids, and amino acids, were obtained. Untargeted metabolite profiles were used to construct discriminant analysis by partial least squares (PLS-DA)-derived loading plots, which placed the cacao genotypes into two major clusters related to susceptible or resistant groups. Linolenic, linoleic, oleic, stearic, arachidonic, and asiatic acids were annotated metabolites of infected, susceptible, and resistant genotypes, while methyl jasmonate, jasmonic acid, hydroxylated jasmonic acid, caffeine, and theobromine were annotated as constituents of the resistant genotypes. Trends of these typical metabolites levels revealed that CCN51 is susceptible, CEPEC2002 is moderately susceptible, and TSH1188 is resistant to C. cacaofunesta. Therefore, profiles of major metabolites as screened by LC-MS offer an efficient tool to reveal the level of resistance of cacao genotypes to C. cacaofunesta present in any farm around the world.
Collapse
Affiliation(s)
- Fábio Neves Dos Santos
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Laboratory of Biomolecule Analysis Tiselius-LABi Tiselius, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,MackMass Laboratory for Mass Spectrometry, School of Engineering-PPGEMN, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Biomolecule Analysis Tiselius-LABi Tiselius, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Geographic Patterns of Genetic Variation among Cacao (Theobroma cacao L.) Populations Based on Chloroplast Markers. DIVERSITY 2021. [DOI: 10.3390/d13060249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cacao tree (Theobroma cacao L.) is native to the Amazon basin and widely cultivated in the tropics to produce seeds, the valuable raw material for the chocolate industry. Conservation of cacao genetic resources and their availability for breeding and production programs are vital for securing cacao supply. However, relatively little is still known about the phylogeographic structure of natural cacao populations. We studied the geographic distribution of cpDNA variation in different populations representing natural cacao stands, cacao farms in Ecuador, and breeding populations. We used six earlier published cacao chloroplast microsatellite markers to genotype 233 cacao samples. In total, 23 chloroplast haplotypes were identified. The highest variation of haplotypes was observed in western Amazonia including geographically restricted haplotypes. Two observed haplotypes were widespread across the Amazon basin suggesting long distance seed dispersal from west to east in Amazonia. Most cacao genetic groups identified earlier using nuclear SSRs are associated with specific chloroplast haplotypes. A single haplotype was common in selections representing cacao plantations in west Ecuador and reference Trinitario accessions. Our results can be used to determine the chloroplast diversity of accessions and in combination with phenotypic assessments can help to select geographically distinctive varieties for cacao breeding programs.
Collapse
|
18
|
Ceccarelli V, Fremout T, Zavaleta D, Lastra S, Imán Correa S, Arévalo‐Gardini E, Rodriguez CA, Cruz Hilacondo W, Thomas E. Climate change impact on cultivated and wild cacao in Peru and the search of climate change‐tolerant genotypes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | - Tobias Fremout
- Bioversity International Lima Peru
- Division of Forest, Nature and Landscape KU Leuven Leuven Belgium
| | | | | | | | - Enrique Arévalo‐Gardini
- Instituto de Cultivos Tropicales (ICT) Tarapoto Peru
- Universidad Nacional Autonoma de Alto Amazonas Yurimaguas Peru
| | | | | | | |
Collapse
|
19
|
Larranaga N, van Zonneveld M, Hormaza JI. Holocene land and sea-trade routes explain complex patterns of pre-Columbian crop dispersion. THE NEW PHYTOLOGIST 2021; 229:1768-1781. [PMID: 33089900 DOI: 10.1111/nph.16936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/06/2020] [Indexed: 05/17/2023]
Abstract
Pre-Columbian crop movement remains poorly understood, hampering a good interpretation of the domestication and diversification of Neotropical crops. To provide new insights into pre-Columbian crop movement, we applied spatial genetics to identify and compare dispersal routes of three American crops between Mesoamerica and the Andes, two important centres of pre-Columbian crop and cultural diversity. Our analysis included georeferenced simple-sequence repeats (SSR) marker datasets of 1852 genotypes of cherimoya (Annona cherimola Mill.), a perennial fruit crop that became underutilised in the Americas after the European conquest, 770 genotypes of maize (Zea mays L.) and 476 genotypes of common bean (Phaseolus vulgaris L.). Our findings show that humans brought cherimoya from Mesoamerica to present Peru through long-distance sea-trade routes across the Pacific Ocean at least 4700 yr bp, after more ancient dispersion of maize and other crops through the Mesoamerican isthmus over land and near-coastal waters. To our knowledge, this is the first evidence of pre-Columbian crop movement between Mesoamerica and the Andes across the Pacific Ocean providing new insights into pre-Columbian crop exchange in the Americas. We propose that cherimoya represents a wider group of perennial fruit crops dispersed by humans via sea-trade routes between Mesoamerica and the Andes across the Pacific Ocean.
Collapse
Affiliation(s)
- Nerea Larranaga
- Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora (IHSM La Mayora - CSIC - UMA), Algarrobo, 29750, Spain
- IMAREFI, University of Guadalajara, Jalisco, 45110, México
| | - Maarten van Zonneveld
- Genetic Resources and Seed Unit, World Vegetable Center, Shanhua, 74151, Taiwan
- Bioversity International, Turrialba, Costa Rica, 7170, Spain
| | - Jose I Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora (IHSM La Mayora - CSIC - UMA), Algarrobo, 29750, Spain
| |
Collapse
|
20
|
Mass Spectrometry-Based Flavor Monitoring of Peruvian Chocolate Fabrication Process. Metabolites 2021; 11:metabo11020071. [PMID: 33530548 PMCID: PMC7911988 DOI: 10.3390/metabo11020071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Flavor is one of the most prominent characteristics of chocolate and is crucial in determining the price the consumer is willing to pay. At present, two types of cocoa beans have been characterized according to their flavor and aroma profile, i.e., (1) the bulk (or ordinary) and (2) the fine flavor cocoa (FFC). The FFC has been distinguished from bulk cocoa for having a great variety of flavors. Aiming to differentiate the FFC bean origin of Peruvian chocolate, an analytical methodology using gas chromatography coupled to mass spectrometry (GC-MS) was developed. This methodology allows us to characterize eleven volatile organic compounds correlated to the aromatic profile of FFC chocolate from this geographical region (based on buttery, fruity, floral, ethereal sweet, and roasted flavors). Monitoring these 11 flavor compounds during the chain of industrial processes in a retrospective way, starting from the final chocolate bar towards pre-roasted cocoa beans, allows us to better understand the cocoa flavor development involved during each stage. Hence, this methodology was useful to distinguish chocolates from different regions, north and south of Peru, and production lines. This research can benefit the chocolate industry as a quality control protocol, from the raw material to the final product.
Collapse
|
21
|
Zonneveld M, Kindt R, Solberg SØ, N'Danikou S, Dawson IK. Diversity and conservation of traditional African vegetables: Priorities for action. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Maarten Zonneveld
- Genetic Resources and Seed Unit World Vegetable CenterHeadquarters Shanhua Taiwan
| | | | - Svein Ø. Solberg
- Faculty of Applied Ecology Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Elverum Norway
| | - Sognigbé N'Danikou
- World Vegetable Center, Eastern and Southern Africa office Arusha Tanzania
| | | |
Collapse
|
22
|
Mattera MG, Pastorino MJ, Lantschner MV, Marchelli P, Soliani C. Genetic diversity and population structure in Nothofagus pumilio, a foundation species of Patagonian forests: defining priority conservation areas and management. Sci Rep 2020; 10:19231. [PMID: 33159157 PMCID: PMC7648826 DOI: 10.1038/s41598-020-76096-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
Patagonian forests are the southernmost temperate forests in the world, and Nothofagus pumilio is one of their most ecologically important tree species (i.e., a foundation species). It presents great adaptability and a wide distribution range, making it a suitable model for predicting the performance of trees facing global climate change. N. pumilio forests are increasingly threatened by extreme climatic events and anthropogenic activities. This study aims to identify priority conservation areas and Genetic Zones (GZs) for N. pumilio, promoting the implementation of specific practices to ensure its management and long-term preservation. Thirty-five populations (965 trees) sampled across its distribution (more than 2200 km latitudinally) were genotyped with SSRs, and geographical patterns of genetic variation were identified using Bayesian approaches. The phylogeographic patterns of the species and geomorphological history of the region were also considered. Six priority conservation areas were identified, which hold high allelic richness and/or exclusive allelic variants. Eighteen GZs were delineated based on the genetic structure of this species, and maps showing their distributional range were drawn up. Overall, this study defines management units based on genetic data for N. pumilio for the first time, which will facilitate the establishment of sustainable practices and highlight priorities for investment of conservation funding.
Collapse
Affiliation(s)
- M Gabriela Mattera
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina.
| | - Mario J Pastorino
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina
| | - M Victoria Lantschner
- Grupo de Ecología de Poblaciones de Insectos del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400, S. C. Bariloche, Río Negro, Argentina
| | - Paula Marchelli
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina
| | - Carolina Soliani
- Grupo de Genética Ecológica y Mejoramiento Forestal del Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) INTA EEA Bariloche -CONICET, Modesta Victoria 4450, CP: 8400,, S. C. Bariloche, Río Negro, Argentina
| |
Collapse
|
23
|
Díaz-Valderrama JR, Leiva-Espinoza ST, Aime MC. The History of Cacao and Its Diseases in the Americas. PHYTOPATHOLOGY 2020; 110:1604-1619. [PMID: 32820671 DOI: 10.1094/phyto-05-20-0178-rvw] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cacao is a commodity crop from the tropics cultivated by about 6 million smallholder farmers. The tree, Theobroma cacao, originated in the Upper Amazon where it was domesticated ca. 5450 to 5300 B.P. From this center of origin, cacao was dispersed and cultivated in Mesoamerica as early as 3800 to 3000 B.P. After the European conquest of the Americas (the 1500s), cacao cultivation intensified in several loci, primarily Mesoamerica, Trinidad, Venezuela, and Ecuador. It was during the colonial period that cacao diseases began emerging as threats to production. One early example is the collapse of the cacao industry in Trinidad in the 1720s, attributed to an unknown disease referred to as the "blast". Trinidad would resurface as a production center due to the discovery of the Trinitario genetic group, which is still widely used in breeding programs around the world. However, a resurgence of diseases like frosty pod rot during the republican period (the late 1800s and early 1900s) had profound impacts on other centers of Latin American production, especially in Venezuela and Ecuador, shifting the focus of cacao production southward, to Bahia, Brazil. Production in Bahia was, in turn, dramatically curtailed by the introduction of witches' broom disease in the late 1980s. Today, most of the world's cacao production occurs in West Africa and parts of Asia, where the primary Latin American diseases have not yet spread. In this review, we discuss the history of cacao cultivation in the Americas and how that history has been shaped by the emergence of diseases.
Collapse
Affiliation(s)
- Jorge R Díaz-Valderrama
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Santos T Leiva-Espinoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
24
|
Périz M, Pérez-Cano FJ, Cambras T, Franch À, Best I, Pastor-Soplin S, Castell M, Massot-Cladera M. Attenuating Effect of Peruvian Cocoa Populations on the Acute Asthmatic Response in Brown Norway Rats. Nutrients 2020; 12:E2301. [PMID: 32751867 PMCID: PMC7469048 DOI: 10.3390/nu12082301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cocoa contains bioactive components, which vary according to genetic and environmental factors. The present study aimed to ascertain the anti-allergic properties of native Peruvian cocoa populations ("Blanco de Piura" or BPC, "Amazonas Peru" or APC, "Criollo de Montaña" or CMC, "Chuncho" or CCC, and an ordinary cocoa or OC). To do so, after an initial in vitro approach, an in vivo study focused on the induction of an anaphylactic response associated with allergic asthma in Brown Norway rats was carried out. Based on their polyphenol content, antioxidant activity and in vitro effects, the APC and CMC were selected to be included in the in vivo study. Cocoa diets were tested in a model of allergic asthma in which anaphylactic response was assessed by changes in body temperature, motor activity and body weight. The concentration of specific immunoglobulin E (IgE), mast cell protease and leukotrienes was also quantified in serum and/or bronchoalveolar lavage fluid. CMC and OC populations exhibited a protective effect on the allergic asthma rat model as evidenced by means of a partial protection against anaphylactic response and, above all, in the synthesis of IgE and the release of mast cell protease.
Collapse
Affiliation(s)
- Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (T.C.); (À.F.); (M.C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (T.C.); (À.F.); (M.C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Trinitat Cambras
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (T.C.); (À.F.); (M.C.)
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (T.C.); (À.F.); (M.C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Ivan Best
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru; (I.B.); (S.P.-S.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutracéuticos, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Santiago Pastor-Soplin
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru; (I.B.); (S.P.-S.)
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (T.C.); (À.F.); (M.C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (F.J.P.-C.); (T.C.); (À.F.); (M.C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
25
|
Alves‐Pereira A, Clement CR, Picanço‐Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, de Souza AP, Zucchi MI. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol Appl 2020; 13:342-361. [PMID: 31993081 PMCID: PMC6976959 DOI: 10.1111/eva.12873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Amazonia is a major world centre of plant domestication, but the genetics of domestication remains unclear for most Amazonian crops. Manioc (Manihot esculenta) is the most important staple food crop that originated in this region. Although manioc is relatively well-studied, little is known about the diversification of bitter and sweet landraces and how they were dispersed across Amazonia. We evaluated single nucleotide polymorphisms (SNPs) in wild and cultivated manioc to identify outlier SNPs putatively under selection and to assess the neutral genetic structure of landraces to make inferences about the evolution of the crop in Amazonia. Some outlier SNPs were in putative manioc genes possibly related to plant architecture, transcriptional regulation and responses to stress. The neutral SNPs revealed contrasting genetic structuring for bitter and sweet landraces. The outlier SNPs may be signatures of the genomic changes resulting from domestication, while the neutral genetic structure suggests independent dispersals for sweet and bitter manioc, possibly related to the earlier domestication and diversification of the former. Our results highlight the role of ancient peoples and current smallholders in the management and conservation of manioc genetic diversity, including putative genes and specific genetic resources with adaptive potential in the context of climate change.
Collapse
Affiliation(s)
- Alessandro Alves‐Pereira
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | | | | - Elizabeth Ann Veasey
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Gabriel Dequigiovanni
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Santiago Linorio Ferreyra Ramos
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - José Baldin Pinheiro
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Anete Pereira de Souza
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | |
Collapse
|
26
|
Aguirre‐Morales CA, Thomas E, Cardozo CI, Gutiérrez J, Alcázar Caicedo C, Moscoso Higuita LG, Becerra López‐Lavalle LA, González MA. Genetic diversity of the rain tree ( Albizia saman) in Colombian seasonally dry tropical forest for informing conservation and restoration interventions. Ecol Evol 2020; 10:1905-1916. [PMID: 32128124 PMCID: PMC7042685 DOI: 10.1002/ece3.6005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
Albizia saman is a multipurpose tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically cultivated in silvopastoral and other agroforestry systems around the world, a trend that is bound to increase in light of multimillion hectare commitments for forest and landscape restoration. The effective conservation and sustainable use of A. saman requires detailed knowledge of its genetic diversity across its native distribution range of which surprisingly little is known to date. We assessed the genetic diversity and structure of A.saman across twelve representative locations of SDTF in Colombia, and how they may have been shaped by past climatic changes and human influence. We found four different genetic groups which may be the result of differentiation due to isolation of populations in preglacial times. The current distribution and mixture of genetic groups across STDF fragments we observed might be the result of range expansion of SDTFs during the last glacial period followed by range contraction during the Holocene and human-influenced movement of germplasm associated with cattle ranching. Despite the fragmented state of the presumed natural A. saman stands we sampled, we did not find any signs of inbreeding, suggesting that gene flow is not jeopardized in humanized landscapes. However, further research is needed to assess potential deleterious effects of fragmentation on progeny. Climate change is not expected to seriously threaten the in situ persistence of A. saman populations and might present opportunities for future range expansion. However, the sourcing of germplasm for tree planting activities needs to be aligned with the genetic affinity of reference populations across the distribution of Colombian SDTFs. We identify priority source populations for in situ conservation based on their high genetic diversity, lack or limited signs of admixture, and/or genetic uniqueness.
Collapse
|
27
|
Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00388-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Rodriguez-Medina C, Arana AC, Sounigo O, Argout X, Alvarado GA, Yockteng R. Cacao breeding in Colombia, past, present and future. BREEDING SCIENCE 2019; 69:373-382. [PMID: 31598069 PMCID: PMC6776146 DOI: 10.1270/jsbbs.19011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/24/2019] [Indexed: 06/02/2023]
Abstract
Cacao (Theobroma cacao L.) is considered a key crop in Colombian social programs aiming at alleviating rural poverty, promoting peace in post-conflict regions and, replacing crops used for illicit purposes. Colombia is thought to be part of the center of origin of cacao; several germplasm collecting expeditions have been implemented, dating back to the 1940s. Despite that history, the first breeding program based on creating, selecting, and releasing full-sib progenies made extensive use of accessions introduced from other countries as parents. A new breeding strategy was adopted in the 1990s, based on mass selection of promising trees (high-yield and disease-resistant) in farmers' fields, resulting in the selection of clones released to farmers as planting material. In 2012, a new strategy, Recurrent Selection, was adopted by the Colombian Corporation for Agricultural Research, Agrosavia, based on the development of improved populations and allowing the selection of clones at the end of each cycle of recombination. The use of molecular markers is being integrated into this program in order to assist breeders in selecting material. This review provides details about the history and perspectives of the cacao breeding program in Colombia.
Collapse
Affiliation(s)
- Caren Rodriguez-Medina
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
| | - Alvaro Caicedo Arana
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
| | - Olivier Sounigo
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
- CIRAD, UPR Bioagresseurs;
Palmira, Valle del Cauca,
Colombia
| | - Xavier Argout
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
- CIRAD, UMR AGAP;
Palmira, Valle del Cauca,
Colombia
- Univ. Montpellier, CIRAD, INRA;
Montpellier SupAgro; Montpellier,
France
| | - Gabriel Alvarado Alvarado
- Corporación Universitaria Santa Rosa de Cabal (UNISARC);
Km 4 vía Santa Rosa de Cabal; Risaralda,
Colombia
| | - Roxana Yockteng
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Tibaitatá;
Km 14 vía a Mosquera; Cundinamarca,
Colombia
- Biodiversité-UMR-CNRS 7205; National Museum of Natural History;
Paris,
France
| |
Collapse
|
29
|
da Rocha DG, Kaefer IL. What has become of the refugia hypothesis to explain biological diversity in Amazonia? Ecol Evol 2019; 9:4302-4309. [PMID: 31016006 PMCID: PMC6468052 DOI: 10.1002/ece3.5051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 11/05/2022] Open
Abstract
The spatial distribution of biodiversity and related processes is the core of Biogeography. Amazonia is the world's most diverse rainforest and the primary source of diversity to several Neotropical regions. The origins of such diversity continue to be an unresolved question in evolutionary biology. Among many competing hypotheses to explain the evolution of the Amazonian biodiversity, one stands out as the most influential: the refugia hypothesis by Jürgen Haffer. Here, we provide a chronological overview on how the refugia hypothesis evolved over the decades and how the criticism from different fields affected its acceptance. We conclude that the refugia hypothesis alone cannot explain the diversification of the complex Amazonian diversity, and perhaps it was not the most important diversification mechanism. However, the debate provoked by refugia has produced a great amount of knowledge on Amazonian climatic, geological, and evolutionary processes, as well as on species distributions, movements, and history.
Collapse
Affiliation(s)
- Daniel Gomes da Rocha
- Department of Wildlife, Fish, and Conservation Biology, Graduate Group in EcologyUniversity of California, DavisDavisCalifornia
- Grupo de Ecologia e Conservação de Felinos na AmazôniaInstituto de Desenvolvimento Sustentável MamirauáTeféBrazil
| | - Igor L. Kaefer
- Instituto de Ciências Biológicas, Universidade Federal do AmazonasManausBrazil
| |
Collapse
|
30
|
Zarrillo S, Gaikwad N, Lanaud C, Powis T, Viot C, Lesur I, Fouet O, Argout X, Guichoux E, Salin F, Solorzano RL, Bouchez O, Vignes H, Severts P, Hurtado J, Yepez A, Grivetti L, Blake M, Valdez F. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat Ecol Evol 2018; 2:1879-1888. [PMID: 30374172 DOI: 10.1038/s41559-018-0697-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/14/2018] [Indexed: 11/09/2022]
Abstract
Cacao (Theobroma cacao L.) is an important economic crop, yet studies of its domestication history and early uses are limited. Traditionally, cacao is thought to have been first domesticated in Mesoamerica. However, genomic research shows that T. cacao's greatest diversity is in the upper Amazon region of northwest South America, pointing to this region as its centre of origin. Here, we report cacao use identified by three independent lines of archaeological evidence-cacao starch grains, absorbed theobromine residues and ancient DNA-dating from approximately 5,300 years ago recovered from the Santa Ana-La Florida (SALF) site in southeast Ecuador. To our knowledge, these findings constitute the earliest evidence of T. cacao use in the Americas and the first unequivocal archaeological example of its pre-Columbian use in South America. They also reveal the upper Amazon region as the oldest centre of cacao domestication yet identified.
Collapse
Affiliation(s)
- Sonia Zarrillo
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nilesh Gaikwad
- Department of Nutrition and Department of Environmental Toxicology, West Coast Metabolomics Center, University of California, Davis, CA, USA.,Gaikwad Steroidomics Laboratory, Davis, CA, USA
| | - Claire Lanaud
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Terry Powis
- Department of Geography and Anthropology, Kennesaw State University, Kennesaw, GA, USA
| | - Christopher Viot
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Isabelle Lesur
- INRA-UMR BIOGECO, Cestas, France.,HelixVenture, Mérignac, France
| | - Olivier Fouet
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Xavier Argout
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | | | - Rey Loor Solorzano
- Instituto Nacional de Investigación Agropecuaria Estación Experimental Tropical Pichilingue, Quevedo, Provincia de Los Ríos, Ecuador
| | | | - Hélène Vignes
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Julio Hurtado
- Ministerio de Cultura y Patrimonio, Ecuador/IRD, Quito, Ecuador
| | - Alexandra Yepez
- Ministerio de Cultura y Patrimonio, Ecuador/IRD, Quito, Ecuador
| | - Louis Grivetti
- Department of Nutrition, University of California, Davis, CA, USA
| | - Michael Blake
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Francisco Valdez
- Institut de Recherche pour le Développement, UMR 208 PALOC, MNHN-IRD, Marseille, France
| |
Collapse
|
31
|
Cornejo OE, Yee MC, Dominguez V, Andrews M, Sockell A, Strandberg E, Livingstone D, Stack C, Romero A, Umaharan P, Royaert S, Tawari NR, Ng P, Gutierrez O, Phillips W, Mockaitis K, Bustamante CD, Motamayor JC. Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Commun Biol 2018; 1:167. [PMID: 30345393 PMCID: PMC6191438 DOI: 10.1038/s42003-018-0168-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/14/2018] [Indexed: 01/24/2023] Open
Abstract
Domestication has had a strong impact on the development of modern societies. We sequenced 200 genomes of the chocolate plant Theobroma cacao L. to show for the first time to our knowledge that a single population, the Criollo population, underwent strong domestication ~3600 years ago (95% CI: 2481-13,806 years ago). We also show that during the process of domestication, there was strong selection for genes involved in the metabolism of the colored protectants anthocyanins and the stimulant theobromine, as well as disease resistance genes. Our analyses show that domesticated populations of T. cacao (Criollo) maintain a higher proportion of high-frequency deleterious mutations. We also show for the first time the negative consequences of the increased accumulation of deleterious mutations during domestication on the fitness of individuals (significant reduction in kilograms of beans per hectare per year as Criollo ancestry increases, as estimated from a GLM, P = 0.000425).
Collapse
Affiliation(s)
- Omar E Cornejo
- School of Biological Sciences, Washington State University, PO Box 644236, Heald Hall 429B, Pullman, Washington, 99164, USA
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, CA, 94305, USA
| | - Muh-Ching Yee
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, CA, 94305, USA
- Stanford Functional Genomics Facility, Stanford, CA, 94305, USA
| | - Victor Dominguez
- Department of Biology, Indiana University, 915 E. Third St, Bloomington, IN, 47405, USA
| | - Mary Andrews
- Department of Biology, Indiana University, 915 E. Third St, Bloomington, IN, 47405, USA
| | - Alexandra Sockell
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, CA, 94305, USA
| | - Erika Strandberg
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, CA, 94305, USA
- Biomedical Informatics Training Program, 1265 Welch Road, MSOB, X-215, MC 5479, Stanford, CA, 94305-5479, USA
| | - Donald Livingstone
- Mars, Incorporated, 6885 Elm Street, McLean, VA, 22101, USA
- United States Department of Agriculture-Agriculture Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Rd, Miami, FL, 33158, USA
| | - Conrad Stack
- Mars, Incorporated, 6885 Elm Street, McLean, VA, 22101, USA
| | - Alberto Romero
- Mars, Incorporated, 6885 Elm Street, McLean, VA, 22101, USA
| | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Stefan Royaert
- Mars, Incorporated, 6885 Elm Street, McLean, VA, 22101, USA
| | - Nilesh R Tawari
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Pauline Ng
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Osman Gutierrez
- SHRS, USDS-ARS, 13601 Old Cutler Road, Miami, FL, 33158, USA
| | - Wilbert Phillips
- Programa de Mejoramiento de Cacao, CATIE, 7170, Turrialba, Costa Rica
| | - Keithanne Mockaitis
- Department of Biology, Indiana University, 915 E. Third St, Bloomington, IN, 47405, USA
- Pervasive Technology Institute, Indiana University, 2709 E. 10th St., Bloomington, IN, 47408, USA
| | - Carlos D Bustamante
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, CA, 94305, USA
| | | |
Collapse
|
32
|
Escobar S, Pintaud J, Balslev H, Bernal R, Moraes Ramírez M, Millán B, Montúfar R. Genetic structuring in a Neotropical palm analyzed through an Andean orogenesis-scenario. Ecol Evol 2018; 8:8030-8042. [PMID: 30250682 PMCID: PMC6144996 DOI: 10.1002/ece3.4216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022] Open
Abstract
Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape-Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America.
Collapse
Affiliation(s)
- Sebastián Escobar
- Facultad de Ciencias Exactas y NaturalesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of Bioscience, Ecoinformatics and Biodiversity GroupAarhus UniversityAarhusDenmark
| | | | - Henrik Balslev
- Department of Bioscience, Ecoinformatics and Biodiversity GroupAarhus UniversityAarhusDenmark
| | - Rodrigo Bernal
- Instituto de Ciencias NaturalesUniversidad Nacional de ColombiaBogotáColombia
| | | | - Betty Millán
- Museo de Historia NaturalUniversidad Nacional Mayor de San Marcos (UNMSM)LimaPerú
| | - Rommel Montúfar
- Facultad de Ciencias Exactas y NaturalesPontificia Universidad Católica del EcuadorQuitoEcuador
| |
Collapse
|
33
|
Abstract
Neotropical fruit species once dispersed by Pleistocene megafauna have regained relevance in diversifying human diets to address malnutrition. Little is known about the historic interactions between humans and these fruit species. We quantified the human role in modifying geographic and environmental ranges of Neotropical fruit species by comparing the distribution of megafauna-dispersed fruit species that have been part of both human and megafauna diets with fruit species that were exclusively part of megafauna diets. Three quarters of the fruit species that were once dispersed by megafauna later became part of human diets. Our results suggest that, because of extensive dispersal and management, humans have expanded the geographic and environmental ranges of species that would otherwise have suffered range contraction after extinction of megafauna. Our results suggest that humans have been the principal dispersal agent for a large proportion of Neotropical fruit species between Central and South America. Our analyses help to identify range segments that may hold key genetic diversity resulting from historic interactions between humans and these fruit species. These genetic resources are a fundamental source to improve and diversify contemporary food systems and to maintain critical ecosystem functions. Public, private, and societal initiatives that stimulate dietary diversity could expand the food usage of these megafauna-dispersed fruit species to enhance human nutrition in combination with biodiversity conservation.
Collapse
|
34
|
Levis C, Flores BM, Moreira PA, Luize BG, Alves RP, Franco-Moraes J, Lins J, Konings E, Peña-Claros M, Bongers F, Costa FRC, Clement CR. How People Domesticated Amazonian Forests. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00171] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
35
|
Thomas E, Tovar E, Villafañe C, Bocanegra JL, Moreno R. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia. RICE (NEW YORK, N.Y.) 2017; 10:13. [PMID: 28421550 PMCID: PMC5395511 DOI: 10.1186/s12284-017-0150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. RESULTS Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. CONCLUSIONS Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian CWRs, effective in situ conservation might best be achieved through tailor-made management plans and exclusion of GM rice cultivation in areas holding the most genetically diverse CWR populations. This may be combined with assisted migration of populations to suitable areas where rice is unlikely to be cultivated under current and future climate conditions.
Collapse
Affiliation(s)
| | - Eduardo Tovar
- The Alexander von Humboldt Biological Resources Research Institute, Laboratory of Conservation Genetics, Bogota, Colombia
| | - Carolina Villafañe
- Ministry of Environment and Sustainable Development, Genetic Resources Group, Bogota, Colombia
| | - José Leonardo Bocanegra
- The Alexander von Humboldt Biological Resources Research Institute, International Affairs, Policy and Cooperation Office, Bogota, Colombia
| | - Rodrigo Moreno
- The Alexander von Humboldt Biological Resources Research Institute, International Affairs, Policy and Cooperation Office, Bogota, Colombia
| |
Collapse
|
36
|
Moreira PA, Aguirre-Dugua X, Mariac C, Zekraoui L, Couderc M, Rodrigues DP, Casas A, Clement CR, Vigouroux Y. Diversity of Treegourd (Crescentia cujete) Suggests Introduction and Prehistoric Dispersal Routes into Amazonia. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Clement CR, Cristo-Araújo MD, Coppens d'Eeckenbrugge G, Reis VMD, Lehnebach R, Picanço-Rodrigues D. Origin and Dispersal of Domesticated Peach Palm. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Osorio-Guarín JA, Berdugo-Cely J, Coronado RA, Zapata YP, Quintero C, Gallego-Sánchez G, Yockteng R. Colombia a Source of Cacao Genetic Diversity As Revealed by the Population Structure Analysis of Germplasm Bank of Theobroma cacao L. FRONTIERS IN PLANT SCIENCE 2017; 8:1994. [PMID: 29209353 PMCID: PMC5702303 DOI: 10.3389/fpls.2017.01994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 05/17/2023]
Abstract
Beans of the species Theobroma cacao L., also known as cacao, are the raw material to produce chocolate. Colombian cacao has been classified as a fine flavor cacao that represents the 5% of cacao world's production. Colombian genetic resources from this species are conserved in ex situ and in-field germplasm banks, since T. cacao has recalcitrant seeds to desication and long-term storage. Currently, the collection of T. cacao of the Colombian Corporation of Agricultural Research (CORPOICA) has approximately 700 germplasm accessions. We conducted a molecular analysis of Corpoica's cacao collection and a morphological characterization of some accessions with the goal to study its genetic diversity and population structure and, to select interesting accessions for the cacao's breeding program. Phenotypic evaluation was performed based on 18 morphological traits and 4 biochemical traits. PCA analysis of morphological traits explained 60.6% of the total variation in seven components and 100% of the total variation of biochemical traits in four components, grouping the collection in 4 clusters for both variables. We explored 565 accessions from Corpoica's germplasm and 252 accessions from reference populations using 96 single nucleotide polymorphism (SNP) molecular markers. Molecular patterns of cacao Corpoica's collection were obtained amplifying specific alleles in a Fluidigm platform that used integrated circuits of fluids. Corpoica's collection showed highest genetic diversity [Expected Heterozygosity (HE = 0.314), Observed Heterozygosity (HO = 0.353)] that is reduced when reference populations were included in the dataset (HE = 0.294, HO = 0.261). The collection was divided into four clusters based on population structure analysis. Cacao accessions from distinct groups showed some taxonomic concordance and reflected their geographic origins. For instance, accessions classified as Criollo were clearly differentiated in one group and we identified two new Colombian genetic groups. Using a number of allelic variations based on 87 SNP markers and 22 different morphological/biochemical traits, a core collection with a total of 232 accessions was selected as a primary genetic resource for cacao breeders.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
| | - Jhon Berdugo-Cely
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
| | - Roberto Antonio Coronado
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
| | | | | | | | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria – Corpoica, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, National Museum of Natural History, Paris, France
| |
Collapse
|
39
|
Larranaga N, Albertazzi FJ, Fontecha G, Palmieri M, Rainer H, van Zonneveld M, Hormaza JI. A Mesoamerican origin of cherimoya (Annona cherimola Mill.): Implications for the conservation of plant genetic resources. Mol Ecol 2017; 26:4116-4130. [PMID: 28437594 DOI: 10.1111/mec.14157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/13/2023]
Abstract
Knowledge on the structure and distribution of genetic diversity is a key aspect to plan and execute an efficient conservation and utilization of the genetic resources of any crop as well as for determining historical demographic inferences. In this work, a large data set of 1,765 accessions of cherimoya (Annona cherimola Mill, Annonaceae), an underutilized fruit tree crop native to the Neotropics and used as a food source by pre-Columbian cultures, was collected from six different countries across the American continent and amplified with nine highly informative microsatellite markers. The structure analyses, fine representation of the genetic diversity and an ABC approach suggest a Mesoamerican origin of the crop, contrary to previous reports, with clear implications for the dispersion of plant germplasm between Central and South America in pre-Columbian times. These results together with the potential distribution of the species in a climatic change context using two different climate models provide new insights for the history and conservation of extant genetic resources of cherimoya that can be applied to other currently underutilized woody perennial crops.
Collapse
Affiliation(s)
- N Larranaga
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - F J Albertazzi
- Centro de Investigación en Biología Celulary Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica
| | - G Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras
| | - M Palmieri
- Universidad del Valle de Guatemala, Ciudad de Guatemala, Guatemala
| | - H Rainer
- University of Vienna, Vienna, Austria
| | - M van Zonneveld
- Bioversity International, Costa Rica Office, Turrialba, Costa Rica
| | - J I Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
40
|
Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Figueiredo FOG, Salomão RP, Castilho CV, Magnusson WE, Phillips OL, Guevara JE, Sabatier D, Molino JF, López DC, Mendoza AM, Pitman NCA, Duque A, Vargas PN, Zartman CE, Vasquez R, Andrade A, Camargo JL, Feldpausch TR, Laurance SGW, Laurance WF, Killeen TJ, Nascimento HEM, Montero JC, Mostacedo B, Amaral IL, Guimarães Vieira IC, Brienen R, Castellanos H, Terborgh J, Carim MDJV, Guimarães JRDS, Coelho LDS, Matos FDDA, Wittmann F, Mogollón HF, Damasco G, Dávila N, García-Villacorta R, Coronado ENH, Emilio T, Filho DDAL, Schietti J, Souza P, Targhetta N, Comiskey JA, Marimon BS, Marimon BH, Neill D, Alonso A, Arroyo L, Carvalho FA, de Souza FC, Dallmeier F, Pansonato MP, Duivenvoorden JF, Fine PVA, Stevenson PR, Araujo-Murakami A, Aymard C. GA, Baraloto C, do Amaral DD, Engel J, Henkel TW, Maas P, Petronelli P, Revilla JDC, Stropp J, Daly D, Gribel R, Paredes MR, Silveira M, Thomas-Caesar R, Baker TR, da Silva NF, Ferreira LV, Peres CA, Silman MR, Cerón C, Valverde FC, Di Fiore A, Jimenez EM, Mora MCP, Toledo M, Barbosa EM, Bonates LCDM, Arboleda NC, Farias EDS, Fuentes A, Guillaumet JL, Jørgensen PM, Malhi Y, de Andrade Miranda IP, et alLevis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Figueiredo FOG, Salomão RP, Castilho CV, Magnusson WE, Phillips OL, Guevara JE, Sabatier D, Molino JF, López DC, Mendoza AM, Pitman NCA, Duque A, Vargas PN, Zartman CE, Vasquez R, Andrade A, Camargo JL, Feldpausch TR, Laurance SGW, Laurance WF, Killeen TJ, Nascimento HEM, Montero JC, Mostacedo B, Amaral IL, Guimarães Vieira IC, Brienen R, Castellanos H, Terborgh J, Carim MDJV, Guimarães JRDS, Coelho LDS, Matos FDDA, Wittmann F, Mogollón HF, Damasco G, Dávila N, García-Villacorta R, Coronado ENH, Emilio T, Filho DDAL, Schietti J, Souza P, Targhetta N, Comiskey JA, Marimon BS, Marimon BH, Neill D, Alonso A, Arroyo L, Carvalho FA, de Souza FC, Dallmeier F, Pansonato MP, Duivenvoorden JF, Fine PVA, Stevenson PR, Araujo-Murakami A, Aymard C. GA, Baraloto C, do Amaral DD, Engel J, Henkel TW, Maas P, Petronelli P, Revilla JDC, Stropp J, Daly D, Gribel R, Paredes MR, Silveira M, Thomas-Caesar R, Baker TR, da Silva NF, Ferreira LV, Peres CA, Silman MR, Cerón C, Valverde FC, Di Fiore A, Jimenez EM, Mora MCP, Toledo M, Barbosa EM, Bonates LCDM, Arboleda NC, Farias EDS, Fuentes A, Guillaumet JL, Jørgensen PM, Malhi Y, de Andrade Miranda IP, Phillips JF, Prieto A, Rudas A, Ruschel AR, Silva N, von Hildebrand P, Vos VA, Zent EL, Zent S, Cintra BBL, Nascimento MT, Oliveira AA, Ramirez-Angulo H, Ramos JF, Rivas G, Schöngart J, Sierra R, Tirado M, van der Heijden G, Torre EV, Wang O, Young KR, Baider C, Cano A, Farfan-Rios W, Ferreira C, Hoffman B, Mendoza C, Mesones I, Torres-Lezama A, Medina MNU, van Andel TR, Villarroel D, Zagt R, Alexiades MN, Balslev H, Garcia-Cabrera K, Gonzales T, Hernandez L, Huamantupa-Chuquimaco I, Manzatto AG, Milliken W, Cuenca WP, Pansini S, Pauletto D, Arevalo FR, Reis NFC, Sampaio AF, Giraldo LEU, Sandoval EHV, Gamarra LV, Vela CIA, ter Steege H. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 2017; 355:925-931. [DOI: 10.1126/science.aal0157] [Show More Authors] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 11/02/2022]
|
41
|
Motilal LA, Zhang D, Mischke S, Meinhardt LW, Boccara M, Fouet O, Lanaud C, Umaharan P. Association mapping of seed and disease resistance traits in Theobroma cacao L. PLANTA 2016; 244:1265-1276. [PMID: 27534964 DOI: 10.1007/s00425-016-2582-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 08/08/2016] [Indexed: 05/08/2023]
Abstract
Microsatellite and single nucleotide polymorphism markers that could be used in marker assisted breeding of cacao were identified for number of filled seeds, black pod resistance and witches' broom disease resistance. An association mapping approach was employed to identify markers for seed number and resistance to black pod and witches' broom disease (WBD) in cacao (Theobroma cacao L.). Ninety-five microsatellites (SSRs) and 775 single nucleotide polymorphisms (SNPs) were assessed on 483 unique trees in the International Cocoa Genebank Trinidad (ICGT). Linkage disequilibrium (LD) and association mapping studies were conducted to identify markers to tag the phenotypic traits. Decay of LD occurred over an average 9.3 cM for chromosomes 1-9 and 2.5 cM for chromosome 10. Marker/trait associations were generally identified based on general linear models (GLMs) that incorporated principal components from molecular information on relatedness factor. Seven markers (mTcCIR 8, 66, 126, 212; TcSNP368, 697, 1370) on chromosomes 1 and 9 were identified for number of filled seeds (NSEED). A single marker was found for black pod resistance (mTcCIR280) on chromosome 3, whereas six markers on chromosomes 4, 5, 6, 8, and 10 were detected for WBD (mTcCIR91, 183; TcSNP375, 720, 1230 and 1374). It is expected that this association mapping study in cacao would contribute to the knowledge of the genetic determinism of cocoa traits and that the markers identified herein would prove useful in marker assisted breeding of cacao.
Collapse
Affiliation(s)
- Lambert A Motilal
- Cocoa Research Centre, The University of the West Indies, Sir Frank Stockdale Bldg., St. Augustine, Trinidad, 330912, Trinidad and Tobago.
| | - Dapeng Zhang
- USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD, 20705, USA
| | - Sue Mischke
- USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD, 20705, USA
| | - Lyndel W Meinhardt
- USDA/ARS, Beltsville Agricultural Research Center, PSI, SPCL, 10300 Baltimore Avenue, Bldg. 001, Rm. 223, BARC-W, Beltsville, MD, 20705, USA
| | - Michel Boccara
- Cocoa Research Centre, The University of the West Indies, Sir Frank Stockdale Bldg., St. Augustine, Trinidad, 330912, Trinidad and Tobago
- CIRAD-UMR AGAP (Centre de coopération internationale en recherche agronomique pour le développement), Montpellier Cedex 5, France
| | - Olivier Fouet
- CIRAD-UMR AGAP (Centre de coopération internationale en recherche agronomique pour le développement), Montpellier Cedex 5, France
| | - Claire Lanaud
- CIRAD-UMR AGAP (Centre de coopération internationale en recherche agronomique pour le développement), Montpellier Cedex 5, France
| | - Pathmanathan Umaharan
- Cocoa Research Centre, The University of the West Indies, Sir Frank Stockdale Bldg., St. Augustine, Trinidad, 330912, Trinidad and Tobago
| |
Collapse
|
42
|
He SL, Wang YS, Li DZ, Yi TS. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc). Sci Rep 2016; 6:22795. [PMID: 26952904 PMCID: PMC4782138 DOI: 10.1038/srep22795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes.
Collapse
Affiliation(s)
- Shui-Lian He
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yun-Sheng Wang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Environmental and life Science, Kaili University, Kaili, 650201, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ting-Shuang Yi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
43
|
Galluzzi G, Dufour D, Thomas E, van Zonneveld M, Escobar Salamanca AF, Giraldo Toro A, Rivera A, Salazar Duque H, Suárez Baron H, Gallego G, Scheldeman X, Gonzalez Mejia A. An Integrated Hypothesis on the Domestication of Bactris gasipaes. PLoS One 2015; 10:e0144644. [PMID: 26658881 PMCID: PMC4675520 DOI: 10.1371/journal.pone.0144644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022] Open
Abstract
Peach palm (Bactris gasipaes Kunth) has had a central place in the livelihoods of people in the Americas since pre-Columbian times, notably for its edible fruits and multi-purpose wood. The botanical taxon includes both domesticated and wild varieties. Domesticated var gasipaes is believed to derive from one or more of the three wild types of var. chichagui identified today, although the exact dynamics and location of the domestication are still uncertain. Drawing on a combination of molecular and phenotypic diversity data, modeling of past climate suitability and existing literature, we present an integrated hypothesis about peach palm’s domestication. We support a single initial domestication event in south western Amazonia, giving rise to var. chichagui type 3, the putative incipient domesticate. We argue that subsequent dispersal by humans across western Amazonia, and possibly into Central America allowed for secondary domestication events through hybridization with resident wild populations, and differential human selection pressures, resulting in the diversity of present-day landraces. The high phenotypic diversity in the Ecuadorian and northern Peruvian Amazon suggest that human selection of different traits was particularly intense there. While acknowledging the need for further data collection, we believe that our results contribute new insights and tools to understand domestication and dispersal patterns of this important native staple, as well as to plan for its conservation.
Collapse
Affiliation(s)
- Gea Galluzzi
- Regional Office for the Americas, Bioversity International, Cali, Valle del Cauca, Colombia
- * E-mail:
| | - Dominique Dufour
- CIRAD, Centro de cooperación internacional en investigación agronómica para el desarrollo, Cali, Valle del Cauca, Colombia
| | - Evert Thomas
- Regional Office for the Americas, Bioversity International, Cali, Valle del Cauca, Colombia
| | - Maarten van Zonneveld
- Sub-regional Office for the Americas, Bioversity International, Turrialba, Cartago,Costa Rica
| | | | - Andrés Giraldo Toro
- CIAT, Centro Internacional de Agricultura Tropical, Cali, Valle del Cauca, Colombia
| | - Andrés Rivera
- CIAT, Centro Internacional de Agricultura Tropical, Cali, Valle del Cauca, Colombia
| | | | | | - Gerardo Gallego
- CIAT, Centro Internacional de Agricultura Tropical, Cali, Valle del Cauca, Colombia
| | - Xavier Scheldeman
- Regional Office for the Americas, Bioversity International, Cali, Valle del Cauca, Colombia
| | | |
Collapse
|
44
|
Richardson JE, Whitlock BA, Meerow AW, Madriñán S. The age of chocolate: a diversification history of Theobroma and Malvaceae. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00120] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Dantas LG, Esposito T, de Sousa ACB, Félix L, Amorim LLB, Benko-Iseppon AM, Batalha-Filho H, Pedrosa-Harand A. Low genetic diversity and high differentiation among relict populations of the neotropical gymnosperm Podocarpus sellowii (Klotz.) in the Atlantic Forest. Genetica 2014; 143:21-30. [PMID: 25532751 DOI: 10.1007/s10709-014-9809-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Podocarpus sellowii (Podocarpaceae) is one of only a few gymnosperms native to Brazil and the sole species of the genus found in the northeastern region of that country. It has a very restricted distribution in this region, with only three known populations in highland forests (called Brejos de Altitude), which apparently have been isolated from each other since the Pleistocene. Due to this long-term isolation and the fact that these populations have few adult individuals and suffer great anthropogenic pressure, low genetic variability is expected, compromising their long-term viability. The present work assessed the genetic variability and structure of northeastern populations of P. sellowii to investigate the role of Pleistocene glaciations on the genetic relationships between them and to propose strategies for their conservation by analyzing the SSR and ISSR markers of adult and juvenile individuals. Low genetic diversity was found with both markers, associated with a high differentiation of the Brejo de Baturité population in relation to the others-suggesting their isolation at different points in time, probably during the Pleistocene. Actions directed towards increasing the genetic diversity of these populations will be needed, such as planting seedlings with high genetic variability-but the high degrees of differentiation observed between the populations must be taken into account.
Collapse
Affiliation(s)
- Liliane G Dantas
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco (UFPE), Recife, PE, 50670-420, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Torres-Leguizamon M, Mathieu J, Decaëns T, Dupont L. Genetic structure of earthworm populations at a regional scale: inferences from mitochondrial and microsatellite molecular markers in Aporrectodea icterica (Savigny 1826). PLoS One 2014; 9:e101597. [PMID: 25003795 PMCID: PMC4086927 DOI: 10.1371/journal.pone.0101597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/10/2014] [Indexed: 11/25/2022] Open
Abstract
Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.
Collapse
Affiliation(s)
- Magally Torres-Leguizamon
- University Paris Est Créteil, Institute of ecology and environmental sciences of Paris, Créteil, France
- Unité de Zoologie Forestière UR0633, Institut National de la Recherche Agronomique, Orléans, France
| | - Jérôme Mathieu
- University Pierre and Marie Curie, Institute of ecology and environmental sciences of Paris, Paris, France
| | - Thibaud Decaëns
- EA 1293 ECODIV, University of Rouen, Mont Saint Aignan, France
| | - Lise Dupont
- University Paris Est Créteil, Institute of ecology and environmental sciences of Paris, Créteil, France
- * E-mail:
| |
Collapse
|
47
|
Conservation and Use of Genetic Resources of Underutilized Crops in the Americas—A Continental Analysis. SUSTAINABILITY 2014. [DOI: 10.3390/su6020980] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats? PLoS One 2014; 9:e86021. [PMID: 24505252 PMCID: PMC3914776 DOI: 10.1371/journal.pone.0086021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security.
Collapse
|
49
|
Current issues in cereal crop biodiversity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 147:1-35. [PMID: 24352706 DOI: 10.1007/10_2013_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change. The genetic diversity of staple small grains, including rice, maize, wheat, millets, and more recently quinoa, have been surveyed to encourage utilization and prioritization of areas for germplasm conservation. Geographic information system technologies and spatial analysis are now being used as powerful tools to elucidate genetic and ecological patterns in the distribution of cultivated and wild species to establish coherent programs for the management of plant genetic resources for food and agriculture.
Collapse
|
50
|
Vinceti B, Loo J, Gaisberger H, van Zonneveld MJ, Schueler S, Konrad H, Kadu CAC, Geburek T. Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS One 2013; 8:e59987. [PMID: 23544118 PMCID: PMC3609728 DOI: 10.1371/journal.pone.0059987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/25/2013] [Indexed: 12/04/2022] Open
Abstract
Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1) was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts.
Collapse
|