1
|
Gu W, Madrid DMC, Joyce S, Driver JP. A single-cell analysis of thymopoiesis and thymic iNKT cell development in pigs. Cell Rep 2022; 40:111050. [PMID: 35793622 PMCID: PMC9704770 DOI: 10.1016/j.celrep.2022.111050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many aspects of the porcine immune system remain poorly characterized, which poses a barrier to improving swine health and utilizing pigs as preclinical models. Here, we employ single-cell RNA sequencing (scRNA-seq) to create a cell atlas of the early-adolescent pig thymus. Our data show conserved features as well as species-specific differences in cell states and cell types compared with human thymocytes. We also describe several unconventional T cell types with gene expression profiles associated with innate effector functions. This includes a cell census of more than 11,000 differentiating invariant natural killer T (iNKT) cells, which reveals that the functional diversity of pig iNKT cells differs substantially from the iNKT0/1/2/17 subset differentiation paradigm established in mice. Our data characterize key differentiation events in porcine thymopoiesis and iNKT cell maturation and provide important insights into pig T cell development.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Sebastian Joyce
- Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institution for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Zhang W, Song N, Gao Y, Xie X, Liu K, Cao Y, Jin N. Astragalus polysaccharides protects against acute leptospirosis by glycolysis-depended priming effect. Biomed Pharmacother 2022; 151:113198. [PMID: 35676790 DOI: 10.1016/j.biopha.2022.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Leptospirosis, caused by pathogenic leptospira, is a neglected infectious disease that causes acute kidney injury, bleeding disorders, and even death. People can become infected with leptospirosis when they travel into epidemic areas. Except for vaccines and antibiotics, there are few reports of other drugs about prevention of leptospirosis. In this study, we show that the natural molecular compound, astragalus polysaccharides (APS), prevents against acute leptospirosis in hamsters. Pretreatment with APS improved the survival rate of hamsters with more minor organ damage and lower leptospira burden. After pretreatment with APS, the expression levels of leptospira-induced TLR2, TLR4, and TNF-α were enhanced. The priming effect of APS was studied in vitro. The data showed that leptospira-induced expressions of TNF-α and IL-1β were higher in APS-primed peritoneal macrophage, with enhanced glucose consumption and lactate production. Transcriptomic analysis revealed that pretreatment with APS down regulated respiratory chain and mitochondrial function, up regulated glycolysis related gene expressions. After pretreatment with glycolysis inhibitor (2-DG), the priming effect of APS in leptospira infection was inhibited. Our results indicated that pretreatment with natural molecular compound, APS, protected against acute leptospirosis in hamsters by priming effect through enhanced glycolysis.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Yuan Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Kun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, People's Republic of China.
| |
Collapse
|
3
|
Driver JP, de Carvalho Madrid DM, Gu W, Artiaga BL, Richt JA. Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Front Immunol 2020; 11:2172. [PMID: 33193296 PMCID: PMC7606973 DOI: 10.3389/fimmu.2020.02172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) circulate widely among different mammalian and avian hosts and sometimes give rise to zoonotic infections. Vaccination is a mainstay of IAV prevention and control. However, the efficacy of IAV vaccines is often suboptimal because of insufficient cross-protection among different IAV genotypes and subtypes as well as the inability to keep up with the rapid molecular evolution of IAV strains. Much attention is focused on improving IAV vaccine efficiency using adjuvants, which are substances that can modulate and enhance immune responses to co-administered antigens. The current review is focused on a non-traditional approach of adjuvanting IAV vaccines by therapeutically targeting the immunomodulatory functions of a rare population of innate-like T lymphocytes called invariant natural killer T (iNKT) cells. These cells bridge the innate and adaptive immune systems and are capable of stimulating a wide array of immune cells that enhance vaccine-mediated immune responses. Here we discuss the factors that influence the adjuvant effects of iNKT cells for influenza vaccines as well as the obstacles that must be overcome before this novel adjuvant approach can be considered for human or veterinary use.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | | | - Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Bianca L Artiaga
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jürgen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Ying G, Wang J, Mallevaey T, Van Calenbergh S, Zajonc DM. Structural basis of NKT cell inhibition using the T-cell receptor-blocking anti-CD1d antibody 1B1. J Biol Chem 2019; 294:12947-12956. [PMID: 31296659 PMCID: PMC6721955 DOI: 10.1074/jbc.ra119.009403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the CD1d molecule (CD1d). They rapidly respond to antigen challenge and can activate both innate and adaptive immune cells. To study the role of antigen presentation in NKT cell activation, previous studies have developed several anti-CD1d antibodies that block CD1d binding to T-cell receptors (TCRs). Antibodies that are specific to both CD1d and the presented antigen can only be used to study the function of only a limited number of antigens. In contrast, antibodies that bind CD1d and block TCR binding regardless of the presented antigen can be widely used to assess the role of TCR-mediated NKT cell activation in various disease models. Here, we report the crystal structure of the widely used anti-mouse CD1d antibody 1B1 bound to CD1d at a resolution of 2.45 Å and characterized its binding to CD1d-presented glycolipids. We observed that 1B1 uses a long hydrophobic H3 loop that is inserted deep into the binding groove of CD1d where it makes intimate nonpolar contacts with the lipid backbone of an incorporated spacer lipid. Using an NKT cell agonist that has a modified sphingosine moiety, we further demonstrate that 1B1 in its monovalent form cannot block TCR-mediated NKT cell activation, because 1B1 fails to bind with high affinity to mCD1d. Our results suggest potential limitations of using 1B1 to assess antigen recognition by NKT cells, especially when investigating antigens that do not follow the canonical two alkyl-chain rule.
Collapse
Affiliation(s)
- Ge Ying
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M. Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California 92037,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium, To whom correspondence should be addressed:
Cancer Immunology Discovery, Pfizer, San Diego, CA 92121. E-mail:
| |
Collapse
|
5
|
Differing roles of CD1d2 and CD1d1 proteins in type I natural killer T cell development and function. Proc Natl Acad Sci U S A 2018; 115:E1204-E1213. [PMID: 29351991 DOI: 10.1073/pnas.1716669115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MHC class I-like CD1 molecules have evolved to present lipid-based antigens to T cells. Differences in the antigen-binding clefts of the CD1 family members determine the conformation and size of the lipids that are presented, although the factors that shape CD1 diversity remain unclear. In mice, two homologous genes, CD1D1 and CD1D2, encode the CD1d protein, which is essential to the development and function of natural killer T (NKT) cells. However, it remains unclear whether both CD1d isoforms are equivalent in their antigen presentation capacity and functions. Here, we report that CD1d2 molecules are expressed in the thymus of some mouse strains, where they select functional type I NKT cells. Intriguingly, the T cell antigen receptor repertoire and phenotype of CD1d2-selected type I NKT cells in CD1D1-/- mice differed from CD1d1-selected type I NKT cells. The structures of CD1d2 in complex with endogenous lipids and a truncated acyl-chain analog of α-galactosylceramide revealed that its A'-pocket was restricted in size compared with CD1d1. Accordingly, CD1d2 molecules could not present glycolipid antigens with long acyl chains efficiently, favoring the presentation of short acyl chain antigens. These results indicate that the two CD1d molecules present different sets of self-antigen(s) in the mouse thymus, thereby impacting the development of invariant NKT cells.
Collapse
|
6
|
Structural determination of lipid antigens captured at the CD1d-T-cell receptor interface. Proc Natl Acad Sci U S A 2017; 114:8348-8353. [PMID: 28716901 DOI: 10.1073/pnas.1705882114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Glycolipid antigens recognized by αβ T-cell receptors (TCRs) drive the activation of invariant natural killer T (iNKT) cells, a specialized subset of innate T lymphocytes. Glycolipids with α-linked anomeric carbohydrates have been identified as potent microbial lipid antigens for iNKT cells, and their unusual α-anomeric linkage has been thought to define a "foreign" lipid antigen motif. However, mammals use endogenous lipids to select iNKT cells, and there is compelling evidence for iNKT cell responses in various types of sterile inflammation. The nature of endogenous or environmental lipid antigens encountered by iNKT cells is not well defined. Here, we sought to identify lipid antigens in cow's milk, a prominent part of the human diet. We developed a method to directly capture lipid antigens within CD1d-lipid-TCR complexes, while excluding CD1d bound to nonantigenic lipids, followed by direct biochemical analysis of the lipid antigens trapped at the TCR-CD1d interface. The specific antigens captured by this "TCR trap" method were identified as α-linked monohexosylceramides by mass spectrometry fragmentation patterns that distinguished α- from β-anomeric monohexosylceramides. These data provide direct biochemical evidence for α-linked lipid antigens from a common dietary source.
Collapse
|
7
|
Kaczmarek R, Pasciak M, Szymczak-Kulus K, Czerwinski M. CD1: A Singed Cat of the Three Antigen Presentation Systems. Arch Immunol Ther Exp (Warsz) 2017; 65:201-214. [PMID: 28386696 PMCID: PMC5434122 DOI: 10.1007/s00005-017-0461-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Contrary to general view that the MHC Class I and II are the kapellmeisters of recognition and response to antigens, there is another big player in that part of immunity, represented by CD1 glycoproteins. In contrast to MHC Class I or II, which present peptides, CD1 molecules present lipids. Humans express five CD1 proteins (CD1a-e), four of which (CD1a-d) are trafficked to the cell surface, where they may display lipid antigens to T-cell receptors. This interaction may lead to both non-cognate and cognate T cell help to B cells, the latter eliciting anti-lipid antibody response. All CD1 proteins can bind a broad range of structurally different exogenous and endogenous lipids, but each shows a preference to one or more lipid classes. This unorthodox binding behavior is the result of elaborate architectures of CD1 binding clefts and distinct intracellular trafficking routes. Together, these features make CD1 system a versatile player in immune response, sitting at the crossroads of innate and adaptive immunity. While CD1 system may be involved in numerous infectious, inflammatory, and autoimmune diseases, its involvement may lead to opposite outcomes depending on different pathologies. Despite these ambiguities and complexity, CD1 system draws growing attention and continues to show glimmers of therapeutic potential. In this review, we summarize the current knowledge about CD1 proteins, their structures, lipid-binding profiles, and roles in immunity, and evaluate the role of CD1 proteins in eliciting humoral immune response.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mariola Pasciak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Szymczak-Kulus
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marcin Czerwinski
- Laboratory of Glycoconjugate Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland. .,Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland.
| |
Collapse
|
8
|
Abstract
All higher vertebrates share the fundamental components of the adaptive immune system: the B cell receptor, the T cell receptor, and classical MHC proteins. At a more detailed level, their immune systems vary considerably, especially with respect to the non-polymorphic MHC class I-like proteins. In mammals, the CD1 family of lipid-presenting proteins is encoded by clusters of genes of widely divergent sizes and compositions. Another MHC class I-like protein, MR1, is typically encoded by a single gene that is highly conserved among species. Based on mammalian genomes and the available data on cellular expression profiles and protein structure, we review MR1 genes and families of CD1 genes in modern mammals from a genetic and functional perspective. Understanding the CD1 and MR1 systems across animal species provides insights into the specialized functions of the five types of CD1 proteins and facilitates careful consideration of animal models for human diseases in which immune responses to lipids and bacterial metabolites play a role.
Collapse
|
9
|
Zajonc DM. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics 2016; 68:561-76. [PMID: 27368414 DOI: 10.1007/s00251-016-0931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, CA, 92037, USA. .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Girardi E, Wang J, Zajonc DM. Structure of an α-Helical Peptide and Lipopeptide Bound to the Nonclassical Major Histocompatibility Complex (MHC) Class I Molecule CD1d. J Biol Chem 2016; 291:10677-83. [PMID: 27006394 DOI: 10.1074/jbc.m115.702118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/06/2022] Open
Abstract
Mouse CD1d is a nonclassical MHC molecule able to present lipids and glycolipids to a specialized subset of T cells known as natural killer T cells. The antigens presented by CD1d have been shown to cover a broad range of chemical structures and to follow precise rules determining the potency of the antigen in the context of T cell activation. Together with lipids, initial reports suggested that CD1d can also bind and present hydrophobic peptides with (F/W)XX(I/L/M)XXW. However, the exact location of peptide binding and the molecular basis for the required motif are currently unknown. Here we present the crystal structure of the first peptide identified to bind CD1d, p99, and show that it binds in the antigen-binding groove of CD1d in a manner compatible with its presentation to T cell receptors. Interestingly, the peptide adopts an α-helical conformation, which orients the motif residues toward its deep binding groove, therefore explaining the molecular requirements for peptide binding. Moreover, we demonstrate that a lipopeptide version of the same peptide is able to bind CD1d in a similar conformation, identifying another class of molecules binding this antigen-presenting molecule.
Collapse
Affiliation(s)
- Enrico Girardi
- From the Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037 and
| | - Jing Wang
- From the Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037 and
| | - Dirk M Zajonc
- From the Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037 and the Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Fichtner AS, Paletta D, Starick L, Schumann RF, Niewiesk S, Herrmann T. Function and expression of CD1d and invariant natural killer T-cell receptor in the cotton rat (Sigmodon hispidus). Immunology 2015; 146:618-29. [PMID: 26346465 DOI: 10.1111/imm.12532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022] Open
Abstract
The cotton rat (Sigmodon hispidus) belongs to the rodent family of Cricetidae and provides a powerful model to study the pathogenesis of human respiratory viruses and measles virus. Recent studies in other rodent models have suggested a role for invariant natural killer T (iNKT) cells in antiviral immunity and vaccination against respiratory virus infections. Using new experimental tools, we provide the first evidence for a functional CD1d cell molecule (crCD1d) and iNKT T-cell receptor in cotton rats. The crCD1d cDNA sequence was identified and crCD1d transductants showed that monoclonal antibody WTH-2 stains crCD1d as efficiently as mouse or rat CD1d. The expression of crCD1d was clearly weaker for thymocytes and B cells, and higher for T cells, which is different to what is found in murine species. The antigen-presenting capacity of crCD1d was demonstrated with crCD1d-immunoglobulin dimers loaded with the glycolipid PBS57, which bound iNKT T-cell receptors. Evidence for functional cotton rat iNKT cells was provided by detection of interferon-γ and interleukin-4 in cultures of splenocytes stimulated with PBS57 and α-galactosylceramide and by specific staining of about 0·2% of splenocytes with PBS57-loaded crCD1d dimers. Canonical AV14/AJ18 rearrangements were identified and found to contain multiple members of the AV14 (AV11) family. One of them was expressed and found to bind CD1d dimers. In summary, these data provide the first evidence for functional CD1d molecules and iNKT T-cell receptors in cotton rats and provide the tools to analyse them both in the cotton rat model of infectious diseases.
Collapse
Affiliation(s)
| | - Daniel Paletta
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Zajonc DM, Girardi E. Recognition of Microbial Glycolipids by Natural Killer T Cells. Front Immunol 2015; 6:400. [PMID: 26300885 PMCID: PMC4523824 DOI: 10.3389/fimmu.2015.00400] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell recognition of glycolipids, with an emphasis on microbial glycolipids.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
14
|
Nguyen TKA, Reinink P, El Messlaki C, Im JS, Ercan A, Porcelli SA, Van Rhijn I. Expression patterns of bovine CD1 in vivo and assessment of the specificities of the anti-bovine CD1 antibodies. PLoS One 2015; 10:e0121923. [PMID: 25815476 PMCID: PMC4376853 DOI: 10.1371/journal.pone.0121923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Research addressing the in vivo effects of T cell activation by lipids, glycolipids, and lipopeptides is hampered by the absence of a suitable animal model. Mice and rats do not express CD1a, CD1b, and CD1c molecules that present pathogen-derived lipid antigens in humans. In cattle, two CD1A and three CD1B genes are transcribed. The proteins encoded by these genes differ in their antigen binding domains and in their cytoplasmic tails, suggesting that they may traffic differently in the cell and thus have access to different antigens. In the current study, we describe the genomic organization of the bovine CD1 locus and transcription of bovine CD1 genes in freshly isolated dendritic cells and B cells from different tissues. After determining the specificity of previously only partly characterized anti-CD1 antibodies by testing recombinant single chain bovine CD1 proteins and CD1-transfected cells, we were able to determine cell surface protein expression on freshly isolated cells. Our study suggests that CD1b1 and CD1b3 are more broadly expressed than CD1b5, and CD1a2 is more broadly expressed than CD1a1. Pseudoafferent lymph dendritic cells express CD1B genes, but no transcription is detected in lymph nodes. Even though B cells transcribe CD1B genes, there is no evidence of protein expression at the cell surface. Thus, patterns of CD1 protein expression are largely conserved among species.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Peter Reinink
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Chema El Messlaki
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
| | - Jin S. Im
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Altan Ercan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, the Netherlands
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
- * E-mail:
| |
Collapse
|