1
|
Wang S, Feng D, Zheng Y, Lu Y, Shi K, Yang R, Ma W, Li N, Liu M, Wang Y, Hong Y, McClung CR, Zhao J. EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage. PLANT PHYSIOLOGY 2025; 197:kiae505. [PMID: 39545809 DOI: 10.1093/plphys/kiae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024]
Abstract
Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yakun Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kailin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Morton M, Fiene G, Ahmed HI, Rey E, Abrouk M, Angel Y, Johansen K, Saber NO, Malbeteau Y, Al-Mashharawi S, Ziliani MG, Aragon B, Oakey H, Berger B, Brien C, Krattinger SG, Mousa MAA, McCabe MF, Negrão S, Tester M, Julkowska MM. Deciphering salt stress responses in Solanum pimpinellifolium through high-throughput phenotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2514-2537. [PMID: 38970620 DOI: 10.1111/tpj.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.
Collapse
Affiliation(s)
- Mitchell Morton
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gabriele Fiene
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elodie Rey
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yoseline Angel
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
| | - Kasper Johansen
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noha O Saber
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yoann Malbeteau
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Samir Al-Mashharawi
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Matteo G Ziliani
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Hydrosat S.à r.l., 9 Rue du Laboratoire, Luxembourg City, 1911, Luxembourg
| | - Bruno Aragon
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Helena Oakey
- Robinson Institute, University of Adelaide, Adelaide, Australia
| | - Bettina Berger
- Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, Australia
| | - Chris Brien
- Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, Australia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magdi A A Mousa
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, 80208, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Matthew F McCabe
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- University College, Dublin, Republic of Ireland
| | - Mark Tester
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magdalena M Julkowska
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Boyce Thompson Institute, Ithaca, New York, USA
| |
Collapse
|
3
|
Meiri M, Bar-Oz G. Unraveling the diversity and cultural heritage of fruit crops through paleogenomics. Trends Genet 2024; 40:398-409. [PMID: 38423916 PMCID: PMC11079635 DOI: 10.1016/j.tig.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
Collapse
Affiliation(s)
- Meirav Meiri
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Guy Bar-Oz
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837 Mount Carmel, Israel
| |
Collapse
|
4
|
Dixon MM, Afkairin A, Davis JG, Chitwood-Brown J, Buchanan CM, Ippolito JA, Manter DK, Vivanco JM. Tomato domestication rather than subsequent breeding events reduces microbial associations related to phosphorus recovery. Sci Rep 2024; 14:9934. [PMID: 38689014 PMCID: PMC11061195 DOI: 10.1038/s41598-024-60775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Legacy phosphorus (P) is a reservoir of sparingly available P, and its recovery could enhance sustainable use of nonrenewable mineral fertilizers. Domestication has affected P acquisition, but it is unknown if subsequent breeding efforts, like the Green Revolution (GR), had a similar effect. We examined how domestication and breeding events altered P acquisition by growing wild, traditional (pre-GR), and modern (post-GR) tomato in soil with legacy P but low bioavailable P. Wild tomatoes, particularly accession LA0716 (Solanum pennellii), heavily cultured rhizosphere P solubilizers, suggesting reliance on microbial associations to acquire P. Wild tomato also had a greater abundance of other putatively beneficial bacteria, including those that produce chelating agents and antibiotic compounds. Although wild tomatoes had a high abundance of these P solubilizers, they had lower relative biomass and greater P stress factor than traditional or modern tomato. Compared to wild tomato, domesticated tomato was more tolerant to P deficiency, and both cultivated groups had a similar rhizosphere bacterial community composition. Ultimately, this study suggests that while domestication changed tomato P recovery by reducing microbial associations, subsequent breeding processes have not further impacted microbial P acquisition mechanisms. Selecting microbial P-related traits that diminished with domestication may therefore increase legacy P solubilization.
Collapse
Affiliation(s)
- Mary M Dixon
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Antisar Afkairin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Jessica G Davis
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica Chitwood-Brown
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Cassidy M Buchanan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- United States Department of Agriculture-Agricultural Research Service, Soil Management and Sugar Beet Research, Fort Collins, CO, USA
| | - Daniel K Manter
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Reynoso-García J, Santiago-Rodriguez TM, Narganes-Storde Y, Cano RJ, Toranzos GA. Edible flora in pre-Columbian Caribbean coprolites: Expected and unexpected data. PLoS One 2023; 18:e0292077. [PMID: 37819893 PMCID: PMC10566737 DOI: 10.1371/journal.pone.0292077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Coprolites, or mummified feces, are valuable sources of information on ancient cultures as they contain ancient DNA (aDNA). In this study, we analyzed ancient plant DNA isolated from coprolites belonging to two pre-Columbian cultures (Huecoid and Saladoid) from Vieques, Puerto Rico, using shotgun metagenomic sequencing to reconstruct diet and lifestyles. We also analyzed DNA sequences of putative phytopathogenic fungi, likely ingested during food consumption, to further support dietary habits. Our findings show that pre-Columbian Caribbean cultures had a diverse diet consisting of maize (Zea mays), sweet potato (Ipomoea batatas), chili peppers (Capsicum annuum), peanuts (Arachis spp.), papaya (Carica papaya), tomato (Solanum lycopersicum) and, very surprisingly cotton (Gossypium barbadense) and tobacco (Nicotiana sylvestris). Modelling of putative phytopathogenic fungi and plant interactions confirmed the potential consumption of these plants as well as edible fungi, particularly Ustilago spp., which suggest the consumption of maize and huitlacoche. These findings suggest that a variety of dietary, medicinal, and hallucinogenic plants likely played an important role in ancient human subsistence and societal customs. We compared our results with coprolites found in Mexico and the United States, as well as present-day faeces from Mexico, Peru, and the United States. The results suggest that the diet of pre-Columbian cultures resembled that of present-day hunter-gatherers, while agriculturalists exhibited a transitional state in dietary lifestyles between the pre-Columbian cultures and larger scale farmers and United States individuals. Our study highlights differences in dietary patterns related to human lifestyles and provides insight into the flora present in the pre-Columbian Caribbean area. Importantly, data from ancient fecal specimens demonstrate the importance of ancient DNA studies to better understand pre-Columbian populations.
Collapse
Affiliation(s)
- Jelissa Reynoso-García
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | - Raul J. Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Gary A. Toranzos
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
7
|
Wang C, Li M, Duan X, Abu-Izneid T, Rauf A, Khan Z, Mitra S, Emran TB, Aljohani ASM, Alhumaydhi FA, Thiruvengadam M, Suleria HAR. Phytochemical and Nutritional Profiling of Tomatoes; Impact of Processing on Bioavailability - A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2023; 39:5986-6010. [DOI: 10.1080/87559129.2022.2097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chuqi Wang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Minhao Li
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Xinyu Duan
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain Campus, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Li X, Tieman D, Alseekh S, Fernie AR, Klee HJ. Natural variations in the Sl-AKR9 aldo/keto reductase gene impact fruit flavor volatile and sugar contents. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1134-1150. [PMID: 37243881 DOI: 10.1111/tpj.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
The unique flavors of different fruits depend upon complex blends of soluble sugars, organic acids, and volatile organic compounds. 2-Phenylethanol and phenylacetaldehyde are major contributors to flavor in many foods, including tomato. In the tomato fruit, glucose, and fructose are the chemicals that most positively contribute to human flavor preferences. We identified a gene encoding a tomato aldo/keto reductase, Sl-AKR9, that is associated with phenylacetaldehyde and 2-phenylethanol contents in fruits. Two distinct haplotypes were identified; one encodes a chloroplast-targeted protein while the other encodes a transit peptide-less protein that accumulates in the cytoplasm. Sl-AKR9 effectively catalyzes reduction of phenylacetaldehyde to 2-phenylethanol. The enzyme can also metabolize sugar-derived reactive carbonyls, including glyceraldehyde and methylglyoxal. CRISPR-Cas9-induced loss-of-function mutations in Sl-AKR9 significantly increased phenylacetaldehyde and lowered 2-phenylethanol content in ripe fruit. Reduced fruit weight and increased soluble solids, glucose, and fructose contents were observed in the loss-of-function fruits. These results reveal a previously unidentified mechanism affecting two flavor-associated phenylalanine-derived volatile organic compounds, sugar content, and fruit weight. Modern varieties of tomato almost universally contain the haplotype associated with larger fruit, lower sugar content, and lower phenylacetaldehyde and 2-phenylethanol, likely leading to flavor deterioration in modern varieties.
Collapse
Affiliation(s)
- Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Harry J Klee
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
9
|
Hu Y, Yu Z, Gao X, Liu G, Zhang Y, Šmarda P, Guo Q. Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars. HORTICULTURE RESEARCH 2023; 10:uhad136. [PMID: 37564270 PMCID: PMC10410194 DOI: 10.1093/hr/uhad136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/02/2023] [Indexed: 08/12/2023]
Abstract
Ginkgo biloba is an economically valuable tree worldwide. The species has nearly become extinct during the Quaternary, which has likely resulted in reduction of its genetic variability. The genetic variability is now conserved in few natural populations in China and a number of cultivars that are, however, derived from a few ancient trees, helping the species survive in China through medieval times. Despite the recent interest in ginkgo, however, detailed knowledge of its genetic diversity, conserved in cultivated trees and cultivars, has remained poor. This limits efficient conservation of its diversity as well as efficient use of the existing germplasm resources. Here we performed genotyping-by-sequencing (GBS) on 102 cultivated germplasms of ginkgo collected to explore their genetic structure, kinship, and inbreeding prediction. For the first time in ginkgo, a genome-wide association analysis study (GWAS) was used to attempt gene mapping of seed traits. The results showed that most of the germplasms did not show any obvious genetic relationship. The size of the ginkgo germplasm population expanded significantly around 1500 years ago during the Sui and Tang dynasties. Classification of seed cultivars based on a phylogenetic perspective does not support the current classification criteria based on phenotype. Twenty-four candidate genes were localized after performing GWAS on the seed traits. Overall, this study reveals the genetic basis of ginkgo seed traits and provides insights into its cultivation history. These findings will facilitate the conservation and utilization of the domesticated germplasms of this living fossil plant.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyan Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan 571339, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Koltlářská 2, Brno 61137, Czech Republic
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Duarte ME, Lewandowski M, de Mendonça RS, Simoni S, Navia D. Genetic analysis of the tomato russet mite provides evidence of oligophagy and a widespread pestiferous haplotype. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:171-199. [PMID: 36795266 DOI: 10.1007/s10493-023-00777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Worldwide, the tomato russet mite (TRM), Aculops lycopersici (Eriophyidae), is a key pest on cultivated tomato in addition to infesting other cultivated and wild Solanaceae; however, basic information on TRM supporting effective control strategies is still lacking, mainly regarding its taxonomic status and genetic diversity and structure. As A. lycopersici is reported on different species and genera of host plants, populations associated with different host plants may constitute specialized cryptic species, as shown for other eriophyids previously considered generalists. The main aims of this study were to (i) confirm the TRM taxonomic unity of populations from different host plants and localities as well as the species' oligophagy, and (ii) to advance the understanding of TRM host relationship and invasion history. For this purpose, we evaluated the genetic variability and structure of populations from different host plants along crucial areas of occurrence, including the area of potential origin, based on DNA sequences of mitochondrial (cytochrome c oxidase subunit I) and nuclear (internal transcribed spacer, D2 28S) genomic regions. Specimens from South America (Brazil) and Europe (France, Italy, Poland, The Netherlands) were collected from tomato and other solanaceous species from the genera Solanum and Physalis. Final TRM datasets were composed of 101, 82 and 50 sequences from the COI (672 bp), ITS (553 bp) and D2 (605 bp) regions, respectively. Distributions and frequencies of haplotypes (COI) and genotypes (D2 and ITS1) were inferred; pairwise genetic distance comparisons, and phylogenetic analysis were performed, including Bayesian Inference (BI) combined analysis. Our results showed that genetic divergences for mitochondrial and nuclear genomic regions from TRM associated with different host plants were lower than those observed in other eriophyid taxa, confirming conspecificity of TRM populations and oligophagy of this eriophyid mite. Four haplotypes (cH) were identified from the COI sequences with cH1 being the most frequent, representing 90% of all sequences occurring in all host plants studied (Brazil, France, The Netherlands); the other haplotypes were present exclusively in Brazilian populations. Six variants (I) were identified from the ITS sequences: I-1 was the most frequent (76.5% of all sequences), spread in all countries and associated with all host plants, except S. nigrum. Just one D2 sequence variant was found in all studied countries. The genetic homogeneity among populations highlights the occurrence of a highly invasive and oligophagous haplotype. These results failed to corroborate the hypothesis that differential symptomatology or damage intensity among tomato varieties and solanaceous host plants could be due to the genetic diversity of the associated mite populations. The genetic evidence, along with the history of spread of cultivated tomato, corroborates the hypothesis of a South American origin of TRM.
Collapse
Affiliation(s)
- Mercia Elias Duarte
- Federal University of Piauí, Campus Amilcar Ferreira Sobral, Floriano, PI, CEP: 64808-605, Brazil
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Renata Santos de Mendonça
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, ICC Sul Campus Darcy Ribeiro, Brasília, DF, CEP 70910-970, Brazil
| | - Sauro Simoni
- CREA - DC Council for Agricultural Research and Economics-Research Centre for Plant Protection and Certification, Via di Lanciola12/a, 50125, Florence, Italy
| | - Denise Navia
- CBGP, Institut Agro, CIRAD, INRAE, IRD, Univ Montpellier, Centre de Biologie pour la Gestion des Populations, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 755 Avenue du Campus Agropolis, CS 30016, 34988, Montferrier sur Lez Cedex, France.
| |
Collapse
|
11
|
Tripodi P, D’Alessandro A, Francese G. An integrated genomic and biochemical approach to investigate the potentiality of heirloom tomatoes: Breeding resources for food quality and sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 13:1031776. [PMID: 36684727 PMCID: PMC9846345 DOI: 10.3389/fpls.2022.1031776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A revival of interest in traditional varieties reflects the change in consumer preferences and the greater awareness of the quality of locally grown products. As ancient cultivars, heirlooms have been selected for decades in specific habitats and represent nowadays potential germplasm sources to consider for breeding high-quality products and cultivation in sustainable agriculture. In this study, 60 heirloom tomato (Solanum lycopersicum L.) accessions, including diverse varietal types (beefsteak, globe, oxheart, plum, and cherry), were profiled over two seasons for the main chemical and biochemical fruit traits. A medium-high level of heritability was found for all traits ranging from 0.52 for soluble solids to 0.99 for fruit weight. The average content of ascorbic acid was ~31 mg 100 g-1 of fw in both seasons, while the greatest variability was found for carotenoids with peaks of 245.65 μg g-1 of fw for total lycopene and 32.29 μg g-1 of fw for β-carotene. Dissection of genotypic (G) and seasonal (Y) factors highlighted genotype as the main source of variation for all traits. No significant effect of Y and G × Y was found for ascorbic acid and fruit weight, respectively, whereas a high influence of Y was found on the variation of lycopene. Molecular fingerprinting was performed using the 10K SolCAP array, yielding a total of 7,591 SNPs. Population structure, phylogenetic relationships, and principal components analysis highlighted a differentiation of plum and cherry genotypes with respect to the beefsteak and globe types. These results were confirmed by multivariate analysis of phenotypic traits, shedding light on how breeding and selection focused on fruit characteristics have influenced the genetic and phenotypic makeup of heirlooms. Marker-trait association showed 11 significantly associated loci for β-carotene and fruit weight. For β-carotene, a single variant on chromosome 8 was found at 12 kb to CCD8, a cleavage dioxygenase playing a key role in the biosynthesis of apocarotenoids. For fruit weight, a single association was located at less than 3 Mbp from SLSUN31 and fw11.3, two candidates involved in the increasing of fruit mass. These results highlight the potentiality of heirlooms for genetic improvement and candidate gene identification.
Collapse
|
12
|
Next generation sequencing technologies to explore the diversity of germplasm resources: achievements and trends in tomato. Comput Struct Biotechnol J 2022; 20:6250-6258. [PMID: 36420160 PMCID: PMC9676195 DOI: 10.1016/j.csbj.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022] Open
Abstract
Tomato is one of the major vegetable crops grown worldwide and a model species for genetic and biological research. Progress in genomic technologies made possible the development of forefront methods for high-scale sequencing, providing comprehensive insight into the genetic architecture of germplasm resources. This review revisits next-generation sequencing strategies and applications to investigate the diversity of tomato, describing the common platforms used for SNP genotyping of large collections, de novo sequencing, and whole genome resequencing. Significant findings in evolutionary history are outlined, thus discussing how genomics has provided new hints about the processes behind domestication. Finally, achievement and perspectives on pan-genome construction and graphical pan-genome development toward precise mining of the natural variation to be exploited for breeding purposes are presented.
Collapse
|
13
|
Increased ACS Enzyme Dosage Causes Initiation of Climacteric Ethylene Production in Tomato. Int J Mol Sci 2022; 23:ijms231810788. [PMID: 36142701 PMCID: PMC9501751 DOI: 10.3390/ijms231810788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fruits of wild tomato species show different ethylene-dependent ripening characteristics, such as variations in fruit color and whether they exhibit a climacteric or nonclimacteric ripening transition. 1-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) are key enzymes in the ethylene biosynthetic pathway encoded by multigene families. Gene duplication is a primary driver of plant diversification and angiosperm evolution. Here, interspecific variations in the molecular regulation of ethylene biosynthesis and perception during fruit ripening in domesticated and wild tomatoes were investigated. Results showed that the activated ACS genes were increased in number in red-ripe tomato fruits than in green-ripe tomato fruits; therefore, elevated dosage of ACS enzyme promoted ripening ethylene production. Results showed that the expression of three ACS isogenes ACS1A, ACS2, and ACS4, which are involved in autocatalytic ethylene production, was higher in red-ripe tomato fruits than in green-ripe tomato fruits. Elevated ACS enzyme dosage promoted ethylene production, which corresponded to the climacteric response of red-ripe tomato fruits. The data suggest that autoinhibitory ethylene production is common to all tomato species, while autocatalytic ethylene production is specific to red-ripe species. The essential regulators Non-ripening (NOR) and Ripening-Inhibitor (RIN) have experienced gene activation and overlapped with increasing ACS enzyme dosage. These complex levels of transcript regulation link higher ethylene production with spatiotemporal modulation of gene expression in red-ripe tomato species. Taken together, this study shows that bursts in ethylene production that accompany fruit color changes in red-ripe tomatoes are likely to be an evolutionary adaptation for seed dispersal.
Collapse
|
14
|
Villanueva-Gutierrez EE, Johansson E, Prieto-Linde ML, Centellas Quezada A, Olsson ME, Geleta M. Simple Sequence Repeat Markers Reveal Genetic Diversity and Population Structure of Bolivian Wild and Cultivated Tomatoes ( Solanum lycopersicum L.). Genes (Basel) 2022; 13:1505. [PMID: 36140673 PMCID: PMC9498693 DOI: 10.3390/genes13091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The western part of South America is a centre of diversity for tomatoes, but genetic diversity studies are lacking for parts of that region, including Bolivia. We used 11 simple sequence repeat (SSR) markers (including seven novel markers) to evaluate genetic diversity and population structure of 28 accessions (four modern cultivars, four advanced lines, nine landraces, 11 wild populations), and to compare their genetic variation against phenotypic traits, geographical origin and altitude. In total, 33 alleles were detected across all loci, with 2-5 alleles per locus. The top three informative SSRs were SLM6-11, LE20592 and TomSatX11-1, with polymorphism information content (PIC) of 0.65, 0.55 and 0.49, respectively. The genetic diversity of Bolivian tomatoes was low, as shown by mean expected heterozygosity (He) of 0.07. Analysis of molecular variance (AMOVA) revealed that 77.3% of the total variation was due to variation between accessions. Significant genetic differentiation was found for geographical origin, cultivation status, fruit shape, fruit size and growth type, each explaining 16-23% of the total variation. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) tree and principal coordinate analysis (PCoA) scatter plot both revealed differentiation between accessions with determinate flowers and accessions with indeterminate flowers, regardless of cultivation status. The genetic profiles of the accessions suggest that the Bolivian tomato gene pool comprises both strictly self-pollinating and open-pollinating genotypes.
Collapse
Affiliation(s)
- Evelyn E. Villanueva-Gutierrez
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
- Departmento de Fitotecnia, Facultad de Ciencias Agricolas, Pecuarias y Forestales “Dr. Martín Cárdenas”, Universidad Mayor de San Simón, Cochabamba P.O. Box 4894, Bolivia
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Maria Luisa Prieto-Linde
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Alberto Centellas Quezada
- Departmento de Fitotecnia, Facultad de Ciencias Agricolas, Pecuarias y Forestales “Dr. Martín Cárdenas”, Universidad Mayor de San Simón, Cochabamba P.O. Box 4894, Bolivia
| | - Marie E. Olsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
15
|
Ramírez-Ojeda G, Rodríguez-Pérez JE, Rodríguez-Guzmán E, Sahagún-Castellanos J, Chávez-Servia JL, Peralta IE, Barrera-Guzmán LÁ. Distribution and Climatic Adaptation of Wild Tomato (Solanum lycopersicum L.) Populations in Mexico. PLANTS 2022; 11:plants11152007. [PMID: 35956486 PMCID: PMC9370545 DOI: 10.3390/plants11152007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
Tomato (Solanum lycopersicum L.) is a vegetable with worldwide importance. Its wild or close related species are reservoirs of genes with potential use for the generation of varieties tolerant or resistant to specific biotic and abiotic factors. The objective was to determine the geographic distribution, ecological descriptors, and patterns of diversity and adaptation of 1296 accessions of native tomato from Mexico. An environmental information system was created with 21 climatic variables with a 1 km2 spatial resolution. Using multivariate techniques (Principal Component Analysis, PCA; Cluster Analysis, CA) and Geographic Information Systems (GIS), the most relevant variables for accession distribution were identified, as well as the groups formed according to the environmental similarity among these. PCA determined that with the first three PCs (Principal Components), it is possible to explain 84.1% of the total variation. The most relevant information corresponded to seasonal variables of temperature and precipitation. CA revealed five statistically significant clusters. Ecological descriptors were determined and described by classifying accessions in Physiographic Provinces. Temperate climates were the most frequent among tomato accessions. Finally, the potential distribution was determined with the Maxent model with 10 replicates by cross-validation, identifying areas with a high probability of tomato presence. These results constitute a reliable source of useful information for planning accession sites collection and identifying accessions that are vulnerable or susceptible to conservation programs.
Collapse
Affiliation(s)
- Gabriela Ramírez-Ojeda
- Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tepatitlán de Morelos 47600, Mexico;
| | - Juan Enrique Rodríguez-Pérez
- Departamento de Fitotecnia, Universidad Autónoma Chapingo (UACh), Chapingo 56230, Mexico;
- Correspondence: ; Tel.: +52-595-951-7210
| | - Eduardo Rodríguez-Guzmán
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara (UdG), Zapopan 45200, Mexico;
| | | | - José Luis Chávez-Servia
- CIIDIR-Oaxaca, Instituto Politécnico Nacional (IPN), Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico;
| | - Iris E. Peralta
- Facultad de Ciencias Agrarias, Universidad Nacional del Cuyo (UNCUYO), Mendoza M5502JMA, Argentina;
- Centro Científico Tecnológico CONICET, Instituto Argentino de Investigaciones de las Zonas Áridas, Mendoza C1425FQB, Argentina
| | - Luis Ángel Barrera-Guzmán
- Coordinación de Educación e Investigación, Universidad del Valle de Puebla (UVP), Puebla 72440, Mexico;
| |
Collapse
|
16
|
Blanca J, Pons C, Montero-Pau J, Sanchez-Matarredona D, Ziarsolo P, Fontanet L, Fisher J, Plazas M, Casals J, Rambla JL, Riccini A, Palombieri S, Ruggiero A, Sulli M, Grillo S, Kanellis A, Giuliano G, Finkers R, Cammareri M, Grandillo S, Mazzucato A, Causse M, Díez MJ, Prohens J, Zamir D, Cañizares J, Monforte AJ, Granell A. European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3431-3445. [PMID: 35358313 PMCID: PMC9162183 DOI: 10.1093/jxb/erac072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.
Collapse
Affiliation(s)
- Jose Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | - Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | | | - David Sanchez-Matarredona
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | - Peio Ziarsolo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | | | - Josef Fisher
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, UPC-BarcelonaTech, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | | | - Alessandra Ruggiero
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Stephania Grillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, POB 386, 6700 AJ Wageningen, The Netherlands
| | - Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Domaine Saint Maurice, 67 Allée des Chênes, CS 60094, 84143 Montfavet, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV-UPV), Universitat Politècnica de València, València, Spain
| | | | | |
Collapse
|
17
|
Qing Y, Zheng Y, Mlotshwa S, Smith HN, Wang X, Zhai X, van der Knaap E, Wang Y, Fei Z. Dynamically expressed small RNAs, substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1536-1550. [PMID: 35514123 DOI: 10.1111/tpj.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Tomato has undergone extensive selections during domestication. Recent progress has shown that genomic structural variants (SVs) have contributed to gene expression dynamics during tomato domestication, resulting in changes of important traits. Here, we performed comprehensive analyses of small RNAs (sRNAs) from nine representative tomato accessions. We demonstrate that SVs substantially contribute to the dynamic expression of the three major classes of plant sRNAs: microRNAs (miRNAs), phased secondary short interfering RNAs (phasiRNAs), and 24-nucleotide heterochromatic siRNAs (hc-siRNAs). Changes in the abundance of phasiRNAs and 24-nucleotide hc-siRNAs likely contribute to the alteration of mRNA gene expression in cis during tomato domestication, particularly for genes associated with biotic and abiotic stress tolerance. We also observe that miRNA expression dynamics are associated with imprecise processing, alternative miRNA-miRNA* selections, and SVs. SVs mainly affect the expression of less-conserved miRNAs that do not have established regulatory functions or low abundant members in highly expressed miRNA families. Our data highlight different selection pressures on miRNAs compared to phasiRNAs and 24-nucleotide hc-siRNAs. Our findings provide insights into plant sRNA evolution as well as SV-based gene regulation during crop domestication. Furthermore, our dataset provides a rich resource for mining the sRNA regulatory network in tomato.
Collapse
Affiliation(s)
- You Qing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | | | - Heather N Smith
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA
| | - Xin Wang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Xuyang Zhai
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
The invasion biology of tomato begomoviruses in Costa Rica reveals neutral synergism that may lead to increased disease pressure and economic loss. Virus Res 2022; 317:198793. [DOI: 10.1016/j.virusres.2022.198793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
|
19
|
Song C, Acuña T, Adler-Agmon M, Rachmilevitch S, Barak S, Fait A. Leveraging a graft collection to develop metabolome-based trait prediction for the selection of tomato rootstocks with enhanced salt tolerance. HORTICULTURE RESEARCH 2022; 9:uhac061. [PMID: 35531316 PMCID: PMC9071376 DOI: 10.1093/hr/uhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.
Collapse
Affiliation(s)
- Chao Song
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Tania Acuña
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Simon Barak
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aaron Fait
- Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
20
|
Blanca J, Sanchez-Matarredona D, Ziarsolo P, Montero-Pau J, van der Knaap E, Díez MJ, Cañizares J. Haplotype analyses reveal novel insights into tomato history and domestication driven by long-distance migrations and latitudinal adaptations. HORTICULTURE RESEARCH 2022; 9:uhac030. [PMID: 35184177 PMCID: PMC8976693 DOI: 10.1093/hr/uhac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 05/22/2023]
Abstract
A novel haplotype-based approach that uses Procrustes analysis and automatic classification was used to provide further insights into tomato history and domestication. Agrarian societies domesticated species of interest by introducing complex genetic modifications. For tomatoes, two species, one of which had two botanical varieties, are thought to be involved in its domestication: the fully wild Solanum pimpinellifolium (SP), the wild and semi-domesticated Solanum lycopersicum var. cerasiforme (SLC) and the cultivated S. l. var. lycopersicum (SLL). The Procrustes approach showed that SP evolved into SLC during a gradual migration from the Peruvian deserts to the Mexican rainforests and that Peruvian and Ecuadorian SLC populations were the result of more recent hybridizations. Our model was supported by independent evidence, including ecological data from the accession collection site and morphological data. Furthermore, we showed that photosynthesis-, and flowering time-related genes were selected during the latitudinal migrations.
Collapse
Affiliation(s)
- Jose Blanca
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, Valencia 46022, Spain
| | - David Sanchez-Matarredona
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, Valencia 46022, Spain
| | - Peio Ziarsolo
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, Valencia 46022, Spain
| | - Javier Montero-Pau
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, Valencia 46022, Spain
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Ma José Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, Valencia 46022, Spain
| | - Joaquín Cañizares
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, COMAV, Universitat Politècnica de València, Valencia 46022, Spain
| |
Collapse
|
21
|
Jabbur ML, Johnson CH. Spectres of Clock Evolution: Past, Present, and Yet to Come. Front Physiol 2022; 12:815847. [PMID: 35222066 PMCID: PMC8874327 DOI: 10.3389/fphys.2021.815847] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian clocks are phylogenetically widespread biological oscillators that allow organisms to entrain to environmental cycles and use their steady-state phase relationship to anticipate predictable daily phenomena – such as the light-dark transitions of a day – and prepare accordingly. Present from cyanobacteria to mammals, circadian clocks are evolutionarily ancient and are thought to increase the fitness of the organisms that possess them by allowing for better resource usage and/or proper internal temporal order. Here, we review literature with respect to the ecology and evolution of circadian clocks, with a special focus on cyanobacteria as model organisms. We first discuss what can be inferred about future clock evolution in response to climate change, based on data from latitudinal clines and domestication. We then address our current understanding of the role that circadian clocks might be contributing to the adaptive fitness of cyanobacteria at the present time. Lastly, we discuss what is currently known about the oldest known circadian clock, and the early Earth conditions that could have led to its evolution.
Collapse
|
22
|
Felföldi Z, Ranga F, Socaci SA, Farcas A, Plazas M, Sestras AF, Vodnar DC, Prohens J, Sestras RE. Physico-Chemical, Nutritional, and Sensory Evaluation of Two New Commercial Tomato Hybrids and Their Parental Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112480. [PMID: 34834843 PMCID: PMC8620249 DOI: 10.3390/plants10112480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 06/01/2023]
Abstract
Tomato (Solanum lycopersicum) is the globally most consumed vegetable. The objective of this research was to analyze physico-chemical, nutritional and sensorial components (taste and flavor) in two new commercial hybrids (AS 300 F1 and AS 400 F1) and their four F7 parental lines. Two widely grown F1 hybrids (Precos F1 and Addalyn F1) were used as controls. The results obtained for carbohydrates (HPLC-RID) indicated that the highest values (27.82 mg/g) were recorded in the paternal line AS 10 of the new hybrid AS 400 F1. The highest values of total organic acids (HPLC-VWD) were recorded in Addalyn F1 (5.06 m/g), while the highest value of phenolic compounds (HPLC-DAD-ESI⁺) were identified in the maternal line AS 09 of the hybrid AS 400 F1 (96.3 µg/g). Intrinsic sensory values were analyzed by male and female tasters of different ages using a hedonic scale. The tasters' perception revealed obvious taste differences between tomato genotypes. The study allowed determining genetic parameters of interest (heterosis and heterobeltosis) for the new hybrids, as well as a detailed characterization of the chemical composition and organoleptic quality of the parental breeding lines and their hybrids, which is useful in tomato breeding.
Collapse
Affiliation(s)
- Zoltán Felföldi
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (Z.F.); (A.F.S.)
- Private Research Station Agrosel, 268 Laminoriștilor St., 400500 Câmpia Turzii, Romania
| | - Floricuta Ranga
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.)
| | - Sonia Ancuta Socaci
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (S.A.S.); (A.F.)
| | - Anca Farcas
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (S.A.S.); (A.F.)
| | - Mariola Plazas
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain; (M.P.); (J.P.)
| | - Adriana F. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (Z.F.); (A.F.S.)
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.)
| | - Jaime Prohens
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain; (M.P.); (J.P.)
| | - Radu E. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (Z.F.); (A.F.S.)
| |
Collapse
|
23
|
Athinodorou F, Foukas P, Tsaniklidis G, Kotsiras A, Chrysargyris A, Delis C, Kyratzis AC, Tzortzakis N, Nikoloudakis N. Morphological Diversity, Genetic Characterization, and Phytochemical Assessment of the Cypriot Tomato Germplasm. PLANTS (BASEL, SWITZERLAND) 2021; 10:1698. [PMID: 34451743 PMCID: PMC8401825 DOI: 10.3390/plants10081698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
Tomato (Solanum lycopersicum L.) is considered one of the most valuable and versatile vegetable crops globally and also serves as a significant model species for fruit developmental biology. Despite its significance, a severe genetic bottleneck and intense selection of genotypes with specific qualitative traits have resulted in the prevalence of a restricted number of (geno)types, also causing a lack of diversity across widespread cultivated types. As a result, the re-emergence of landraces as well as traditional and heirloom varieties is largely acknowledged as a countermeasure to restore phenotypic, phytochemical and genetic diversity while enriching the aroma/taste tomato palette. On those grounds, the Cypriot tomato germplasm was assessed and characterized. Ten landrace accessions were evaluated under greenhouse conditions and data were collected for 24 IPGRI discrete phenotypic traits. Grouping of accessions largely reflected the fruit shape and size; four different fruit types were recorded across accessions (flattened, heart-shaped, rounded and highly rounded). Moreover, a single run panel consisting of ten SSRs was developed and applied in order to genetically characterize 190 Cypriot genotypes and foreign heirloom varieties. Based on genetic indexes it was established that tomato landraces have a rather low level of heterogeneity and genetic variation. Finally, mineral and phytochemical analyses were conducted in order to estimate biochemical attributes (total phenolics, ascorbic acid, lycopene, β-carotene, total soluble content, titratable acidity) across genotypes; thus, ascertaining that the Cypriot panel has a high nutritional value. Due to the thermo-drought adaptation and tolerance of these genotypes, the current study serves as a roadmap for future breeding efforts in order to incorporate desirable traits or develop novel tomato lines combining resilience and alimentary value.
Collapse
Affiliation(s)
- Filio Athinodorou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (F.A.); (P.F.); (A.C.); (N.T.)
| | - Petros Foukas
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (F.A.); (P.F.); (A.C.); (N.T.)
| | - Georgios Tsaniklidis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ELGO-DIMITRA, Mesa Katsabas, 71307 Heraklion, Greece;
| | - Anastasios Kotsiras
- Department of Agricultural Technology, School of Agricultural Technology and Food Technology and Nutrition, University of Peloponnese, 24100 Kalamata, Greece; (A.K.); (C.D.)
| | - Antonios Chrysargyris
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (F.A.); (P.F.); (A.C.); (N.T.)
| | - Costas Delis
- Department of Agricultural Technology, School of Agricultural Technology and Food Technology and Nutrition, University of Peloponnese, 24100 Kalamata, Greece; (A.K.); (C.D.)
| | - Angelos C. Kyratzis
- Vegetable Crop Sector, Agricultural Research Institute—Ministry of Agriculture, Rural Development and Environment, Nicosia 1516, Cyprus;
| | - Nikolaos Tzortzakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (F.A.); (P.F.); (A.C.); (N.T.)
| | - Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (F.A.); (P.F.); (A.C.); (N.T.)
| |
Collapse
|
24
|
Díaz BG, Zucchi MI, Alves‐Pereira A, de Almeida CP, Moraes ACL, Vianna SA, Azevedo-Filho J, Colombo CA. Genome-wide SNP analysis to assess the genetic population structure and diversity of Acrocomia species. PLoS One 2021; 16:e0241025. [PMID: 34283830 PMCID: PMC8291712 DOI: 10.1371/journal.pone.0241025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Acrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm (Elaeis guineenses) even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of Acrocomia genus, including 172 samples from seven species, with a focus on A. aculeata with 117 samples covering a wide geographical area of occurrence of the species, using Single Nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS).The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.
Collapse
Affiliation(s)
| | - Maria Imaculada Zucchi
- Biology Institute, University of Campinas UNICAMP, Campinas-SP, Brazil
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | | | - Caléo Panhoca de Almeida
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | | | - Suelen Alves Vianna
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | - Joaquim Azevedo-Filho
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| | - Carlos Augusto Colombo
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico-IAC, Campinas-SP, Brazil
| |
Collapse
|
25
|
Uluisik S. Chemical and structural quality traits during postharvest ripening regulated by chromosome segments from a wild relative of tomato Solanum pennellii IL4-2 and IL5-1. J Food Biochem 2021; 45:e13858. [PMID: 34251032 DOI: 10.1111/jfbc.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Tomato is usually harvested at an early ripening stage with high firmness suitable for storage and transportation but lacks many quality parameters such as sugars, organic acids, and phenolics. In a recent study, we have selected introgression lines (ILs) IL4-2 and IL5-1, developed from a cross between the Solanum pennellii and the Solanum lycopersicum M82, that exhibit differentiated postharvest shelf-life characteristics in the fruit compared to M82 and the rest of the ILs. Here, we first structurally and biochemically characterized IL4-2, IL5-1, and their parent M82 to decipher the cell wall mechanistic difference between soft (IL4-2) and firm (IL5-1) lines at two postharvest ripening periods. Generally, IL4-2 had more active cell wall modifications in terms of ripening-related gene expression, water-soluble pectin, and cell wall structure under the microscope, which probably makes this line softer than IL5-1. We also evaluated these lines based on commercial quality parameters, sugars, phenolics, organic, and amino acids to gain insight into their commercial and functional quality and reveal noticeable differences. In summary, the contribution of the S. pennellii IL5-1 and IL4-2 to the shelf life of the tomato was structurally characterized, and the component differences meeting the quality criteria were revealed.
Collapse
Affiliation(s)
- Selman Uluisik
- Burdur Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
26
|
Pereira L, Sapkota M, Alonge M, Zheng Y, Zhang Y, Razifard H, Taitano NK, Schatz MC, Fernie AR, Wang Y, Fei Z, Caicedo AL, Tieman DM, van der Knaap E. Natural Genetic Diversity in Tomato Flavor Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:642828. [PMID: 34149747 PMCID: PMC8212054 DOI: 10.3389/fpls.2021.642828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/23/2021] [Indexed: 05/22/2023]
Abstract
Fruit flavor is defined as the perception of the food by the olfactory and gustatory systems, and is one of the main determinants of fruit quality. Tomato flavor is largely determined by the balance of sugars, acids and volatile compounds. Several genes controlling the levels of these metabolites in tomato fruit have been cloned, including LIN5, ALMT9, AAT1, CXE1, and LoxC. The aim of this study was to identify any association of these genes with trait variation and to describe the genetic diversity at these loci in the red-fruited tomato clade comprised of the wild ancestor Solanum pimpinellifolium, the semi-domesticated species Solanum lycopersicum cerasiforme and early domesticated Solanum lycopersicum. High genetic diversity was observed at these five loci, including novel haplotypes that could be incorporated into breeding programs to improve fruit quality of modern tomatoes. Using newly available high-quality genome assemblies, we assayed each gene for potential functional causative polymorphisms and resolved a duplication at the LoxC locus found in several wild and semi-domesticated accessions which caused lower accumulation of lipid derived volatiles. In addition, we explored gene expression of the five genes in nine phylogenetically diverse tomato accessions. In general, the expression patterns of these genes increased during fruit ripening but diverged between accessions without clear relationship between expression and metabolite levels.
Collapse
Affiliation(s)
- Lara Pereira
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Manoj Sapkota
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, United States
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hamid Razifard
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Nathan K. Taitano
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, United States
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Ana L. Caicedo
- Biology Department, University of Massachusetts Amherst, Amherst, MA, United States
| | - Denise M. Tieman
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH 2021; 2:156-169. [PMID: 36304754 PMCID: PMC9590489 DOI: 10.1007/s42994-021-00039-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Flowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00039-0.
Collapse
|
28
|
Lázaro A, Ruiz-Aceituno L. Instrumental Texture Profile of Traditional Varieties of Tomato (Solanum lycopersicum L.) and its Relationship to Consumer Textural Preferences. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:248-253. [PMID: 34137012 DOI: 10.1007/s11130-021-00905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Among components of the consumer's perception of tomato fruit quality, texture is one of the most critical, being formed of a number of attributes that are difficult to evaluate and which change during fruit ripening and storage. The present work relates different textural parameters measured in a collection of traditional tomatoes from Madrid with the appreciation collected from consumer opinions. Texture traits were highly variable in studied tomatoes; they had strong environmental influence and they differed among genotypes. Great intrapopulational variability has been also detected, probably due to the heterogeneity of its fruit tissues and the intrapopulational diversity of studied landraces. Textural behavior of tomatoes affected the level of consumer appreciation. In general, consumers preferred firm fruits with soft skin, due to their low level of springiness and resilience. However, different taster groups have demonstrate how diversity appears to be necessary to satisfy different types of consumers. Among the three groups of consumers which have been identified in this study, the majority (83% of them) preferred local tomato varieties. In addition, heirloom tomatoes presented softer skins than the commercial hybrid reference (values of 0.29 ± 0.19 vs. 0.49 ± 0.12 kg regarding skin rupture force). That circumstance, which is involved in the post-harvest behavior, must be further considered in storage and commercialization.
Collapse
Affiliation(s)
- Almudena Lázaro
- Centro de Innovación Gastronómica de la Comunidad de Madrid, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Calle Goya 5-7, 28001, Madrid, Spain
| | - Laura Ruiz-Aceituno
- Centro de Innovación Gastronómica de la Comunidad de Madrid, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Calle Goya 5-7, 28001, Madrid, Spain.
| |
Collapse
|
29
|
Chacón-Sánchez MI, Martínez-Castillo J, Duitama J, Debouck DG. Gene Flow in Phaseolus Beans and Its Role as a Plausible Driver of Ecological Fitness and Expansion of Cultigens. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.618709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genus Phaseolus, native to the Americas, is composed of more than eighty wild species, five of which were domesticated in pre-Columbian times. Since the beginning of domestication events in this genus, ample opportunities for gene flow with wild relatives have existed. The present work reviews the extent of gene flow in the genus Phaseolus in primary and secondary areas of domestication with the aim of illustrating how this evolutionary force may have conditioned ecological fitness and the widespread adoption of cultigens. We focus on the biological bases of gene flow in the genus Phaseolus from a spatial and time perspective, the dynamics of wild-weedy-crop complexes in the common bean and the Lima bean, the two most important domesticated species of the genus, and the usefulness of genomic tools to detect inter and intraspecific introgression events. In this review we discuss the reproductive strategies of several Phaseolus species, the factors that may favor outcrossing rates and evidence suggesting that interspecific gene flow may increase ecological fitness of wild populations. We also show that wild-weedy-crop complexes generate genetic diversity over which farmers are able to select and expand their cultigens outside primary areas of domestication. Ultimately, we argue that more studies are needed on the reproductive biology of the genus Phaseolus since for most species breeding systems are largely unknown. We also argue that there is an urgent need to preserve wild-weedy-crop complexes and characterize the genetic diversity generated by them, in particular the genome-wide effects of introgressions and their value for breeding programs. Recent technological advances in genomics, coupled with agronomic characterizations, may make a large contribution.
Collapse
|
30
|
Razifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ, Li X, Zhang L, Visa S, Tieman D, van der Knaap E, Caicedo AL. Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America. Mol Biol Evol 2021; 37:1118-1132. [PMID: 31912142 PMCID: PMC7086179 DOI: 10.1093/molbev/msz297] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The process of plant domestication is often protracted, involving underexplored intermediate stages with important implications for the evolutionary trajectories of domestication traits. Previously, tomato domestication history has been thought to involve two major transitions: one from wild Solanum pimpinellifolium L. to a semidomesticated intermediate, S. lycopersicum L. var. cerasiforme (SLC) in South America, and a second transition from SLC to fully domesticated S. lycopersicum L. var. lycopersicum in Mesoamerica. In this study, we employ population genomic methods to reconstruct tomato domestication history, focusing on the evolutionary changes occurring in the intermediate stages. Our results suggest that the origin of SLC may predate domestication, and that many traits considered typical of cultivated tomatoes arose in South American SLC, but were lost or diminished once these partially domesticated forms spread northward. These traits were then likely reselected in a convergent fashion in the common cultivated tomato, prior to its expansion around the world. Based on these findings, we reveal complexities in the intermediate stage of tomato domestication and provide insight on trajectories of genes and phenotypes involved in tomato domestication syndrome. Our results also allow us to identify underexplored germplasm that harbors useful alleles for crop improvement.
Collapse
Affiliation(s)
- Hamid Razifard
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA
| | - Alexis Ramos
- Department of Horticulture, University of Georgia, Athens, GA
| | | | - Cooper Bodary
- Department of Mathematics and Computer Science, College of Wooster, Wooster, OH
| | - Erika Goetz
- Department of Mathematics and Computer Science, College of Wooster, Wooster, OH
| | | | - Xiang Li
- Department of Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL
| | - Lei Zhang
- Department of Horticulture, University of Georgia, Athens, GA
| | - Sofia Visa
- Department of Mathematics and Computer Science, College of Wooster, Wooster, OH
| | - Denise Tieman
- Department of Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL
| | | | - Ana L Caicedo
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
31
|
Naoi T, Hataya T. Tolerance Even to Lethal Strain of Potato Spindle Tuber Viroid Found in Wild Tomato Species Can Be Introduced by Crossing. PLANTS 2021; 10:plants10030575. [PMID: 33803660 PMCID: PMC8003082 DOI: 10.3390/plants10030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
To date, natural resistance or tolerance, which can be introduced into crops by crossing, to potato spindle tuber viroid (PSTVd) has not been reported. Additionally, responses to PSTVd infection in many wild tomato species, including some species that can be crossed with PSTVd-susceptible cultivated tomatoes (Solanum lycopersicum var. lycoperaicum), have not been ascertained. The aim of this study was to evaluate responses to PSTVd infection including resistance and tolerance. Accordingly, we inoculated several cultivated and wild tomato species with intermediate and lethal strains of PSTVd. None of the host plants exhibited sufficient resistance to PSTVd to render systemic infection impossible; however, these plants displayed other responses, including tolerance. Further analysis of PSTVd accumulation revealed low accumulation of PSTVd in two wild species, exhibiting high tolerance, even to the lethal strain. Additionally, F1 hybrids generated by crossing a PSTVd-sensitive wild tomato (Solanum lycopersicum var. cerasiforme) with these wild relatives also exhibited tolerance to the lethal PSTVd strain, which is accompanied by low PSTVd accumulation during early infection. These results indicate that the tolerance toward PSTVd in wild species is a dominant trait and can be utilized for tomato breeding by crossing.
Collapse
Affiliation(s)
- Takashi Naoi
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| | - Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Correspondence:
| |
Collapse
|
32
|
McClung CR. Circadian Clock Components Offer Targets for Crop Domestication and Improvement. Genes (Basel) 2021; 12:genes12030374. [PMID: 33800720 PMCID: PMC7999361 DOI: 10.3390/genes12030374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
During plant domestication and improvement, farmers select for alleles present in wild species that improve performance in new selective environments associated with cultivation and use. The selected alleles become enriched and other alleles depleted in elite cultivars. One important aspect of crop improvement is expansion of the geographic area suitable for cultivation; this frequently includes growth at higher or lower latitudes, requiring the plant to adapt to novel photoperiodic environments. Many crops exhibit photoperiodic control of flowering and altered photoperiodic sensitivity is commonly required for optimal performance at novel latitudes. Alleles of a number of circadian clock genes have been selected for their effects on photoperiodic flowering in multiple crops. The circadian clock coordinates many additional aspects of plant growth, metabolism and physiology, including responses to abiotic and biotic stresses. Many of these clock-regulated processes contribute to plant performance. Examples of selection for altered clock function in tomato demonstrate that with domestication, the phasing of the clock is delayed with respect to the light–dark cycle and the period is lengthened; this modified clock is associated with increased chlorophyll content in long days. These and other data suggest the circadian clock is an attractive target during breeding for crop improvement.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
33
|
Riccini A, Picarella ME, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. PLANT MOLECULAR BIOLOGY 2021; 105:263-285. [PMID: 33104942 DOI: 10.1007/s11103-020-01086-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Transcriptomic analysis of tomato genotypes contrasting for stigma position suggests that stigma insertion occurred by the disruption of a process that finds a parallel in Arabidopsis gynoecium development. Domestication of cultivated tomato (Solanum lycopersicum L.) included the transition from allogamy to autogamy that occurred through the loss of self-incompatibilty and the retraction of the stigma within the antheridial cone. Although the inserted stigma is an established phenotype in modern tomatoes, an exserted stigma is still present in several landraces or vintage varieties. Moreover, exsertion of the stigma is a frequent response to high temperature stress and, being a cause of reduced fertility, a trait of increasing importance. Few QTLs for stigma position have been described and only one of the underlying genes identified. To gain insights on genes involved in stigma position in tomato, a bulk RNA sequencing (RNA-Seq) approach was adopted, using two groups of contrasting genotypes. Phenotypic analysis confirmed the extent and the stability of stigma position in the selected genotypes, whereas they were highly heterogeneous for other reproductive and productive traits. The RNA-Seq analysis yielded 801 differentially expressed genes (DEGs), 566 up-regulated and 235 down-regulated in the genotypes with exserted stigma. Validation by quantitative PCR indicated a high reliability of the RNA-Seq data. Up-regulated DEGs were enriched for genes involved in the cell wall metabolism, lipid transport, auxin response and flavonoid biosynthesis. Down-regulated DEGs were enriched for genes involved in translation. Validation of selected genes on pistil tissue of the 26 single genotypes revealed that differences between bulks could both be due to a general trend of the bulk or to the behaviour of single genotypes. Novel candidate genes potentially involved in the control of stigma position in tomato are discussed.
Collapse
Affiliation(s)
- A Riccini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - M E Picarella
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - F De Angelis
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - A Mazzucato
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy.
| |
Collapse
|
34
|
Takei H, Shirasawa K, Kuwabara K, Toyoda A, Matsuzawa Y, Iioka S, Ariizumi T. De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme, by long-read sequencing. DNA Res 2021; 28:6104860. [PMID: 33475141 PMCID: PMC7934570 DOI: 10.1093/dnares/dsaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The ancestral tomato species are known to possess genes that are valuable for improving traits in breeding. Here, we aimed to construct high-quality de novo genome assemblies of Solanum pimpinellifolium ‘LA1670’ and S. lycopersicum var. cerasiforme ‘LA1673’, originating from Peru. The Pacific Biosciences (PacBio) long-read sequences with 110× and 104× coverages were assembled and polished to generate 244 and 202 contigs spanning 808.8 Mbp for ‘LA1670’ and 804.5 Mbp for ‘LA1673’, respectively. After chromosome-level scaffolding with reference guiding, 14 scaffold sequences corresponding to 12 tomato chromosomes and 2 unassigned sequences were constructed. High-quality genome assemblies were confirmed using the Benchmarking Universal Single-Copy Orthologs and long terminal repeat assembly index. The protein-coding sequences were then predicted, and their transcriptomes were confirmed. The de novo assembled genomes of S. pimpinellifolium and S. lycopersicum var. cerasiforme were predicted to have 71,945 and 75,230 protein-coding genes, including 29,629 and 29,185 non-redundant genes, respectively, as supported by the transcriptome analysis results. The chromosome-level genome assemblies coupled with transcriptome data sets of the two accessions would be valuable for gaining insights into tomato domestication and understanding genome-scale breeding.
Collapse
Affiliation(s)
- Hitomi Takei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.,Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kosuke Kuwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Shinji Iioka
- TOKITA Seed Co. LTD, Otone, Saitama 349-1144, Japan
| | - Tohru Ariizumi
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
35
|
Tsuzuki R, Cabrera Pintado RM, Biondi Thorndike JA, Gutiérrez Reynoso DL, Amasifuen Guerra CA, Guerrero Abad JC, Aragón Caballero LM, Huarhua Zaquinaula MH, Ureta Sierra C, Alberca Cruz OI, Elespuru Suna MG, Blas Sevillano RH, Torres Arias IC, Flores Ticona J, de Baldárrago FC, Pérez ER, Hozum T, Saito H, Kotera S, Akagi Y, Kodama M, Komatsu K, Arie T. Mutations Found in the Asc1 Gene That Confer Susceptibility to the AAL-Toxin in Ancestral Tomatoes from Peru and Mexico. PLANTS 2020; 10:plants10010047. [PMID: 33379271 PMCID: PMC7824085 DOI: 10.3390/plants10010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022]
Abstract
Tomato susceptibility/resistance to stem canker disease caused by Alternaria alternata f. sp. lycopersici and its pathogenic factor AAL-toxin is determined by the presence of the Asc1 gene. Several cultivars of commercial tomato (Solanum lycopersicum var. lycopersicum, SLL) are reported to have a mutation in Asc1, resulting in their susceptibility to AAL-toxin. We evaluated 119 ancestral tomato accessions including S. pimpinellifolium (SP), S. lycopersicum var. cerasiforme (SLC) and S. lycopersicum var. lycopersicum “jitomate criollo” (SLJ) for AAL-toxin susceptibility. Three accessions, SP PER018805, SLC PER018894, and SLJ M5-3, were susceptible to AAL-toxin. SLC PER018894 and SLJ M5-3 had a two-nucleotide deletion (nt 854_855del) in Asc1 identical to that found in SLL cv. Aichi-first. Another mutation (nt 931_932insT) that may confer AAL-toxin susceptibility was identified in SP PER018805. In the phylogenetic tree based on the 18 COSII sequences, a clade (S3) is composed of SP, including the AAL-toxin susceptible PER018805, and SLC. AAL-toxin susceptible SLC PER018894 and SLJ M5-3 were in Clade S2 with SLL cultivars. As SLC is thought to be the ancestor of SLL, and SLJ is an intermediate tomato between SLC and SLL, Asc1s with/without the mutation seem to have been inherited throughout the history of tomato domestication and breeding.
Collapse
Affiliation(s)
- Rin Tsuzuki
- Bio-Applications and Systems Engineering—BASE, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan;
| | - Rosa María Cabrera Pintado
- National Institute of Agricultural Innovation (INIA), La Monila 15026, Lima 12, Peru; (R.M.C.P.); (J.A.B.T.); (D.L.G.R.); (C.A.A.G.); (J.C.G.A.); (M.G.E.S.)
| | - Jorge Andrés Biondi Thorndike
- National Institute of Agricultural Innovation (INIA), La Monila 15026, Lima 12, Peru; (R.M.C.P.); (J.A.B.T.); (D.L.G.R.); (C.A.A.G.); (J.C.G.A.); (M.G.E.S.)
| | - Dina Lida Gutiérrez Reynoso
- National Institute of Agricultural Innovation (INIA), La Monila 15026, Lima 12, Peru; (R.M.C.P.); (J.A.B.T.); (D.L.G.R.); (C.A.A.G.); (J.C.G.A.); (M.G.E.S.)
| | - Carlos Alberto Amasifuen Guerra
- National Institute of Agricultural Innovation (INIA), La Monila 15026, Lima 12, Peru; (R.M.C.P.); (J.A.B.T.); (D.L.G.R.); (C.A.A.G.); (J.C.G.A.); (M.G.E.S.)
| | - Juan Carlos Guerrero Abad
- National Institute of Agricultural Innovation (INIA), La Monila 15026, Lima 12, Peru; (R.M.C.P.); (J.A.B.T.); (D.L.G.R.); (C.A.A.G.); (J.C.G.A.); (M.G.E.S.)
| | - Liliana Maria Aragón Caballero
- Plant Pathology Clinic, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (L.M.A.C.); (M.H.H.Z.); (C.U.S.); (O.I.A.C.)
| | - Medali Heidi Huarhua Zaquinaula
- Plant Pathology Clinic, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (L.M.A.C.); (M.H.H.Z.); (C.U.S.); (O.I.A.C.)
| | - Cledy Ureta Sierra
- Plant Pathology Clinic, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (L.M.A.C.); (M.H.H.Z.); (C.U.S.); (O.I.A.C.)
| | - Olenka Ines Alberca Cruz
- Plant Pathology Clinic, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (L.M.A.C.); (M.H.H.Z.); (C.U.S.); (O.I.A.C.)
| | - Milca Gianira Elespuru Suna
- National Institute of Agricultural Innovation (INIA), La Monila 15026, Lima 12, Peru; (R.M.C.P.); (J.A.B.T.); (D.L.G.R.); (C.A.A.G.); (J.C.G.A.); (M.G.E.S.)
| | - Raúl Humberto Blas Sevillano
- Crop Husbandry Department, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (R.H.B.S.); (I.C.T.A.); (J.F.T.)
| | - Ines Carolina Torres Arias
- Crop Husbandry Department, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (R.H.B.S.); (I.C.T.A.); (J.F.T.)
| | - Joel Flores Ticona
- Crop Husbandry Department, La Molina National Agrarian University (UNALM), La Monila 15026, Lima 12, Peru; (R.H.B.S.); (I.C.T.A.); (J.F.T.)
| | - Fátima Cáceres de Baldárrago
- Department of Biology, Faculty of Biological Sciences, National University of San Augustín, Santa Catalina, Arequipa 04000, Peru;
| | | | - Takuo Hozum
- Interdisciplinary Research Center for Environment and Rural Service, Chapingo Autonomous University, Texcoco, CP 56230, Mexico;
| | - Hiroki Saito
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; (H.S.); (S.K.); (K.K.)
| | - Shunsuke Kotera
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; (H.S.); (S.K.); (K.K.)
| | | | - Motoichiro Kodama
- Department of Agriculture, Tottori University, Tottori 680-8553, Japan;
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; (H.S.); (S.K.); (K.K.)
| | - Tsutomu Arie
- Bio-Applications and Systems Engineering—BASE, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan;
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; (H.S.); (S.K.); (K.K.)
- Correspondence: ; Tel.: +81-42-367-5691
| |
Collapse
|
36
|
Rodriguez M, Scintu A, Posadinu CM, Xu Y, Nguyen CV, Sun H, Bitocchi E, Bellucci E, Papa R, Fei Z, Giovannoni JJ, Rau D, Attene G. GWAS Based on RNA-Seq SNPs and High-Throughput Phenotyping Combined with Climatic Data Highlights the Reservoir of Valuable Genetic Diversity in Regional Tomato Landraces. Genes (Basel) 2020; 11:E1387. [PMID: 33238469 PMCID: PMC7709041 DOI: 10.3390/genes11111387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a widely used model plant species for dissecting out the genomic bases of complex traits to thus provide an optimal platform for modern "-omics" studies and genome-guided breeding. Genome-wide association studies (GWAS) have become a preferred approach for screening large diverse populations and many traits. Here, we present GWAS analysis of a collection of 115 landraces and 11 vintage and modern cultivars. A total of 26 conventional descriptors, 40 traits obtained by digital phenotyping, the fruit content of six carotenoids recorded at the early ripening (breaker) and red-ripe stages and 21 climate-related variables were analyzed in the context of genetic diversity monitored in the 126 accessions. The data obtained from thorough phenotyping and the SNP diversity revealed by sequencing of ripe fruit transcripts of 120 of the tomato accessions were jointly analyzed to determine which genomic regions are implicated in the expressed phenotypic variation. This study reveals that the use of fruit RNA-Seq SNP diversity is effective not only for identification of genomic regions that underlie variation in fruit traits, but also of variation related to additional plant traits and adaptive responses to climate variation. These results allowed validation of our approach because different marker-trait associations mapped on chromosomal regions where other candidate genes for the same traits were previously reported. In addition, previously uncharacterized chromosomal regions were targeted as potentially involved in the expression of variable phenotypes, thus demonstrating that our tomato collection is a precious reservoir of diversity and an excellent tool for gene discovery.
Collapse
Affiliation(s)
- Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli Studi di Sassari, 07041 Alghero, Italy
| | - Alessandro Scintu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Chiara M. Posadinu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Cuong V. Nguyen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada;
| | - Honghe Sun
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali—D3A, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.B.); (E.B.); (R.P.)
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and U.S. Department of Agriculture—Agriculture Research Service, Ithaca, New York, NY 14853, USA; (Y.X.); (H.S.); (Z.F.); (J.J.G.)
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (A.S.); (C.M.P.); (D.R.); (G.A.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale—CBV, Università degli Studi di Sassari, 07041 Alghero, Italy
| |
Collapse
|
37
|
Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS, Saha S, Zhang J, Mainiero S, Strickler SR, Catala C, Martin GB, Mueller LA, Vrebalov J, Giovannoni JJ, Wu S, Fei Z. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat Commun 2020; 11:5817. [PMID: 33199703 PMCID: PMC7670462 DOI: 10.1038/s41467-020-19682-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
Solanum pimpinellifolium (SP) is the wild progenitor of cultivated tomato. Because of its remarkable stress tolerance and intense flavor, SP has been used as an important germplasm donor in modern tomato breeding. Here, we present a high-quality chromosome-scale genome sequence of SP LA2093. Genome comparison identifies more than 92,000 structural variants (SVs) between LA2093 and the modern cultivar, Heinz 1706. Genotyping these SVs in ~600 representative tomato accessions identifies alleles under selection during tomato domestication, improvement and modern breeding, and discovers numerous SVs overlapping genes known to regulate important breeding traits such as fruit weight and lycopene content. Expression quantitative trait locus (eQTL) analysis detects hotspots harboring master regulators controlling important fruit quality traits, including cuticular wax accumulation and flavonoid biosynthesis, and SVs contributing to these complex regulatory networks. The LA2093 genome sequence and the identified SVs provide rich resources for future research and biodiversity-based breeding. Solanum pimpinellifolium (SP) is the progenitor of cultivated tomato and an important germplasm. Here, the authors assemble SP genome, identify structural variants (SVs) by comparing with modern cultivar, reveal SVs associated with important breeding traits, and detect SVs harboring master regulators of fruit quality traits.
Collapse
Affiliation(s)
- Xin Wang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Lei Gao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.,CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Jing Zhang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | | | - Gregory B Martin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - James J Giovannoni
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.,US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA. .,US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
38
|
Arnoux S, Fraïsse C, Sauvage C. Genomic inference of complex domestication histories in three Solanaceae species. J Evol Biol 2020; 34:270-283. [PMID: 33107098 DOI: 10.1111/jeb.13723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Domestication is a human-induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species-specific demographic processes between species. A convergent history of domestication with gene flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a "protracted period" of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species-specific and supported by the few historical records available.
Collapse
Affiliation(s)
- Stéphanie Arnoux
- INRA UR1052 GAFL, Centre de Recherche INRA PACA, Avignon Cedex 9, France.,Vilmorin SA, Lédenon, France
| | | | - Christopher Sauvage
- INRA UR1052 GAFL, Centre de Recherche INRA PACA, Avignon Cedex 9, France.,Syngenta SAS France, Saint Sauveur, France
| |
Collapse
|
39
|
Gramazio P, Pereira-Dias L, Vilanova S, Prohens J, Soler S, Esteras J, Garmendia A, Díez MJ. Morphoagronomic characterization and whole-genome resequencing of eight highly diverse wild and weedy S. pimpinellifolium and S. lycopersicum var. cerasiforme accessions used for the first interspecific tomato MAGIC population. HORTICULTURE RESEARCH 2020; 7:174. [PMID: 33328432 PMCID: PMC7603519 DOI: 10.1038/s41438-020-00395-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/02/2020] [Accepted: 08/30/2020] [Indexed: 05/11/2023]
Abstract
The wild Solanum pimpinellifolium (SP) and the weedy S. lycopersicum var. cerasiforme (SLC) are largely unexploited genetic reservoirs easily accessible to breeders, as they are fully cross-compatible with cultivated tomato (S. lycopersicum var. lycopersicum). We performed a comprehensive morphological and genomic characterization of four wild SP and four weedy SLC accessions, selected to maximize the range of variation of both taxa. These eight accessions are the founders of the first tomato interspecific multi-parent advanced generation inter-cross (MAGIC) population. The morphoagronomic characterization was carried out with 39 descriptors to assess plant, inflorescence, fruit and agronomic traits, revealing the broad range of diversity captured. Part of the morphological variation observed in SP was likely associated to the adaptation of the accessions to different environments, while in the case of SLC to both human activity and adaptation to the environment. Whole-genome resequencing of the eight accessions revealed over 12 million variants, ranging from 1.2 to 1.9 million variants in SLC and from 3.1 to 4.8 million in SP, being 46.3% of them (4,897,803) private variants. The genetic principal component analysis also confirmed the high diversity of SP and the complex evolutionary history of SLC. This was also reflected in the analysis of the potential footprint of common ancestors or old introgressions identified within and between the two taxa. The functional characterization of the variants revealed a significative enrichment of GO terms related to changes in cell walls that would have been negatively selected during domestication and breeding. The comprehensive morphoagronomic and genetic characterization of these accessions will be of great relevance for the genetic analysis of the first interspecific MAGIC population of tomato and provides valuable knowledge and tools to the tomato community for genetic and genomic studies and for breeding purposes.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572, Tsukuba, Japan
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Javier Esteras
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Alfonso Garmendia
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain.
| |
Collapse
|
40
|
Roohanitaziani R, de Maagd RA, Lammers M, Molthoff J, Meijer-Dekens F, van Kaauwen MPW, Finkers R, Tikunov Y, Visser RGF, Bovy AG. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. Genes (Basel) 2020; 11:genes11111278. [PMID: 33137951 PMCID: PMC7692805 DOI: 10.3390/genes11111278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023] Open
Abstract
A tomato core collection consisting of 122 gene bank accessions, including landraces, old cultivars, and wild relatives, was explored for variation in several plant growth, yield and fruit quality traits. The resequenced accessions were also genotyped with respect to a number of mutations or variations in key genes known to underlie these traits. The yield-related traits fruit number and fruit weight were much higher in cultivated varieties when compared to wild accessions, while, in wild tomato accessions, Brix was higher than in cultivated varieties. Known mutations in fruit size and shape genes could well explain the fruit size variation, and fruit colour variation could be well explained by known mutations in key genes of the carotenoid and flavonoid pathway. The presence and phenotype of several plant architecture affecting mutations, such as self-pruning (sp), compound inflorescence (s), jointless-2 (j-2), and potato leaf (c) were also confirmed. This study provides valuable phenotypic information on important plant growth- and quality-related traits in this collection. The allelic distribution of known genes that underlie these traits provides insight into the role and importance of these genes in tomato domestication and breeding. This resource can be used to support (precision) breeding strategies for tomato crop improvement.
Collapse
Affiliation(s)
- Raana Roohanitaziani
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (R.A.d.M.); (M.L.)
| | - Michiel Lammers
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (R.A.d.M.); (M.L.)
| | - Jos Molthoff
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Fien Meijer-Dekens
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Martijn P. W. van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (R.R.); (J.M.); (F.M.-D.); (M.P.W.v.K.); (R.F.); (Y.T.); (R.G.F.V.)
- Correspondence: ; Tel.: +31-317-480762
| |
Collapse
|
41
|
Tamburino R, Sannino L, Cafasso D, Cantarella C, Orrù L, Cardi T, Cozzolino S, D’Agostino N, Scotti N. Cultivated Tomato ( Solanum lycopersicum L.) Suffered a Severe Cytoplasmic Bottleneck during Domestication: Implications from Chloroplast Genomes. PLANTS 2020; 9:plants9111443. [PMID: 33114641 PMCID: PMC7692331 DOI: 10.3390/plants9111443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
In various crops, genetic bottlenecks occurring through domestication can limit crop resilience to biotic and abiotic stresses. In the present study, we investigated nucleotide diversity in tomato chloroplast genome through sequencing seven plastomes of cultivated accessions from the Campania region (Southern Italy) and two wild species among the closest (Solanum pimpinellifolium) and most distantly related (S. neorickii) species to cultivated tomatoes. Comparative analyses among the chloroplast genomes sequenced in this work and those available in GenBank allowed evaluating the variability of plastomes and defining phylogenetic relationships. A dramatic reduction in genetic diversity was detected in cultivated tomatoes, nonetheless, a few de novo mutations, which still differentiated the cultivated tomatoes from the closest wild relative S. pimpinellifolium, were detected and are potentially utilizable as diagnostic markers. Phylogenetic analyses confirmed that S. pimpinellifolium is the closest ancestor of all cultivated tomatoes. Local accessions all clustered together and were strictly related with other cultivated tomatoes (S. lycopersicum group). Noteworthy, S. lycopersicum var. cerasiforme resulted in a mixture of both cultivated and wild tomato genotypes since one of the two analyzed accessions clustered with cultivated tomato, whereas the other with S. pimpinellifolium. Overall, our results revealed a very reduced cytoplasmic variability in cultivated tomatoes and suggest the occurrence of a cytoplasmic bottleneck during their domestication.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Via Università 133, 80055 Portici (NA), Italy; (R.T.); (L.S.)
| | - Lorenza Sannino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Via Università 133, 80055 Portici (NA), Italy; (R.T.); (L.S.)
| | - Donata Cafasso
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (D.C.); (S.C.)
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy; (C.C.); (T.C.); (N.D.)
| | - Luigi Orrù
- CREA Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy;
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy; (C.C.); (T.C.); (N.D.)
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (D.C.); (S.C.)
| | - Nunzio D’Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy; (C.C.); (T.C.); (N.D.)
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici (NA), Italy
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Via Università 133, 80055 Portici (NA), Italy; (R.T.); (L.S.)
- Correspondence: ; Tel.: +39-0812-53-9482
| |
Collapse
|
42
|
Maldonado-Torres R, Morales-Camacho JI, López-Valdez F, Huerta-González L, Luna-Suárez S. Assessment of Techno-Functional and Nutraceutical Potential of Tomato ( Solanum lycopersicum) Seed Meal. Molecules 2020; 25:E4235. [PMID: 32942707 PMCID: PMC7571165 DOI: 10.3390/molecules25184235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/15/2023] Open
Abstract
Tomato (Solanum lycopersicum) is a widely consumed fruit all around the world. The industrial exploitation of tomato generates a lot of waste. Most of the utilization of tomato seeds waste is focused on animal feeding, as well as a food ingredient aimed to increase the protein content, and raw material for some organic bioactive component extraction. The aim of this work was to evaluate the techno-functional properties of tomato seed meal (TSM) and its nutraceutical properties after applying defatting processing (TSMD), and to evaluate the nutraceutical properties after a fermentation processing (TSMDF) by Lactobacillus sp. The results showed that, at alkaline conditions (pH 8-9), the techno-functional properties for TSM and TSMD improved. In comparison with TSM, TSMD showed higher water holding capacity (WHC ≈32%), higher oil holding capacity (OHC ≈13%), higher protein solubility (49-58%), more than 10 times foaming activity (FA), more than 50 times foam stability (Fst), as well as an improved emulsifying activity (EA) and emulsion stability (Est) wich were better at pH 9. Regarding the nutraceutical properties, after 48 h of fermentation (TSMDF), the antioxidant activity was doubled and a significant increase in the iron chelating activity was also observed. During the same fermentation time, the highest angiotensin-converting enzyme inhibition (ACEI) was achieved (IC50 73.6 μg/mL), more than 10 times higher than TSMD, which leads to suggest that this fermented medium may be a powerful antihypertensive. Therefore, the strategy proposed in this study could be an option for the exploitation of tomato wastes.
Collapse
Affiliation(s)
- Ramón Maldonado-Torres
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| | - Jocksan I. Morales-Camacho
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, Mexico;
| | - Fernando López-Valdez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| | - Luis Huerta-González
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| |
Collapse
|
43
|
Efremov GI, Slugina MA, Shchennikova AV, Kochieva EZ. Differential Regulation of Phytoene Synthase PSY1 During Fruit Carotenogenesis in Cultivated and Wild Tomato Species ( Solanum section Lycopersicon). PLANTS 2020; 9:plants9091169. [PMID: 32916928 PMCID: PMC7569967 DOI: 10.3390/plants9091169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
In plants, carotenoids define fruit pigmentation and are involved in the processes of photo-oxidative stress defense and phytohormone production; a key enzyme responsible for carotene synthesis in fruit is phytoene synthase 1 (PSY1). Tomatoes (Solanum section Lycopersicon) comprise cultivated (Solanum lycopersicum) as well as wild species with different fruit color and are a good model to study carotenogenesis in fleshy fruit. In this study, we identified homologous PSY1 genes in five Solanum section Lycopersicon species, including domesticated red-fruited S. lycopersicum and wild yellow-fruited S. cheesmaniae and green-fruited S. chilense, S. habrochaites and S. pennellii. PSY1 homologs had a highly conserved structure, including key motifs in the active and catalytic sites, suggesting that PSY1 enzymatic function is similar in green-fruited wild tomato species and preserved in red-fruited S. lycopersicum. PSY1 mRNA expression directly correlated with carotenoid content in ripe fruit of the analyzed tomato species, indicating differential transcriptional regulation. Analysis of the PSY1 promoter and 5′-UTR sequence revealed over 30 regulatory elements involved in response to light, abiotic stresses, plant hormones, and parasites, suggesting that the regulation of PSY1 expression may affect the processes of fruit senescence, seed maturation and dormancy, and pathogen resistance. The revealed differences between green-fruited and red-fruited Solanum species in the structure of the PSY1 promoter/5′-UTR, such as the acquisition of ethylene-responsive element by S. lycopersicum, could reflect the effects of domestication on the transcriptional mechanisms regulating PSY1 expression, including induction of carotenogenesis during fruit ripening, which would contribute to red coloration in mature fruit.
Collapse
|
44
|
Esposito S, Cardi T, Campanelli G, Sestili S, Díez MJ, Soler S, Prohens J, Tripodi P. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean 'da serbo' type long shelf-life germplasm. HORTICULTURE RESEARCH 2020; 7:134. [PMID: 32922806 PMCID: PMC7459340 DOI: 10.1038/s41438-020-00353-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 05/26/2023]
Abstract
Double digest restriction-site associated sequencing (ddRAD-seq) is a flexible and cost-effective strategy for providing in-depth insights into the genetic architecture of germplasm collections. Using this methodology, we investigated the genomic diversity of a panel of 288 diverse tomato (Solanum lycopersicum L.) accessions enriched in 'da serbo' (called 'de penjar' in Spain) long shelf life (LSL) materials (152 accessions) mostly originating from Italy and Spain. The rest of the materials originate from different countries and include landraces for fresh consumption, elite cultivars, heirlooms, and breeding lines. Apart from their LSL trait, 'da serbo' landraces are of remarkable interest for their resilience. We identified 32,799 high-quality SNPs, which were used for model ancestry population structure and non-parametric hierarchical clustering. Six genetic subgroups were revealed, clearly separating most 'da serbo' landraces, but also the Spanish germplasm, suggesting a subdivision of the population based on type and geographical provenance. Linkage disequilibrium (LD) in the collection decayed very rapidly within <5 kb. We then investigated SNPs showing contrasted minor frequency allele (MAF) in 'da serbo' materials, resulting in the identification of high frequencies in this germplasm of several mutations in genes related to stress tolerance and fruit maturation such as CTR1 and JAR1. Finally, a mini-core collection of 58 accessions encompassing most of the diversity was selected for further exploitation of key traits. Our findings suggest the presence of a genetic footprint of the 'da serbo' germplasm selected in the Mediterranean basin. Moreover, we provide novel insights on LSL 'da serbo' germplasm as a promising source of alleles for tolerance to stresses.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| |
Collapse
|
45
|
Akroum S, Rouibah M. [Protection by some plant methanol extracts of cherry tomatoes (Solanum lycopersicum var. Cerasiforme) from fungic infection by Alternaria alternata]. Biol Aujourdhui 2020; 214:55-61. [PMID: 32773030 DOI: 10.1051/jbio/2020001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 01/10/2023]
Abstract
Cherry tomato is very susceptible to fungal infections that can cause considerable damage in crops and during storage. Alternaria infection is one of the most common and dangerous alterations for this fruit. They are caused by Alternaria alternata or some other species belonging to the same genus. In this work, we tested the antifungal activity of methanol extracts from five plants harvested in the region of Jijel (Algeria) on A. alternata. The activity was first tested in vitro and then on greenhouse cherry tomato plants: extracts were applied to healthy plants before infection in order to test their preventive action, and after infection to determine whether they are able to knock out Alternaria. Results showed that Rosmarinus officinalis and Lavandula angustifolia extracts were the most active in vitro on A. alternata. Microscopic observations of the mold indicated that these extracts inhibited the dictyospores production. The antifungal activity tested on the plants grown in greenhouse revealed that R. officinalis extract still was the most active. Extracts of L. angustifolia and Punica granatum did not protect the plants from Alternaria infection, but provided a total cure at the end of the treatment. Extracts from Quercus suber and Eucalyptus globulus were the least active. They did not bestow any protection nor complete healing of the plants. Dictyospores counting on fruits at the end of the treatment confirmed the results obtained for the greenhouse crops.
Collapse
Affiliation(s)
- Souâd Akroum
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences de la Nature et de la Vie, Université Mohamed Seddik Ben Yahia, BP 98 Ouled Aissa, Jijel 18000, Algérie
| | - Moad Rouibah
- Laboratoire de Biotechnologie, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université Mohamed Seddik Ben Yahia, BP 98 Ouled Aissa, Jijel 18000, Algérie
| |
Collapse
|
46
|
Ercolano MR, Di Donato A, Sanseverino W, Barbella M, De Natale A, Frusciante L. Complex migration history is revealed by genetic diversity of tomato samples collected in Italy during the eighteenth and nineteenth centuries. HORTICULTURE RESEARCH 2020; 7:100. [PMID: 32637128 PMCID: PMC7327043 DOI: 10.1038/s41438-020-0322-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Native to South America, the tomato is now grown almost worldwide. During its domestication and improvement, important selection signatures were fixed in certain agronomic and adaption traits. Such traits include fruit morphology, which became a major target for selection over the centuries. However, little is known about precisely when some mutations arose and how they spread through the germplasm. For instance, elongated fruit variants, originating both via mutations in SUN and OVATE genes, may have arisen prior to domestication or during tomato cultivation in Europe. To gain insights into the tomato admixture and selection pattern, the genome of two tomato herbarium specimens conserved in the Herbarium Porticense (PORUN) was sequenced. Comparison of the DNA of herbarium samples collected in Italy between 1750 and 1890 with that of living tomato accessions yielded insights into the history of tomato loci selection. Interestingly, the genotype of the more recent sample (LEO90), classified in 1890 as the oblungum variety, shows several private variants in loci implicated in fruit shape determination, also present also in wild tomato samples. In addition, LEO90, sampled in the nineteenth century, is genetically more distant from cultivated varieties than the SET17 genotype, collected in the eighteenth century, suggesting that elongated tomato varieties may originate from a cross between a landrace and a wild ancestor. Findings from our study have major implications for the understanding of tomato migration patterns and for the conservation of allelic diversity and loci recovery.
Collapse
Affiliation(s)
- M. R. Ercolano
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| | - A. Di Donato
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| | | | - M. Barbella
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| | - A. De Natale
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Naples, Italy
- Società dei Naturalisti, Via Mezzocannone 8, 80134 Naples, Italy
| | - L. Frusciante
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| |
Collapse
|
47
|
Gibson MJS, Moyle LC. Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Mol Ecol 2020; 29:2204-2217. [PMID: 32419208 DOI: 10.1111/mec.15477] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
The wild currant tomato Solanum pimpinellifolium inhabits a wide range of abiotic habitats across its native range of Ecuador and Peru. Although it has served as a key genetic resource for the improvement of domestic cultivars, little is known about the genetic basis of traits underlying local adaptation in this species, nor what abiotic variables are most important for driving differentiation. Here we use redundancy analysis (RDA) and other multivariate statistical methods (structural equation modelling [SEM] and generalized dissimilarity modelling [GDM]) to quantify the relationship of genomic variation (6,830 single nucleotide polymorphisms [SNPs]) with climate and geography, among 140 wild accessions. RDA, SEM and GDM each identified environment as explaining more genomic variation than geography, suggesting that local adaptation to heterogeneous abiotic habitats may be an important source of genetic diversity in this species. Environmental factors describing temporal variation in precipitation and evaporative demand explained the most SNP variation among accessions, indicating that these forces may represent key selective agents. Lastly, by studying how SNP-environment associations vary throughout the genome (44,064 SNPs), we mapped the location and investigated the functions of loci putatively contributing to climatic adaptations. Together, our findings indicate an important role for selection imposed by the abiotic environment in driving genomic differentiation between populations.
Collapse
Affiliation(s)
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
48
|
Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, Mueller LA, Blanca J, Cañizares J, van der Knaap E, Díez MJ. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. HORTICULTURE RESEARCH 2020; 7:66. [PMID: 32377357 PMCID: PMC7192925 DOI: 10.1038/s41438-020-0291-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/19/2023]
Abstract
A collection of 163 accessions, including Solanum pimpinellifolium, Solanum lycopersicum var. cerasiforme and Solanum lycopersicum var. lycopersicum, was selected to represent the genetic and morphological variability of tomato at its centers of origin and domestication: Andean regions of Peru and Ecuador and Mesoamerica. The collection is enriched with S. lycopersicum var. cerasiforme from the Amazonian region that has not been analyzed previously nor used extensively. The collection has been morphologically characterized showing diversity for fruit, flower and vegetative traits. Their genomes were sequenced in the Varitome project and are publicly available (solgenomics.net/projects/varitome). The identified SNPs have been annotated with respect to their impact and a total number of 37,974 out of 19,364,146 SNPs have been described as high impact by the SnpEeff analysis. GWAS has shown associations for different traits, demonstrating the potential of this collection for this kind of analysis. We have not only identified known QTLs and genes, but also new regions associated with traits such as fruit color, number of flowers per inflorescence or inflorescence architecture. To speed up and facilitate the use of this information, F2 populations were constructed by crossing the whole collection with three different parents. This F2 collection is useful for testing SNPs identified by GWAs, selection sweeps or any other candidate gene. All data is available on Solanaceae Genomics Network and the accession and F2 seeds are freely available at COMAV and at TGRC genebanks. All these resources together make this collection a good candidate for genetic studies.
Collapse
Affiliation(s)
- Estefanía Mata-Nicolás
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Esther Gimeno-Paez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Víctor Garcia-Carpintero
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Peio Ziarsolo
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | | | | | - José Blanca
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Cañizares
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Georgia, GA USA
- Department of Horticulture, University of Georgia, Georgia, GA USA
| | - María José Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
49
|
Ferrero V, Baeten L, Blanco-Sánchez L, Planelló R, Díaz-Pendón JA, Rodríguez-Echeverría S, Haegeman A, de la Peña E. Complex patterns in tolerance and resistance to pests and diseases underpin the domestication of tomato. THE NEW PHYTOLOGIST 2020; 226:254-266. [PMID: 31793000 DOI: 10.1111/nph.16353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 05/26/2023]
Abstract
A frequent hypothesis explaining the high susceptibility of many crops to pests and diseases is that, in the process of domestication, crops have lost defensive genes and traits against pests and diseases. Ecological theory predicts trade-offs whereby resistance and tolerance go at the cost of each other. We used wild relatives, early domesticated varieties, traditional local landraces and cultivars of tomato (Solanum lycopersicum) to test whether resistance and tolerance trade-offs were phylogenetically structured or varied according to degree of domestication. We exposed tomato genotypes to the aphid Macrosiphum euphorbiae, the cotton leafworm Spodoptera littoralis, the root knot nematode Meloidogyne incognita and two common insect-transmitted plant viruses, and reconstructed their phylogenetic relationships using Genotyping-by-Sequencing. We found differences in the performance and effect of pest and diseases but such differences were not related with domestication degree nor genetic relatedness, which probably underlie a complex genetic basis for resistance and indicate that resistance traits appeared at different stages and in unrelated genetic lineages. Still, wild and early domesticated accessions showed greater resistance to aphids and tolerance to caterpillars, nematodes and diseases than modern cultivars. Our findings help to understand how domestication affects plant-pest interactions and underline the importance of tolerance in crop breeding.
Collapse
Affiliation(s)
- Victoria Ferrero
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
- Institute for Subtropical and Mediterranean Horticulture, Spanish National Research Council (IHSM-UMA-CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750, Málaga, Spain
| | - Lander Baeten
- Department of Environment, Forest & Nature Lab, Ghent University, BE-9090, Melle-Gontrode, Belgium
| | - Lidia Blanco-Sánchez
- Institute for Subtropical and Mediterranean Horticulture, Spanish National Research Council (IHSM-UMA-CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750, Málaga, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Subtropical and Mediterranean Horticulture, Spanish National Research Council (IHSM-UMA-CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750, Málaga, Spain
| | - Susana Rodríguez-Echeverría
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, B-9090, Melle, Belgium
| | - Eduardo de la Peña
- Institute for Subtropical and Mediterranean Horticulture, Spanish National Research Council (IHSM-UMA-CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750, Málaga, Spain
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000, Gent, Belgium
| |
Collapse
|
50
|
Pailles Y, Awlia M, Julkowska M, Passone L, Zemmouri K, Negrão S, Schmöckel SM, Tester M. Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. PLANT PHYSIOLOGY 2020; 182:534-546. [PMID: 31653717 PMCID: PMC6945843 DOI: 10.1104/pp.19.00700] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Traits of modern crops have been heavily selected in agriculture, leaving commercial lines often more susceptible to harsh conditions compared with their wild relatives. Understanding the mechanisms of stress tolerance in wild relatives can enhance crop performance under stress conditions such as high salinity. In this study, we investigated salinity tolerance of two species of wild tomato endemic to the Galapagos Islands, Solanum cheesmaniae and Solanum galapagense Since these tomatoes grow well despite being constantly splashed with seawater, they represent a valuable genetic resource for improving salinity tolerance in commercial tomatoes. To explore their potential, we recorded over 20 traits reflecting plant growth, physiology, and ion content in 67 accessions and two commercial tomato lines of Solanum lycopersicum. Salt treatments were applied for 10 d using supported hydroponics. The Galapagos tomatoes displayed greater tolerance to salt stress than the commercial lines and showed substantial natural variation in their responses. The accessions LA0317, LA1449, and LA1403 showed particularly high salinity tolerance based on growth under salinity stress. Therefore, Galapagos tomatoes should be further explored to identify the genes underlying their high tolerance and be used as a resource for increasing the salinity tolerance of commercial tomatoes. The generated data, along with useful analysis tools, have been packaged and made publicly available via an interactive online application (https://mmjulkowska.shinyapps.io/La_isla_de_tomato/) to facilitate trait selection and the use of Galapagos tomatoes for the development of salt-tolerant commercial tomatoes.
Collapse
Affiliation(s)
- Yveline Pailles
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Mariam Awlia
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Magdalena Julkowska
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Luca Passone
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Khadija Zemmouri
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sandra M Schmöckel
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|