1
|
Petkowski JJ, Seager S, Seager MD, Bains W, Marinus N, Poizat M, Plumet C, van Wiltenburg J, Visser T, Poelert M. Astrobiological implications of the stability and reactivity of peptide nucleic acid (PNA) in concentrated sulfuric acid. SCIENCE ADVANCES 2025; 11:eadr0006. [PMID: 40138412 PMCID: PMC11939054 DOI: 10.1126/sciadv.adr0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Recent renewed interest regarding the possibility of life in the Venusian clouds has led to new studies on organic chemistry in concentrated sulfuric acid. However, life requires complex genetic polymers for biological function. Therefore, finding suitable candidates for genetic polymers stable in concentrated sulfuric acid is a necessary first step to establish that biologically functional macromolecules can exist in this environment. We explore peptide nucleic acid (PNA) as a candidate for a genetic-like polymer in a hypothetical sulfuric acid biochemistry. PNA hexamers undergo between 0.4 and 28.6% degradation in 98% (w/w) sulfuric acid at ~25°C, over the span of 14 days, depending on the sequence, but undergo complete solvolysis above 80°C. Our work is the first key step toward the identification of a genetic-like polymer that is stable in this unique solvent and further establishes that concentrated sulfuric acid can sustain a diverse range of organic chemistry that might be the basis of a form of life different from Earth's.
Collapse
Affiliation(s)
- Janusz J. Petkowski
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- JJ Scientific, Mazowieckie, Warsaw 02-792, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Nanoplanet Consulting, Concord, MA 01742, USA
| | - Maxwell D. Seager
- Nanoplanet Consulting, Concord, MA 01742, USA
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - William Bains
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff CF24 3AA, UK
| | - Nittert Marinus
- Symeres Netherlands BV, Kerkenbos 1013, 6546 BB Nijmegen, Netherlands
| | - Mael Poizat
- Symeres Netherlands BV, Kerkenbos 1013, 6546 BB Nijmegen, Netherlands
| | - Chad Plumet
- Symeres Netherlands BV, Kerkenbos 1013, 6546 BB Nijmegen, Netherlands
| | | | - Ton Visser
- Symeres Netherlands BV, Kerkenbos 1013, 6546 BB Nijmegen, Netherlands
| | - Martin Poelert
- Symeres Netherlands BV, Kerkenbos 1013, 6546 BB Nijmegen, Netherlands
| |
Collapse
|
2
|
Chatziefthimiou AD, Metcalf JS, Glover WB, Powell JT, Banack SA, Cox PA, Ladjimi M, Sultan AA, Chemaitelly H, Richer RA. Cyanotoxin accumulation and growth patterns of biocrust communities under variable environmental conditions. Toxicon X 2024; 23:100199. [PMID: 38974839 PMCID: PMC11225906 DOI: 10.1016/j.toxcx.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Biocrusts dominate the soil surface in deserts and are composed of diverse microbial communities that provide important ecosystem services. Cyanobacteria in biocrusts produce many secondary metabolites, including the neurotoxins BMAA, AEG, DAB, anatoxin-a(S) (guanitoxin), and the microcystin hepatotoxins, all known or suspected to cause disease or illness in humans and other animals. We examined cyanobacterial growth and prevalence of these toxins in biocrusts at millimeter-scales, under a desert-relevant illumination gradient. In contrast to previous work, we showed that hydration had an overall positive effect on growth and toxin accumulation, that nitrogen was not correlated with growth or toxin production, and that phosphorus enrichment negatively affected AEG and BMAA concentrations. Excess illumination positively correlated with AEG, and negatively correlated with all other toxins and growth. Basic pH negatively affected only the accumulation of BMAA. Anatoxin-a(S) (guanitoxin) was not correlated with any tested variables, while microcystins were not detected in any of the samples. Concerning toxin pools, AEG and BMAA were good predictors of the presence of one another. In a newly conceptualized scheme, we integrate aspects of biocrust growth and toxin pool accumulations with arid-relevant desertification drivers.
Collapse
Affiliation(s)
| | - James S. Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
- Bowling Green State University, Bowling Green, OH, USA
| | | | - James T. Powell
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Sandra A. Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Paul A. Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Moncef Ladjimi
- Weill Cornell Medicine – Qatar, Education City, Doha, Qatar
| | - Ali A. Sultan
- Weill Cornell Medicine – Qatar, Education City, Doha, Qatar
| | | | | |
Collapse
|
3
|
Sandhu PK, Solonenka JT, Murch SJ. Neurotoxic non-protein amino acids in commercially harvested Lobsters (Homarus americanus H. Milne-Edwards). Sci Rep 2024; 14:8017. [PMID: 38580836 PMCID: PMC10997655 DOI: 10.1038/s41598-024-58778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024] Open
Abstract
Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of β-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and β-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.
Collapse
Affiliation(s)
- Pawanjit K Sandhu
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada
| | - Julia T Solonenka
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
4
|
Lee SH, Ng CX, Wong SR, Chong PP. MiRNAs Overexpression and Their Role in Breast Cancer: Implications for Cancer Therapeutics. Curr Drug Targets 2023; 24:484-508. [PMID: 36999414 DOI: 10.2174/1389450124666230329123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.
Collapse
Affiliation(s)
- Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sharon Rachel Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
6
|
A Short Tale of the Origin of Proteins and Ribosome Evolution. Microorganisms 2022; 10:microorganisms10112115. [DOI: 10.3390/microorganisms10112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are the workhorses of the cell and have been key players throughout the evolution of all organisms, from the origin of life to the present era. How might life have originated from the prebiotic chemistry of early Earth? This is one of the most intriguing unsolved questions in biology. Currently, however, it is generally accepted that amino acids, the building blocks of proteins, were abiotically available on primitive Earth, which would have made the formation of early peptides in a similar fashion possible. Peptides are likely to have coevolved with ancestral forms of RNA. The ribosome is the most evident product of this coevolution process, a sophisticated nanomachine that performs the synthesis of proteins codified in genomes. In this general review, we explore the evolution of proteins from their peptide origins to their folding and regulation based on the example of superoxide dismutase (SOD1), a key enzyme in oxygen metabolism on modern Earth.
Collapse
|
7
|
Castanedo LA, Matta CF. On the prebiotic selection of nucleotide anomers: A computational study. Heliyon 2022; 8:e09657. [PMID: 35785221 PMCID: PMC9243047 DOI: 10.1016/j.heliyon.2022.e09657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Present-day known predominance of the β- over the α-anomers in nucleosides and nucleotides emerges from a thermodynamic analysis of their assembly from their components, i.e. bases, sugars, and a phosphate group. Furthermore, the incorporation of uracil into RNA and thymine into DNA rather than the other way around is also predicted from the calculations. An interplay of kinetics and thermodynamics must have driven evolutionary selection of life's building blocks. In this work, based on quantum chemical calculations, we focus on the latter control as a tool for “natural selection”.
Collapse
Affiliation(s)
- Lázaro A.M. Castanedo
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada
| | - Chérif F. Matta
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada
- Dép. de chimie, Université Laval, Québec, Québec, G1V 0A6, Canada
- Corresponding author at: Department of Chemistry, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada.
| |
Collapse
|
8
|
Verma S, Bagul SY, Choudhary P, Chakdar H, Das S, Siddiqui N, Saxena AK. Microscope Assisted Uni-algal isolation through Dilution (MAU-D): a simple modified technique for tapping diverse cyanobacteria. 3 Biotech 2021; 11:343. [PMID: 34221814 DOI: 10.1007/s13205-021-02890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/09/2021] [Indexed: 11/27/2022] Open
Abstract
Cyanobacteria are oxygenic photosynthetic microorganisms known for their agricultural and industrial importance. Unavailability of efficient and fast isolation and purification methods of cyanobacteria has impeded our understanding of cyanobacterial diversity. A number of techniques for isolation and purification of cyanobacteria are available, but most of them are cumbersome as well as time-consuming. In the present study, we modified and validated a uni-algal isolation technique named as Microscope Assisted Uni-algal isolation through Dilution (MAU-D) which used dilution of mixed algal population on slide and isolation of single type of cyanobacterial cells using light microscope. Using this technique, we obtained 81 cyanobacterial isolates belonging to various species from 19 different genera from soil and water samples collected from rice fields of Uttar Pradesh, India. This technique also resulted in isolation of six distinct genera, viz., Cyanobacterium, Toxopsis, Desertifilum, Chroococcidiopsis, Halomicronema, and Alkalinema, which were previously not reported from rice fields of India. Hence, the MAU-D technique presents a simple, comparatively fast method of isolation and purification of cyanobacteria which can help to isolate those cyanobacteria which are difficult to isolate through routine sub-culturing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02890-w.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh 201313 India
| | - Samadhan Yuvaraj Bagul
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
- ICAR-Directorate of Medicinal and Aromatic Plants Research (DMAPR), Boriavi, 387310 Anand, Gujarat India
| | - Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
| | - Sudipta Das
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh 201313 India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
| |
Collapse
|
9
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
10
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
11
|
Metcalf JS, Banack SA, Wessel RA, Lester M, Pim JG, Cassani JR, Cox PA. Toxin Analysis of Freshwater Cyanobacterial and Marine Harmful Algal Blooms on the West Coast of Florida and Implications for Estuarine Environments. Neurotox Res 2020; 39:27-35. [PMID: 32683648 PMCID: PMC7904716 DOI: 10.1007/s12640-020-00248-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Recent marine and freshwater algal and cyanobacterial blooms in Florida have increased public concern and awareness of the risks posed by exposure to these organisms. In 2018, Lake Okeechobee and the Caloosahatchee river, on the west coast of Florida, experienced an extended bloom of Microcystis spp. and a bloom of Karenia brevis in the coastal waters of the Gulf of Mexico that coincided in the Fort Myers area. Samples from the Caloosahatchee at Fort Myers into Pine Island Sound and up to Boca Grande were collected by boat. High concentrations of microcystin-LR were detected in the cyanobacterial bloom along with brevetoxins in the marine samples. Furthermore, β-N-methylamino-L-alanine (BMAA) and isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobuytric acid (DAB) were detected in marine diatoms and dinoflagellates, and cyanobacteria of freshwater origin. High freshwater flows pushed the cyanobacterial bloom to barrier island beaches and Microcystis and microcystins could be detected into the marine environment at a salinity of 41 mS/cm. For comparison, in 2019 collections of Dapis (a new generic segregate from Lyngbya) mats from Sarasota showed high concentrations of BMAA, suggesting the possibility of long-term exposure of residents to BMAA. The findings highlight the potential for multiple, potentially toxic blooms to co-exist and the possible implications for human and animal health.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Jackson, WY, 83001, USA.
| | - S A Banack
- Brain Chemistry Labs, Jackson, WY, 83001, USA
| | - R A Wessel
- Sanibel-Captiva Conservation Foundation, Sanibel, FL, 33957, USA
| | - M Lester
- Path of Wellness Holistic Health, Lexington, GA, 30648, USA
| | - J G Pim
- Calusa Waterkeeper, Inc., PO Box 1165, Fort Myers, FL, 33902, USA
| | - J R Cassani
- Calusa Waterkeeper, Inc., PO Box 1165, Fort Myers, FL, 33902, USA
| | - P A Cox
- Brain Chemistry Labs, Jackson, WY, 83001, USA
| |
Collapse
|
12
|
Chatziefthimiou AD, Banack SA, Cox PA. Biocrust-Produced Cyanotoxins Are Found Vertically in the Desert Soil Profile. Neurotox Res 2020; 39:42-48. [PMID: 32557323 DOI: 10.1007/s12640-020-00224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022]
Abstract
The fate and persistence of the neurotoxin β-N-methylamino-L-alanine (BMAA) and its isomers N-(2aminoethyl)glycine (AEG) and 2,4-diaminobuytric acid (DAB) in soil profiles is poorly understood. In desert environments, these cyanotoxins are commonly found in both terrestrial and adjacent marine ecosystems; they accumulate in biocrusts and groundwater catchments, and have been previously shown to persist in soil as deep as 25 cm. To determine the depth that BMAA and its isomers can be found, samples were incrementally collected every 5 cm from bedrock to surface in triplicate soil cores in a biocrust field in the terrestrial desert of Qatar. Biocrust surface samples were also collected from each core priorly. Toxins were extracted from soil sub-samples, derivatized, and analyzed with UPLC-MS/MS. All toxins were detected in all soil cores at all depths. AEG and DAB were within a quantifiable concentration threshold; however, the low concentration of BMAA was considered below the threshold for quantification. This may have environmental health implications if these toxins are able to infiltrate and contaminate the bedrock aquifer, as well as the sand and gravel aquifers. Human and animal health may also be impacted through exposure to contaminated groundwater wells or through inhalation of aerosolized particles of soil, resuspended during construction or recreational activities.
Collapse
Affiliation(s)
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA.
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
13
|
Synthesis and physicochemical properties of 20-mer peptide nucleic acid conjugates with testosterone 17β-carboxylic acid. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
16
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
17
|
Production of β-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms. Toxins (Basel) 2019; 11:toxins11090512. [PMID: 31480725 PMCID: PMC6784237 DOI: 10.3390/toxins11090512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria.
Collapse
|
18
|
Violi JP, Mitrovic SM, Colville A, Main BJ, Rodgers KJ. Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:72-81. [PMID: 30682636 DOI: 10.1016/j.ecoenv.2019.01.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Environmental exposure to the amino acid β-methylamino-L-alanine (BMAA) was linked to the high incidence of neurodegenerative disease first reported on the island of Guam in the 1940s and has more recently been implicated in an increased incidence of amyotrophic lateral sclerosis (ALS) in parts of the USA. BMAA has been shown to be produced by a range of cyanobacteria and some marine diatoms and dinoflagellates in different parts of the world. BMAA is commonly found with two of its constitutional isomers: 2,4- diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl) glycine (AEG). These isomers are thought to be co-produced by the same organisms that produce BMAA and MS/MS analysis following LC separation can add an additional level of specificity over LC-FL. Although the presence of BMAA and 2,4-DAB in surface scum samples from several sites in Australia has been reported, which Australian cyanobacterial species are capable of BMAA, 2,4-DAB and AEG production remains unknown. The aims of the present studies were to identify some of the cyanobacterial genera or species that can produce BMAA, 2,4-DAB and AEG in freshwater cyanobacteria blooms in eastern Australia. Eleven freshwater sites were sampled and from these, 19 single-species cyanobacterial cultures were established. Amino acids were extracted from cyanobacterial cultures and analysed using liquid chromatography-tandem mass spectrometry. BMAA was detected in 17 of the 19 isolates, 2,4-DAB was detected in all isolates, and AEG was detected in 18 of the 19 isolates, showing the prevalence of these amino acids in Australian freshwater cyanobacteria. Concentrations of all three isomers in Australian cyanobacteria were generally higher than the concentrations reported elsewhere. This study confirmed the presence of BMAA and its isomers in cyanobacteria isolated from eastern Australian freshwater systems, and determined which Australian cyanobacterial genera or species were capable of producing them when cultured under laboratory conditions.
Collapse
Affiliation(s)
- Jake P Violi
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Anne Colville
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Brendan J Main
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
19
|
Saadati A, Hassanpour S, Guardia MDL, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Karunakaran I, Angamuthu A, Gopalan P. Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2017-1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
We aim to understand the structure and stability of the backbone tailored Watson-Crick base pairs, Guanine-Cytosine (GC), Adenine-Thymine (AT) and Adenine-Uracil (AU) by incorporating N-(2-aminoethyl) glycine units (linked by amide bonds) at the purine and pyrimidine sites of the nucleobases. Density functional theory (DFT) is employed in which B3LYP/6-311++G∗
∗ level of theory has been used to optimize all the structures. The peptide attached base pairs are compared with the natural deoxyribose nucleic acid (DNA)/ribonucleic acid (RNA) base pairs and the calculations are carried out in both the gas and solution phases. The structural propensities of the optimized base pairs are analyzed using base pair geometries, hydrogen bond distances and stabilization energies and, compared with the standard reference data. The structural parameters were found to correlate well with the available data. The addition of peptide chain at the back bone of the DNA/RNA base pairs results only with a minimal distortion and hence does not alter the structural configuration of the base pairs. Also enhanced stability of the base pairs is spotted while adding peptidic chain at the purine site rather than the pyrimidine site of the nucleobases. The stability of the complexes is further interpreted by considering the hydrogen bonded N–H stretching frequencies of the respective base pairs. The discrimination in the interaction energies observed in both gas and solution phases are resulted due to the existence of distinct lowest unoccupied molecular orbitals (LUMO) in the solution phase. The reactivity of the base pairs is also analyzed through the in-depth examinations on the highest occupied molecular orbital (HOMO)-LUMO orbitals.
Collapse
Affiliation(s)
- Indumathi Karunakaran
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India
| | - Abiram Angamuthu
- Department of Physics , Karunya Institute of Technology and Sciences , Coimbatore 641114, Tamilnadu , India
| | - Praveena Gopalan
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India , Tel.: +91-7812844344
| |
Collapse
|
21
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
22
|
|
23
|
Weiss IM, Muth C, Drumm R, Kirchner HOK. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC BIOPHYSICS 2018; 11:2. [PMID: 29449937 PMCID: PMC5807855 DOI: 10.1186/s13628-018-0042-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
Background The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Results Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA→a NH3+b H2O+c CO2+d H2S+e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Conclusions Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.
Collapse
Affiliation(s)
- Ingrid M Weiss
- 1Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70569 Germany.,2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany
| | - Christina Muth
- 2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany
| | - Robert Drumm
- 2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany
| | - Helmut O K Kirchner
- 2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany
| |
Collapse
|
24
|
Chatziefthimiou AD, Deitch EJ, Glover WB, Powell JT, Banack SA, Richer RA, Cox PA, Metcalf JS. Analysis of Neurotoxic Amino Acids from Marine Waters, Microbial Mats, and Seafood Destined for Human Consumption in the Arabian Gulf. Neurotox Res 2017; 33:143-152. [DOI: 10.1007/s12640-017-9772-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 01/15/2023]
|
25
|
Gupta A, Mishra A, Puri N. Peptide nucleic acids: Advanced tools for biomedical applications. J Biotechnol 2017; 259:148-159. [PMID: 28764969 PMCID: PMC7114329 DOI: 10.1016/j.jbiotec.2017.07.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/23/2017] [Accepted: 07/23/2017] [Indexed: 02/01/2023]
Abstract
Peptide Nucleic Acids − DNA/RNA analogues. Different Modifications on PNA backbone and their effects. Neutral backbone − remarkable hybridization properties. PNA based biosensors and their diverse biomedical applications. Potential antigene and antisense agents.
Peptide Nucleic Acids (PNAs) are the DNA/RNA analogues in which sugar-phosphate backbone is replaced by N-2-aminoethylglycine repeating units. PNA contains neutral backbone hence due to the absence of electrostatic repulsion, its hybridization shows remarkable stability towards complementary oligonucleotides. PNAs are highly resistant to cleavage by chemicals and enzymes due to the substrate specific nature of enzymes and therefore not degraded inside the cells. PNAs are emerging as new tools in the market due to their applications in antisense and antigene therapies by inhibiting translation and transcription respectively. Hence, several methods based on PNAs have been developed for designing various anticancer and antigene drugs, detection of mutations or modulation of PCR reactions. The duplex homopurine sequence of DNA may also be recognized by PNA, forming firm PNA/DNA/PNA triplex through strand invasion with a looped-out DNA strand. PNAs have also been found to replace DNA probes in varied investigative purposes. There are several disadvantages regarding cellular uptake of PNA, so modifications in PNA backbone or covalent coupling with cell penetrating peptides is necessary to improve its delivery inside the cells. In this review, hybridization properties along with potential applications of PNA in the field of diagnostics and pharmaceuticals are elaborated.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Greater Noida, U.P., India.
| | - Anuradha Mishra
- School of Vocational Studies & Applied Sciences, Gautam Buddha University, Greater Noida, U.P., India
| | - Nidhi Puri
- Department of Applied Science & Humanities, I.T.S Engineering College, Greater Noida, U.P., India
| |
Collapse
|
26
|
Metcalf JS, Lobner D, Banack SA, Cox GA, Nunn PB, Wyatt PB, Cox PA. Analysis of BMAA enantiomers in cycads, cyanobacteria, and mammals: in vivo formation and toxicity of D-BMAA. Amino Acids 2017. [PMID: 28620737 DOI: 10.1007/s00726-017-2445-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic dietary exposure to the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA) triggers neuropathology in non-human primates, providing support for the theory that BMAA causes a fatal neurodegenerative illness among the indigenous Chamorro people of Guam. However, since there are two stereoisomers of BMAA, it is important to know if both can occur in nature, and if so, what role they might play in disease causation. As a first step, we analysed both BMAA enantiomers in cyanobacteria, cycads, and in mammals orally dosed with L-BMAA, to determine if enantiomeric changes could occur in vivo. BMAA in cyanobacteria and cycads was found only as the L-enantiomer. However, while the L-enantiomer in mammals was little changed after digestion, we detected a small pool of D-BMAA in the liver (12.5%) of mice and in the blood plasma of vervets (3.6%). Chiral analysis of cerebrospinal fluid of vervets and hindbrain of mice showed that the free BMAA in the central nervous system was the D-enantiomer. In vitro toxicity investigations with D-BMAA showed toxicity, mediated through AMPA rather than NMDA receptors. These findings raise important considerations concerning the neurotoxicity of BMAA and its relationship to neurodegenerative disease.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA.
| | - Doug Lobner
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA
| | | | - Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PD1 2DT, UK
| | - Peter B Wyatt
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
27
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
28
|
Alvarenga DO, Fiore MF, Varani AM. A Metagenomic Approach to Cyanobacterial Genomics. Front Microbiol 2017; 8:809. [PMID: 28536564 PMCID: PMC5422444 DOI: 10.3389/fmicb.2017.00809] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria, or oxyphotobacteria, are primary producers that establish ecological interactions with a wide variety of organisms. Although their associations with eukaryotes have received most attention, interactions with bacterial and archaeal symbionts have also been occurring for billions of years. Due to these associations, obtaining axenic cultures of cyanobacteria is usually difficult, and most isolation efforts result in unicyanobacterial cultures containing a number of associated microbes, hence composing a microbial consortium. With rising numbers of cyanobacterial blooms due to climate change, demand for genomic evaluations of these microorganisms is increasing. However, standard genomic techniques call for the sequencing of axenic cultures, an approach that not only adds months or even years for culture purification, but also appears to be impossible for some cyanobacteria, which is reflected in the relatively low number of publicly available genomic sequences of this phylum. Under the framework of metagenomics, on the other hand, cumbersome techniques for achieving axenic growth can be circumvented and individual genomes can be successfully obtained from microbial consortia. This review focuses on approaches for the genomic and metagenomic assessment of non-axenic cyanobacterial cultures that bypass requirements for axenity. These methods enable researchers to achieve faster and less costly genomic characterizations of cyanobacterial strains and raise additional information about their associated microorganisms. While non-axenic cultures may have been previously frowned upon in cyanobacteriology, latest advancements in metagenomics have provided new possibilities for in vitro studies of oxyphotobacteria, renewing the value of microbial consortia as a reliable and functional resource for the rapid assessment of bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Danillo O. Alvarenga
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP)Jaboticabal, Brazil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP)Piracicaba, Brazil
| | - Marli F. Fiore
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP)Piracicaba, Brazil
| | - Alessandro M. Varani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP)Jaboticabal, Brazil
| |
Collapse
|
29
|
Methods for the Chemical Analysis of β-N-Methylamino-L-A lanine: What Is Known and What Remains to Be Determined. Neurotox Res 2017; 33:184-191. [PMID: 28474174 DOI: 10.1007/s12640-017-9744-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-canonical amino acid implicated as a cause for amyotrophic lateral sclerosis/parkinsonism dementia complex and potentially other neurodegenerative diseases. As interest in this molecule has increased, there has been a proliferation of methods along with a plethora of opinions as to the superiority of some methods over others. We analyzed the literature with reference to BMAA and its naturally occurring isomers, N-(2-aminoethyl) glycine (AEG) and 2,4 diaminobutyric acid (DAB). A comparison of methods, results, and critiques reveal that a single method has been approved by the AOAC but several different methods provide comparable BMAA quantification concentrations in similar tissues. We also describe a productive way to move forward as technology improves and changes.
Collapse
|
30
|
Gupta A. Synthesis and characterization of novel α-monomers of peptide nucleic acid. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.jart.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc Biol Sci 2016; 283:rspb.2015.2397. [PMID: 26791617 PMCID: PMC4795023 DOI: 10.1098/rspb.2015.2397] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurofibrillary tangles (NFT) and β-amyloid plaques are the neurological hallmarks of both Alzheimer's disease and an unusual paralytic illness suffered by Chamorro villagers on the Pacific island of Guam. Many Chamorros with the disease suffer dementia, and in some villages one-quarter of the adults perished from the disease. Like Alzheimer's, the causal factors of Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) are poorly understood. In replicated experiments, we found that chronic dietary exposure to a cyanobacterial toxin present in the traditional Chamorro diet, β-N-methylamino-l-alanine (BMAA), triggers the formation of both NFT and β-amyloid deposits similar in structure and density to those found in brain tissues of Chamorros who died with ALS/PDC. Vervets (Chlorocebus sabaeus) fed for 140 days with BMAA-dosed fruit developed NFT and sparse β-amyloid deposits in the brain. Co-administration of the dietary amino acid l-serine with l-BMAA significantly reduced the density of NFT. These findings indicate that while chronic exposure to the environmental toxin BMAA can trigger neurodegeneration in vulnerable individuals, increasing the amount of l-serine in the diet can reduce the risk.
Collapse
Affiliation(s)
| | - David A Davis
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Deborah C Mash
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
32
|
Chatziefthimiou AD, Metcalf JS, Glover WB, Banack SA, Dargham SR, Richer RA. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments. Toxicon 2016; 114:75-84. [DOI: 10.1016/j.toxicon.2016.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
33
|
Kiliszek A, Banaszak K, Dauter Z, Rypniewski W. The first crystal structures of RNA-PNA duplexes and a PNA-PNA duplex containing mismatches--toward anti-sense therapy against TREDs. Nucleic Acids Res 2015; 44:1937-43. [PMID: 26717983 PMCID: PMC4770230 DOI: 10.1093/nar/gkv1513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023] Open
Abstract
PNA is a promising molecule for antisense therapy of trinucleotide repeat disorders. We present the first crystal structures of RNA–PNA duplexes. They contain CUG repeats, relevant to myotonic dystrophy type I, and CAG repeats associated with poly-glutamine diseases. We also report the first PNA–PNA duplex containing mismatches. A comparison of the PNA homoduplex and the PNA–RNA heteroduplexes reveals PNA's intrinsic structural properties, shedding light on its reported sequence selectivity or intolerance of mismatches when it interacts with nucleic acids. PNA has a much lower helical twist than RNA and the resulting duplex has an intermediate conformation. PNA retains its overall conformation while locally there is much disorder, especially peptide bond flipping. In addition to the Watson–Crick pairing, the structures contain interesting interactions between the RNA's phosphate groups and the Π electrons of the peptide bonds in PNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
34
|
Réveillon D, Séchet V, Hess P, Amzil Z. Systematic detection of BMAA (β-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts. Toxicon 2015; 110:35-46. [PMID: 26615827 DOI: 10.1016/j.toxicon.2015.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) is naturally present in some microalgal species in the marine environment. The accumulation of BMAA has widely been observed in filter-feeding bivalves that are known to consume primary producers constituting the base of complex aquatic food webs. This study was performed to assess the occurrence of BMAA and isomers in mollusks collected from nine representative shellfish production areas located on the three French coasts (Channel, Atlantic and Mediterranean sites). The use of a highly selective and sensitive HILIC-MS/MS method, with D5DAB as internal standard, revealed the systematic detection of BMAA and DAB, in concentrations ranging from 0.20 to 6.7 μg g(-1) dry weight of digestive gland tissues of mollusks. While we detected BMAA in four strains of diatoms in a previous study, here BMAA was only detected in one diatom species previously not investigated out of the 23 microalgal species examined (belonging to seven classes). The concentrations of BMAA and DAB in mussels and oysters were similar at different sampling locations and despite the high diversity of phytoplankton populations that mollusks feed on at these locations. Only small variations of BMAA and DAB levels were observed and these were not correlated to any of the phytoplankton species reported. Therefore, extensive research should be performed on both origin and metabolism of BMAA in shellfish. The levels observed in this study are similar to those found in other studies in France or elsewhere. A previous study had related such levels to a cluster of Amyotrophic Lateral Sclerosis in the South of France; hence the widespread occurrence of BMAA in shellfish from all coasts in France found in this study suggests the need for further epidemiological and toxicological studies to establish the levels that are relevant for a link between the consumption of BMAA-containing foodstuffs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Damien Réveillon
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Véronique Séchet
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Zouher Amzil
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| |
Collapse
|
35
|
Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain. Sci Rep 2015; 5:15570. [PMID: 26498001 PMCID: PMC4620439 DOI: 10.1038/srep15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.
Collapse
|
36
|
McGorum BC, Pirie RS, Glendinning L, McLachlan G, Metcalf JS, Banack SA, Cox PA, Codd GA. Grazing livestock are exposed to terrestrial cyanobacteria. Vet Res 2015; 46:16. [PMID: 25828258 PMCID: PMC4342207 DOI: 10.1186/s13567-015-0143-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/06/2015] [Indexed: 01/09/2023] Open
Abstract
While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins β-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.
Collapse
|
37
|
Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS, Powell J, Cox PA, Stommel E. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins (Basel) 2015; 7:322-36. [PMID: 25643180 PMCID: PMC4344626 DOI: 10.3390/toxins7020322] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/12/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.
Collapse
Affiliation(s)
| | - Tracie Caller
- Cheyenne Regional Medical Group, Cheyenne, WY 82001, USA.
| | - Patricia Henegan
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | - James Haney
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Amanda Murby
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - James S Metcalf
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - James Powell
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - Paul Alan Cox
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - Elijah Stommel
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
38
|
Liquid chromatography and mass spectrometry for the analysis of N-β-methylamino-L-alanine with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol Biol 2015; 1208:379-91. [PMID: 25323521 DOI: 10.1007/978-1-4939-1441-8_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous studies in the past decade have identified N-β-methylamino-L-alanine (BMAA) as a putative environmental neurotoxin. Produced by cyanobacteria and accumulated at different levels of the trophic system, BMAA has been detected in the brain tissue of human patients that died from progressive neurodegenerative disease. Research into the mechanism of neurotoxicity has been hampered by conflicting results and disagreement in the literature over analytical methods used for quantification and detection. While several research approaches have been tested, the use of the derivatizing reagent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate is presented here as an effective and selective means for the analysis of BMAA and two co-occurring biological isomers, DAB and AEG, by liquid chromatography and tandem mass spectrometry.
Collapse
|
39
|
Maurel MC. From neontsto filiontsand their progenies... BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Singhal A, Bagnacani V, Corradini R, Nielsen PE. Toward peptide nucleic acid (PNA) directed peptide translation using ester based aminoacyl transfer. ACS Chem Biol 2014; 9:2612-20. [PMID: 25192412 DOI: 10.1021/cb5005349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide synthesis is a fundamental feature of life. However, it still remains unclear how the contemporary translation apparatus evolved from primitive prebiotic systems and at which stage of the evolution peptide synthesis emerged. Using simple molecular architectures, in which aminoacyl transfer of phenylalanine occurs either between two ends of a PNA stem loop structure, between two PNAs in a duplex, or between two PNAs assembled on a PNA template, we show that bona fide template instructed phenylalanine transfer can take place. Thus, we have identified conditions which allow template assisted intermolecular aminoacyl transfer using simple ester aminolysis chemistry primitively analogous to the ribosomal peptidyl transferase reaction in the absence of anchimeric assistance from ribose and ribosome catalysis. These results help define the minimum chemical boundary conditions for the translation process and also give insight into the possibilities for the prebiotic emergence of RNA-independent translation.
Collapse
Affiliation(s)
| | - Valentina Bagnacani
- Department
of Chemistry, University of Parma, Parco Area Delle Scienze 17/a, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, University of Parma, Parco Area Delle Scienze 17/a, 43124 Parma, Italy
| | | |
Collapse
|
41
|
Réveillon D, Abadie E, Séchet V, Brient L, Savar V, Bardouil M, Hess P, Amzil Z. Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon. Mar Drugs 2014; 12:5441-67. [PMID: 25405857 PMCID: PMC4245540 DOI: 10.3390/md12115441] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
β-N-methylamino-l-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA.
Collapse
Affiliation(s)
- Damien Réveillon
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Eric Abadie
- Ifremer (French Research Institute for the Exploitation of the Seas), Laboratoire Environnement Ressources du Languedoc Roussillon (LER-LR) F-34203 Sète, France.
| | - Véronique Séchet
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Luc Brient
- UMR Eco-Bio-Université de Rennes I, F-35042 Rennes, France.
| | - Véronique Savar
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Michèle Bardouil
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Philipp Hess
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Zouher Amzil
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
42
|
Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets. Sci Rep 2014; 4:6931. [PMID: 25373604 PMCID: PMC5381377 DOI: 10.1038/srep06931] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01–0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments.
Collapse
|
43
|
Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food Chem Toxicol 2014; 70:26-32. [PMID: 24755394 DOI: 10.1016/j.fct.2014.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
Shark cartilage products are marketed as dietary supplements with claimed health benefits for animal and human use. Shark fin and cartilage products sold as extracts, dry powders and in capsules are marketed based on traditional Chinese medicine claims that it nourishes the blood, enhances appetite, and energizes multiple internal organs. Shark cartilage contains a mixture of chondroitin and glucosamine, a popular nutritional supplement ingested to improve cartilage function. Sharks are long-lived apex predators, that bioaccumulate environmental marine toxins and methylmercury from dietary exposures. We recently reported detection of the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) in the fins of seven different species of sharks from South Florida coastal waters. Since BMAA has been linked to degenerative brain diseases, the consumption of shark products may pose a human risk for BMAA exposures. In this report, we tested sixteen commercial shark cartilage supplements for BMAA by high performance liquid chromatography (HPLC-FD) with fluorescence detection and ultra performance liquid chromatography/mass spectrometry/mass spectrometry (UPLC-MS/MS). Total mercury (Hg) levels were measured in the same shark cartilage products by cold vapor atomic fluorescence spectrometry (CVAFS). We report here that BMAA was detected in fifteen out of sixteen products with concentrations ranging from 86 to 265μg/g (dry weight). All of the shark fin products contained low concentrations of Hg. While Hg contamination is a known risk, the results of the present study demonstrate that shark cartilage products also may contain the neurotoxin BMAA. Although the neurotoxic potential of dietary exposure to BMAA is currently unknown, the results demonstrate that shark cartilage products may contain two environmental neurotoxins that have synergistic toxicities.
Collapse
|
44
|
Smith JI, Steel M, Hordijk W. Autocatalytic sets in a partitioned biochemical network. ACTA ACUST UNITED AC 2014; 5:2. [PMID: 24883116 PMCID: PMC4034171 DOI: 10.1186/1759-2208-5-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/23/2014] [Indexed: 11/23/2022]
Abstract
Background In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two “independent” polymer sets, where catalysis occurs within and between the sets, but there are no reactions combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides observed in modern cells and proposed forms of early life. Results We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such a system is an NP-complete problem. Conclusions Recent experimental work has challenged the necessity of an RNA world by suggesting that peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible alternative worthy of investigation.
Collapse
Affiliation(s)
- Joshua I Smith
- Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Mike Steel
- Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
45
|
Karlsson O, Jiang L, Andersson M, Ilag LL, Brittebo EB. Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-L-alanine) in the liver and brain following neonatal administration in rats. Toxicol Lett 2014; 226:1-5. [PMID: 24472610 DOI: 10.1016/j.toxlet.2014.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is not an amino acid that is normally found in proteins. Our previous autoradiographic study of (3)H-labeled BMAA in adult mice unexpectedly revealed a tissue distribution similar to that of protein amino acids. The aim of this study was to characterize the distribution of free and protein-bound BMAA in neonatal rat tissues following a short exposure using autoradiographic imaging and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The autoradiographic imaging of (14)C-L-BMAA demonstrated a distinct uptake of radioactivity that was retained following acid extraction in tissues with a high rate of cell turnover and/or protein synthesis. The UHPLC-MS/MS analysis conclusively demonstrated a dose-dependent increase of protein-associated BMAA in neonatal rat tissues. The level of protein-associated BMAA in the liver was more than 10 times higher than that in brain regions not fully protected by the blood-brain barrier which may be due to the higher rate of protein synthesis in the liver. In conclusion, this study demonstrated that BMAA was associated with rat proteins suggesting that BMAA may be misincorporated into proteins. However, protein-associated BMAA seemed to be cleared over time, as none of the samples from adult rats had any detectable free or protein-associated BMAA.
Collapse
Affiliation(s)
- Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden; Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Liying Jiang
- Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Leopold L Ilag
- Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Eva B Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
46
|
Jiang L, Eriksson J, Lage S, Jonasson S, Shams S, Mehine M, Ilag LL, Rasmussen U. Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. PLoS One 2014; 9:e84578. [PMID: 24392143 PMCID: PMC3879315 DOI: 10.1371/journal.pone.0084578] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease is a neurological disorder linked to environmental exposure to a non-protein amino acid, β-N-methylamino-L-alanine (BMAA). The only organisms reported to be BMAA-producing, are cyanobacteria--prokaryotic organisms. In this study, we demonstrate that diatoms--eukaryotic organisms--also produce BMAA. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry revealed the occurrence of BMAA in six investigated axenic diatom cultures. BMAA was also detected in planktonic field samples collected on the Swedish west coast that display an overrepresentation of diatoms relative to cyanobacteria. Given the ubiquity of diatoms in aquatic environments and their central role as primary producers and the main food items of zooplankton, the use of filter and suspension feeders as livestock fodder dramatically increases the risk of human exposure to BMAA-contaminated food.
Collapse
Affiliation(s)
- Liying Jiang
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Johan Eriksson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sara Jonasson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Shiva Shams
- Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre - Fondazione Edmund Mach, Trento, Italy
| | - Martin Mehine
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leopold L. Ilag
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
47
|
Jiang L, Johnston E, Aberg KM, Nilsson U, Ilag LL. Strategy for quantifying trace levels of BMAA in cyanobacteria by LC/MS/MS. Anal Bioanal Chem 2012. [PMID: 23180086 DOI: 10.1007/s00216-012-6550-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is an amino acid that is putatively associated with the pathology of amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS-PDC) disease. It raises serious health risk concerns since cyanobacteria are ubiquitous thus making human exposure almost inevitable. The identification and quantification of BMAA in cyanobacteria is challenging because it is present only in trace amounts and occurs alongside structurally similar compounds such as BMAA isomers. This work describes an enhanced liquid chromatography/tandem mass spectrometry platform that can distinguish BMAA from its isomers β-amino-N-methyl-alanine, N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid, thus ensuring confident identification of BMAA. The method's sensitivity was improved fourfold by a post-column addition of acetonitrile. The instrument and method limits of detection were shown to be 4.2 fmol/injection (or 0.5 pg/one column) and 0.1 μg/g dry weight of cyanobacteria, respectively. The quantification method uses synthesized deuterated BMAA as an internal standard and exhibits good linearity, accuracy, and precision. Matrix effects were also investigated, revealing an ion enhancement of around 18 %. A lab-cultured cyanobacterial sample (Leptolyngbya PCC73110) was analyzed and shown to contain about 0.73 μg/g dry weight BMAA. The isomer AEG, whose chromatographic properties closely resemble those of BMAA, was also detected. These results highlight the importance of distinguishing BMAA from its isomers for reliable identification as well as providing a sensitive and accurate quantification method for measuring trace levels of BMAA in cyanobacterial samples.
Collapse
Affiliation(s)
- Liying Jiang
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|