1
|
Chen R, Bao Q, Ma X. Association of IL13 polymorphisms with susceptibility to myocardial infarction: A case-control study in Chinese population. PLoS One 2024; 19:e0308081. [PMID: 39088580 PMCID: PMC11293651 DOI: 10.1371/journal.pone.0308081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Inflammatory cytokines play a major role in the pathogenesis of myocardial infarction (MI). Although information on the importance of interleukin 13 (IL13) in human MI is limited, it has been well documented in the mouse model. Genetic variation in the IL13 gene has been associated with the structure and expression of the IL13. In the present study, we hypothesized that IL13 common genetic variants would be associated with a predisposition to the development of MI. MATERIALS AND METHODS The present study enrolled 305 MI patients and 310 matched healthy controls. Common genetic polymorphisms in the IL13 gene (rs20541, rs1881457, and rs1800925) were genotyped using the TaqMan SNP genotyping method. Plasma levels of IL13 were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS In MI patients, minor alleles of the IL13 rs1881457 and rs1800925 polymorphisms were less common than in healthy controls [rs1881457: AC (P = 0.004, OR = 0.61), C (P = 0.001, OR = 0.66); rs1800925: CT (P = 0.006, OR = 0.59)]. Further haplotype analysis of three studied SNPs revealed a significant association with predisposition to MI. Interestingly, IL13 rs1881457 and rs1800925 were linked to plasma levels of IL13: the reference genotype had higher levels, heterozygotes were intermediate, and the alternate genotype had the lowest levels. CONCLUSIONS In the Chinese population, IL13 (rs1881457 and rs180092) variants are associated with different plasma IL13 levels and offer protection against MI development. However, additional research is required to validate our findings in different populations, including descent samples.
Collapse
Affiliation(s)
- Rong Chen
- Department of Cardiology, Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining, Qinghai, China
| | - Qiaoling Bao
- Department of Coronary Heart Disease, Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining, Qinghai, China
| | - Xiaofeng Ma
- Department of Cardiology, Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining, Qinghai, China
| |
Collapse
|
2
|
Tripathy R, Das BK, Panda AK. Procalcitonin is elevated in severe malaria and is a promising biomarker of severe malaria and multi-organ dysfunction: A cross-sectional study and meta-analysis. Int Immunopharmacol 2023; 124:110923. [PMID: 37716164 DOI: 10.1016/j.intimp.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Elevated procalcitonin (PCT) has been reported in bacterial infection and is positively associated with the severity of the disease. Patients with severe Plasmodium falciparum malaria also display higher procalcitonin levels compared to those with non-severe disease, indicating a possible role for bacterial infection in severe disease, however this observation remained variable in different study population. Furthermore, the significance of PCT in different clinical categories of severe malaria has not been evaluated so far. METHODS A total of 74 P. falciparum-infected subjects were enrolled in the study comprising of 55 cases complicated malaria [cerebral malaria- 14; non-cerebral severe malaria- 21; multi-organ dysfunction- 20] and 19 uncomplicated cases. Serum levels of PCT were quantified by fluorescence immunoassay. For meta-analysis, the literature search was performed in different databases, and all relevant articles were screened, and eligible reports were identified based on predefined inclusion and exclusion criteria. The meta-analysis was performed by comprehensive meta-analysis software V3 and MedCalc 20.218. RESULTS Patients with severe P. falciparum malaria had significantly higher PCT levels compared to uncomplicated cases (p = 0.01). Analysis of PCT in different categories of patients with severe malaria revealed significantly elevated PCT in multi-organ dysfunctions compared to those with uncomplicated malaria (p = 0.004) and cerebral malaria (p = 0.05). Interestingly the receiver operating characteristics curve analysis showed procalcitonin as a promising biomarker for differentiating severe malaria (AUC: 0.697, p = 0.01) and multi-organ dysfunction (AUC: 0.704, p = 0.007) from uncomplicated malaria and other clinical categories of falciparum malaria, respectively. Furthermore, meta-analysis also revealed an elevated procalcitonin in severe malaria and it could be an important biomarker in the management of severe disease. CONCLUSIONS PCT is elevated in P. falciparum-infected patients and could be a good biomarker for diagnosis of severe malaria and multi-organ dysfunction. It can help in the management of severe disease with additional treatment options.
Collapse
Affiliation(s)
- Rina Tripathy
- Department of Biochemistry, Sardar Vallabhbhai Patel Post Graduate Institute of Pediatrics, Cuttack, Odisha 753002, India.
| | - Bidyut K Das
- Department of Clinical Immunology and Rheumatology, SCB Medical College, Cuttack, Odisha 753007, India.
| | - Aditya K Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Centre of Excellence on "Bioprospecting of Ethnopharmaceuticals of Southern Odisha" (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India.
| |
Collapse
|
3
|
Gupta A, Skjefte M, Muppidi P, Sikka R, Pandey M, Bharti PK, Gupta H. Unravelling the Influence of Host Genetic Factors on Malaria Susceptibility in Asian Populations. Acta Trop 2023; 249:107055. [PMID: 39491156 DOI: 10.1016/j.actatropica.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Malaria is a deadly blood-borne disease caused by a Plasmodium parasite. Infection results in various forms of malaria, including an asymptomatic state, uncomplicated disease, or severe disease. Severe malaria (SM) is particularly prevalent among young children and is a significant cause of mortality. SM is associated with the sequestration of parasitized erythrocytes in the microvasculature of vital host organs, disrupting the normal functioning of the immune system. Although the exact mechanisms of malaria pathogenesis are yet to be fully understood, researchers have been investigating the role of host genetics in determining the severity of the disease and the outcome of infection. The objective of this study is to identify specific host genes that have been examined for their association with malaria in Asian populations and pinpoint those most likely to influence susceptibility. Through an extensive screening process, a total of 982 articles were initially identified, and after careful review, 40 articles discussing 68 genes were included in this review. By constructing a network of protein-protein interactions (PPIs), we identified six key proteins (TNF, IL6, TLR4, IL1β, IL10, and IL8) that exhibited substantial interactions (more than 30 edges), suggesting their potential as significant targets for influencing malaria susceptibility. Notably, these six proteins have been previously identified as crucial components of the immune response, associated with malaria susceptibility, and capable of affecting different clinical forms of the disease. Identifying genes that contribute to malaria susceptibility or resistance holds the promise of enhancing the diagnosis and treatment of this debilitating illness. Such knowledge has the potential to pave the way for more targeted and effective strategies in combating malaria, particularly in Asian populations where controlling Plasmodium vivax is challenging, and India contributes the highest number of cases. By understanding the genetic factors underlying malaria vulnerability, we can develop interventions that are tailored to the specific needs of Asian populations, ultimately leading to better outcomes in the fight against this disease.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Malia Skjefte
- Population Services International, Malaria Department, Washington, DC, USA
| | - Pranavi Muppidi
- GKT School of Medical Education, King's College London, London, UK
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Manju Pandey
- Department of Medicine, K. D. Medical College Hospital & Research Center, Mathura, Uttar Pradesh, India
| | - Praveen Kumar Bharti
- ICMR- National Institute of Malaria Research (ICMR-NIMR), Dwarka, New Delhi, India
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
4
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
5
|
Lorenzini PA, Gusareva ES, Ghosh AG, Ramli NAB, Preiser PR, Kim HL. Population-specific positive selection on low CR1 expression in malaria-endemic regions. PLoS One 2023; 18:e0280282. [PMID: 36626386 PMCID: PMC9831336 DOI: 10.1371/journal.pone.0280282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023] Open
Abstract
Complement Receptor Type 1 (CR1) is a malaria-associated gene that encodes a transmembrane receptor of erythrocytes and is crucial for malaria parasite invasion. The expression of CR1 contributes to the rosetting of erythrocytes in the brain bloodstream, causing cerebral malaria, the most severe form of the disease. Here, we study the history of adaptation against malaria by analyzing selection signals in the CR1 gene. We used whole-genome sequencing datasets of 907 healthy individuals from malaria-endemic and non-endemic populations. We detected robust positive selection in populations from the hyperendemic regions of East India and Papua New Guinea. Importantly, we identified a new adaptive variant, rs12034598, which is associated with a slower rate of erythrocyte sedimentation and is linked with a variant associated with low levels of CR1 expression. The combination of the variants likely drives natural selection. In addition, we identified a variant rs3886100 under positive selection in West Africans, which is also related to a low level of CR1 expression in the brain. Our study shows the fine-resolution history of positive selection in the CR1 gene and suggests a population-specific history of CR1 adaptation to malaria. Notably, our novel approach using population genomic analyses allows the identification of protective variants that reduce the risk of malaria infection without the need for patient samples or malaria individual medical records. Our findings contribute to understanding of human adaptation against cerebral malaria.
Collapse
Affiliation(s)
- Paolo Alberto Lorenzini
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- The GenomeAsia 100K Consortium, Singapore, Singapore
| | - Elena S. Gusareva
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- The GenomeAsia 100K Consortium, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Amit Gourav Ghosh
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- The GenomeAsia 100K Consortium, Singapore, Singapore
| | - Nurul Adilah Binte Ramli
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- The GenomeAsia 100K Consortium, Singapore, Singapore
| | - Peter Rainer Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hie Lim Kim
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- The GenomeAsia 100K Consortium, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
6
|
Bandoh B, Kyei-Baafour E, Aculley B, van der Puije W, Tornyigah B, Akyea-Mensah K, Hviid L, Ngala RA, Frempong MT, Ofori MF. Influence of α2-Macroglobulin, Anti-Parasite IgM and ABO Blood Group on Rosetting in Plasmodium falciparum Clinical Isolates and Their Associations with Disease Severity in a Ghanaian Population. J Blood Med 2022; 13:151-164. [PMID: 35330697 PMCID: PMC8939864 DOI: 10.2147/jbm.s329177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The severity of Plasmodium falciparum infections is associated with the ability of the infected red blood cells to cytoadhere to host vascular endothelial surfaces and to uninfected RBCs. Host blood group antigens and two serum proteins α2-macroglobulin (α2M) and IgM have been implicated in rosette formation in laboratory-adapted P. falciparum. However, there is only limited information about these phenotypes in clinical isolates. Methods This was a hospital-based study involving children under 12 years-of-age reporting to the Hohoe Municipal Hospital with different clinical presentations of malaria. Parasite isolates were grown and rosette capabilities and characteristics were investigated by fluorescence microscopy. α2M and IgM were detected by ELISA. Results Rosette formation was observed in 46.8% (75/160) of the parasite isolates from all the blood groups tested. Rosettes were more prevalent (55%) among isolates from patients with severe malaria compared to isolates from patients with uncomplicated malaria (45%). Rosette prevalence was highest (30%) among patients with blood group O (30%) and B (29%), while the mean rosette frequency was higher in isolates from patients with blood group A (28.7). Rosette formation correlated negatively with age (r = −0.09, P= 0.008). Participants with severe malaria had a lower IgM concentration (3.683±3.553) than those with uncomplicated malaria (5.256±4.294) and the difference was significant (P= 0.0228). The mean concentrations of anti-parasite IgM measured among the clinical isolates which formed rosettes was lower (4.2 ±3.930 mg/mL), than that in the non rosetting clinical isolates (4.604 ±4.159 mg/mL) but the difference was not significant (P=0.2733). There was no significant difference in plasma α2M concentration between rosetting and non rosetting isolates (P=0.442). Conclusion P. falciparum parasite rosette formation was affected by blood group type and plasma concentration of IgM. A lower IgM concentration was associated with severe malaria whilst a higher α2M concentration was associated with uncomplicated malaria.
Collapse
Affiliation(s)
- Betty Bandoh
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Belinda Aculley
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bernard Tornyigah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Akyea-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Robert A Ngala
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Margaret T Frempong
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Correspondence: Michael F Ofori, Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Post Office Box LG581, Legon, Accra, Ghana, Tel +233 244 715975, Fax +233 302 502182, Email
| |
Collapse
|
7
|
Mukhi B, Gupta H, Wassmer SC, Anvikar AR, Ghosh SK. Haplotype of RNASE 3 polymorphisms is associated with severe malaria in an Indian population. Mol Biol Rep 2020; 47:8841-8848. [PMID: 33113080 PMCID: PMC7591695 DOI: 10.1007/s11033-020-05934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Severe malaria (SM) caused by Plasmodium falciparum (Pf) infection has been associated with life-threatening anemia, metabolic acidosis, cerebral malaria and multiorgan dysfunction. It may lead to death if not treated promptly. RNASE 3 has been linked to Pf growth inhibition and its polymorphisms found associated with SM and cerebral malaria in African populations. This study aimed to assess the association of RNASE 3 polymorphisms with SM in an Indian population. RNASE 3 gene and flanking regions were amplified followed by direct DNA sequencing in 151 Indian patients who visited Wenlock District Government Hospital, Mangalore, Karnataka, India. Allele, genotype and haplotype frequencies were compared between patients with SM (n = 47) and uncomplicated malaria (UM; n = 104). Homozygous mutant genotype was only found for rs2233860 (+ 499G > C) polymorphism (< 1% frequency). No significant genetic associations were found for RNASE 3 polymorphism genotypes and alleles in Indian SM patients using the Fisher's exact test. C-G-G haplotype of rs2233859 (− 38C > A), rs2073342 (+ 371C > G) and rs2233860 (+ 499G > C) polymorphisms was correlated significantly with SM patients (OR = 3.03; p = 0.008) after Bonferroni correction. A haplotype of RNASE 3 gene was found associated with an increased risk of SM and confirming that RNASE 3 gene plays a role in susceptibility to SM.
Collapse
Affiliation(s)
- Benudhar Mukhi
- ICMR-National Institute of Malaria Research, New Delhi, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Himanshu Gupta
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St. Bloomsbury, London, WC1E 7HT, UK.
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St. Bloomsbury, London, WC1E 7HT, UK
| | | | - Susanta Kumar Ghosh
- ICMR-National Institute of Malaria Research, New Delhi, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
8
|
ABO blood group system is associated with COVID-19 mortality: An epidemiological investigation in the Indian population. Transfus Clin Biol 2020; 27:253-258. [PMID: 32987167 PMCID: PMC7518849 DOI: 10.1016/j.tracli.2020.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Novel coronavirus disease-19 (COVID-19) has spread worldwide, and to date presence of the virus has been recorded in 215 countries contributing 0.43 million of death. The role of blood groups in susceptibility/resistance to various infectious diseases has been reported. However, the association of blood groups with susceptibility to COVID-19 infections or related death are limited. In the present report, we performed an epidemiological investigation in the Indian population to decipher the importance of blood groups concerning susceptibility or mortality in COVID-19 infection. MATERIALS AND METHODS Data on COVID-19 infection and mortality was obtained from the website of the Government of India. Prevalence of ABO blood groups in different states and union territories of India were searched using different databases such as PubMed and Google Scholar. Relevant articles were downloaded, and data were extracted. Spearman's rank coefficient analysis was employed to study the correlation between blood group frequencies and COVID-19 infection or mortality rate. RESULTS A significant inverse correlation was observed between the frequency of O blood group and the COVID-19 mortality rate (Spearman r=-0.36, P=0.03), indicating a possible protective role of O blood group against COVID-19 related death. In contrast, the prevalence of blood group B was positively correlated with COVID-19 death/million (Spearman r=0.67, P<0.0001), suggesting B blood type as a deleterious factor in COVID-19 infection. CONCLUSIONS ABO blood group system is associated with poor prognosis of COVID-19 infection. Blood group O may protects, and subjects with blood type B could be susceptible to COVID-19 mortality. However, further studies on COVID-19 infected patients in different population are required to validate our findings.
Collapse
|
9
|
Polymorphisms and haplotypes of TLR4, TLR9 and CYP1A1 genes possibly interfere with high-risk human papillomavirus infection and cervical cancer susceptibility in Jharkhand, India. Int Immunopharmacol 2020; 88:106925. [PMID: 32871478 DOI: 10.1016/j.intimp.2020.106925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Expression and single nucleotide polymorphisms (SNPs) of TLR4/9 and CYP1A1 genes are vital for cervical squamous cell carcinoma (CSCC) but considerably vary in different populations. METHODS A total of 255-subjects from Jharkhand (130-cases, 125-controls) were utilized to obtain the expression/SNP status of TLR4/9, CYP1A1, and E6 (HPV16/18) by RT-PCR, WB, and allele-specific-PCR followed by sequencing. RESULTS Over-expression of TLR4/9 and high infection of HPV16/18(78.5%) were found to be associated with CSCC. Among the seven SNPs(p1-p7) tested, the CT-genotype (p3:rs1927911; OR = 2.142; p = 0.004) and 'T'-allele (p3; OR = 1.694; p = 0.0061) of TLR4; CC-genotype (p4:rs5743836; OR = 3.307; p = 0.0018), 'C'-allele (p4; OR = 1.895; p = 0.0009), GA-genotype (p5:rs352140; OR = 2.064; p = 0.0172), AA-genotype (p5; OR = 2.602; p = 0.0021) and 'A'-allele (p5; OR = 1.939; p = 0.0002) of TLR9; and the TC-genotype (p6:rs4646903; OR = 1.967; p = 0.0452) and GG-genotype (p7:rs1048943; OR = 2.336; p = 0.0287) and 'G'-allele (p7; OR = 1.685; p = 0.0082) of CYP1A1 were associated with an increased-risk of CSCC. Similarly, the p3:CT-genotype (OR = 1.993; p = 0.0134); p4:CC-genotype (OR = 3.071; p = 0.0057) and 'C'-allele (OR = 1.838; p = 0.0029); p5:AA-genotype (OR = 2.231; p = 0.0147) and 'A'-allele (OR = 1.756; p = 0.0032); p6:TC-genotype (OR = 2.370; p = 0.02); and the p7:GG-genotype (OR = 2.255; p = 0.0488) and 'G'-allele (OR = 1.691; p = 0.0118) showed an association with HPV16/18 infection. Conversely, TLR4 (p1-p2-p3:A-G-T; OR = 3.361; p = 0.029), TLR9 (p4-p5:C-A; OR = 1.786; p = 0.032) and CYP1A1 (p6-p7:C-G; OR = 1.783; p = 0.033) haplotypes with CSCC susceptibility was observed, whereas the TLR4 (p1-p2-p3:A-C-C; OR = 0.4675; p = 8.E-3) and TLR9 (p4-p5:T-G; OR = 0.3937; p = 0.00) haplotypes showed protection against the development of CSCC. Further, though p1:rs10759931 and p2:rs11536889 were found to be insignificant, the p3:CT-genotype, p5:GA/AA-genotype, and p7:GG-genotype were associated with elevated protein; the p4:CC-genotype and p6:TC-genotype were associated with increased mRNA compared to their respective-wild-type-groups. CONCLUSION The present study revealed an association between TLR4/9 and CYP1A1 polymorphisms with increased HPV16/18 infection susceptibility and CSCC risk among the women of Jharkhand state.
Collapse
|
10
|
Epidemiological links between malaria parasitaemia and hypertension: findings from a population-based survey in rural Côte d'Ivoire. J Hypertens 2020; 37:1384-1392. [PMID: 30801386 PMCID: PMC6587219 DOI: 10.1097/hjh.0000000000002071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background: Although potential links between malaria parasitaemia and hypertension have been hypothesized, there is paucity of epidemiologic evidence on this link. We investigated in a population-based survey, the association between malaria parasitaemia and hypertension in Ivorian adults. Methods: We estimated the adjusted odds ratios (OR) and 95% confidence intervals (CI) of hypertension in relation to malaria parasitaemia using multinomial regression, in 997 randomly selected adults in the ‘Côte d’Ivoire Dual Burden of Disease Study’ (CoDuBu), in south-central Côte d’Ivoire. We defined malaria parasitaemia as a positive rapid diagnostic test or identification of Plasmodium spp. on microscopy. Using the mean of the last two of three blood pressure (BP) measurements and questionnaire data, we defined hypertension as SBP at least 140 mmHg or DBP at least 90 mmHg or clinician-diagnosed hypertension. Results: Prevalence of malaria parasitaemia and hypertension were 10 and 22%, respectively. Malaria parasitaemia was negatively associated with hypertension in participants with body temperature 36.5 °C or less [OR 0.23 (95% CI 0.06–0.84)]. Contrastingly, microscopic malaria parasitaemia showed positive associations with hypertension in participants with elevated body temperature [>36.5 °C; OR: 2.93 (95% CI 0.94–9.14)]. Participants having microscopic malaria parasitaemia with elevated body temperature had three-fold higher odds of hypertension [OR: 3.37 (95% CI 1.12–10.0)] than malaria parasitaemia-negatives with lower body temperature. Conclusion: Malaria parasitaemia and hypertension are prevalent and seemingly linked comorbidities in African settings. This link may depend on malaria parasitaemia symptomaticity/latency where individuals with more latent/asymptomatic malaria parasitaemia have lower risk of hypertension and those with more acute/symptomatic malaria parasitaemia have a tendency toward higher BP. The cross-sectional nature of the study limited the distinction of short-term BP elevation (interim pathophysiological stress) from hypertension development. Future longitudinal studies considering malaria/hypertension phenotypes and host molecular variations are needed to clarify involved biological mechanisms, toward comorbidity management.
Collapse
|
11
|
Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology 2019; 147:1-11. [PMID: 31455446 PMCID: PMC7050047 DOI: 10.1017/s0031182019001288] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malaria remains a major cause of mortality in African children, with no adjunctive treatments currently available to ameliorate the severe clinical forms of the disease. Rosetting, the adhesion of infected erythrocytes (IEs) to uninfected erythrocytes, is a parasite phenotype strongly associated with severe malaria, and hence is a potential therapeutic target. However, the molecular mechanisms of rosetting are complex and involve multiple distinct receptor–ligand interactions, with some similarities to the diverse pathways involved in P. falciparum erythrocyte invasion. This review summarizes the current understanding of the molecular interactions that lead to rosette formation, with a particular focus on host uninfected erythrocyte receptors including the A and B blood group trisaccharides, complement receptor one, heparan sulphate, glycophorin A and glycophorin C. There is strong evidence supporting blood group A trisaccharides as rosetting receptors, but evidence for other molecules is incomplete and requires further study. It is likely that additional host erythrocyte rosetting receptors remain to be discovered. A rosette-disrupting low anti-coagulant heparin derivative is being investigated as an adjunctive therapy for severe malaria, and further research into the receptor–ligand interactions underlying rosetting may reveal additional therapeutic approaches to reduce the unacceptably high mortality rate of severe malaria.
Collapse
|
12
|
TNF-α promoter polymorphisms (G-238A and G-308A) are associated with susceptibility to Systemic Lupus Erythematosus (SLE) and P. falciparum malaria: a study in malaria endemic area. Sci Rep 2019; 9:11752. [PMID: 31409832 PMCID: PMC6692415 DOI: 10.1038/s41598-019-48182-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine associated with autoimmune and infectious diseases. Importance of TNF-α in P. falciparum malaria and systemic lupus erythematosus (SLE) have been demonstrated. However, association of functional promoter variants with SLE and malaria is lacking in malaria endemic population. A total of 204 female SLE patients and 224 age and sex matched healthy controls were enrolled in the study. Three hundred fourteen P. falciparum infected patients with different clinical phenotypes were included. TNF-α polymorphisms (G-238A & G-308A) were genotyped by PCR-RFLP. Plasma levels of TNF-α was quantified by ELISA. Heterozygous mutants and minor alleles of TNF-α (G-238A and G-308A) polymorphisms were significantly higher in SLE patients compared to healthy controls and associated with development of lupus nephritis. In addition, both promoter variants were associated with severe P. falciparum malaria. SLE patients demonstrated higher levels of plasma TNF-α compared to healthy controls. TNF-α (G-238A and G-308A) variants were associated with higher plasma TNF-α. In conclusion, TNF-α (G-238A & G-308A) variants are associated with higher plasma TNF-α levels in SLE patients residing in malaria endemic areas and could be a contributing factor in the development of SLE and susceptibility to severe P. falciparum malaria.
Collapse
|
13
|
|
14
|
Degarege A, Gebrezgi MT, Beck-Sague CM, Wahlgren M, de Mattos LC, Madhivanan P. Effect of ABO blood group on asymptomatic, uncomplicated and placental Plasmodium falciparum infection: systematic review and meta-analysis. BMC Infect Dis 2019; 19:86. [PMID: 30683058 PMCID: PMC6346527 DOI: 10.1186/s12879-019-3730-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria clinical outcomes vary by erythrocyte characteristics, including ABO blood group, but the effect of ABO blood group on asymptomatic, uncomplicated and placental Plasmodium falciparum (P. falciparum) infection remains unclear. We explored effects of ABO blood group on asymptomatic, uncomplicated and placental falciparum infection in the published literature. METHODS A systematic review and meta-analysis was performed using the preferred reporting items for systematic reviews and meta-analyses guidelines. Articles in Pubmed, Embase, Web of Science, CINAHL and Cochrane Library published before February 04, 2017 were searched without restriction. Studies were included if they reported P. falciparum infection incidence or prevalence, stratified by ABO blood group. RESULTS Of 1923 articles obtained from the five databases (Embase = 728, PubMed = 620, Web of Science = 549, CINAHL = 14, Cochrane Library = 12), 42 met criteria for systematic review and 37 for meta-analysis. Most studies (n = 30) were cross-sectional, seven were prospective cohort, and five were case-control studies. Meta-analysis showed similar odds of uncomplicated P. falciparum infection among individuals with blood group A (summary odds ratio [OR] 0.96, 15 studies), B (OR 0.89, 15 studies), AB (OR 0.85, 10 studies) and non-O (OR 0.95, 17 studies) as compared to those with blood group O. Meta-analysis of four cohort studies also showed similar risk of uncomplicated P. falciparum infection among individuals with blood group non-O and those with blood group O (summary relative risk [RR] 1.03). Meta-analysis of six studies showed similar odds of asymptomatic P. falciparum infection among individuals with blood group A (OR 1.05), B (OR 1.03), AB (OR 1.23), and non-O (OR 1.07) when compared to those with blood group O. However, odds of active placental P. falciparum infection was significantly lower in primiparous women with non-O blood groups (OR 0.46, 95% confidence interval [CI] 0.23 - 0.69, I2 0.0%, three studies), particularly in those with blood group A (OR 0.41, 95% CI 0.003 - 0.82, I2 1.4%, four studies) than those with blood group O. CONCLUSIONS This study suggests that ABO blood group may not affect susceptibility to asymptomatic and/or uncomplicated P. falciparum infection. However, blood group O primiparous women appear to be more susceptible to active placental P. falciparum infection.
Collapse
Affiliation(s)
- Abraham Degarege
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, Miami, FL 33199 USA
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Merhawi T. Gebrezgi
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, Miami, FL 33199 USA
| | - Consuelo M. Beck-Sague
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida USA
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Luiz Carlos de Mattos
- Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP Brazil
| | - Purnima Madhivanan
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, Miami, FL 33199 USA
- Public Health Research Institute of India, Mysore, India
| |
Collapse
|
15
|
Degarege A, Gebrezgi MT, Ibanez G, Wahlgren M, Madhivanan P. Effect of the ABO blood group on susceptibility to severe malaria: A systematic review and meta-analysis. Blood Rev 2018; 33:53-62. [PMID: 30029997 DOI: 10.1016/j.blre.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/25/2022]
Abstract
Understanding how ABO blood group interacts with Plasmodium falciparum (P. falciparum) infection may facilitate development of antimalarial treatments and vaccines. This study systematically summarizes information on the relationship of ABO blood group with severe P. falciparum infection, level of parasitemia and haemoglobin. A total of 1923 articles were retrieved from five databases. After removal of duplicates, and two levels of screening, 21 articles were selected for inclusion in the meta-analysis. A meta-analysis of the studies showed an increased odds of severe P. falciparum infection among individuals with blood group A, B, AB or non-O compared with blood group O. However, the difference in the level of P. falciparum parasitemia was not significant among individuals with blood group A or non-O compared with blood group O. The difference in haemoglobin level among P. falciparum infected individuals was also not significant between those with blood group A, B or AB versus those with blood group O.
Collapse
Affiliation(s)
- Abraham Degarege
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, USA; Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Merhawi T Gebrezgi
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, USA.
| | - Gladys Ibanez
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, USA.
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden.
| | - Purnima Madhivanan
- Department of Epidemiology, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, USA; Public Health Research Institute of India, Mysore, India.
| |
Collapse
|
16
|
Marquet S. Overview of human genetic susceptibility to malaria: From parasitemia control to severe disease. INFECTION GENETICS AND EVOLUTION 2017; 66:399-409. [PMID: 28579526 DOI: 10.1016/j.meegid.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Malaria is a life-threatening blood disease caused by the protozoan Plasmodium. Infection may lead to several different patterns of symptoms in the host: asymptomatic state, uncomplicated disease or severe disease. Severe malaria occurs mostly in young children and is a major cause of death. Disease is thought to result from the sequestration of parasites in the small blood vessels of the brain and the deregulation of key immune system elements. The cellular and molecular regulatory mechanisms underlying the pathogenesis of disease are however not fully understood. What is known it is that the genetic determinants of the host play an important role in the severity of the disease and the outcome of infection. Here we review the most convincing results obtained through genetic epidemiology studies concerning the genetic control of malaria in human caused by Plasmodium falciparum infection. The identification of genes conferring susceptibility or resistance to malaria might improve diagnosis and treatment.
Collapse
Affiliation(s)
- Sandrine Marquet
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France.
| |
Collapse
|
17
|
Panda AK, Ravindran B, Das BK. CR1 exon variants are associated with lowered CR1 expression and increased susceptibility to SLE in a Plasmodium falciparum endemic population. Lupus Sci Med 2016; 3:e000145. [PMID: 27933195 PMCID: PMC5133404 DOI: 10.1136/lupus-2016-000145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complement receptor 1 (CR1) plays an important role in immune complex clearance by opsonisation and possibly protects subjects from development of autoantibodies. Lower CR1 expression has been associated with susceptibility to systemic lupus erythematosus (SLE). In contrast, subjects displaying lower CR1 expression are protected against severe manifestations of falciparum malaria. This study is the first of its kind to investigate the association of CR1 variants with development of SLE in a P. falciparum endemic population from Odisha, India. METHODS CR1 polymorphisms (intron 27 (A>T), exon 22 (A>G) and exon 33 (G>C)) were typed by PCR and restriction length polymorphism in 297 cases of female patients with SLE and 300 age-matched and sex-matched healthy controls from malaria endemic areas in Odisha, India. CR1 expression on monocytes was quantified by flow cytometry. RESULTS The homozygous mutants of CR1 exon 22 (GG) and exon 33 (GG) and their minor alleles were associated with susceptibility to SLE. Furthermore, patients with SLE who harboured the GG genotype of the exon 33 polymorphism had a 3.12-fold higher chance of developing lupus nephritis. CR1 exon (22 and 33) variants were associated with lowered CR1 expression on monocytes in patients with SLE and in healthy controls. Patients with lupus nephritis showed significantly diminished CR1 expression than those without renal involvement (p=0.01). CONCLUSIONS The results of the present study demonstrate that common CR1 exon variants are associated with diminished CR1 expression on monocytes and increased susceptibility to development of SLE and lupus nephritis in a malaria endemic area.
Collapse
Affiliation(s)
- Aditya K Panda
- Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, Odisha, India; Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi, India
| | - Balachandran Ravindran
- Infectious Disease Biology Group , Institute of Life Sciences , Bhubaneswar, Odisha , India
| | - Bidyut K Das
- Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, Odisha, India; Department of Medicine, S.C.B. Medical College, Cuttack, Odisha, India
| |
Collapse
|
18
|
Wah ST, Hananantachai H, Kerdpin U, Plabplueng C, Prachayasittikul V, Nuchnoi P. Molecular basis of human cerebral malaria development. Trop Med Health 2016; 44:33. [PMID: 27708543 PMCID: PMC5037602 DOI: 10.1186/s41182-016-0033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria is still a deleterious health problem in tropical countries. The wide spread of malarial drug resistance and the lack of an effective vaccine are obstacles for disease management and prevention. Parasite and human genetic factors play important roles in malaria susceptibility and disease severity. The malaria parasite exerted a potent selective signature on the human genome, which is apparent in the genetic polymorphism landscape of genes related to pathogenesis. Currently, much genomic data and a novel body of knowledge, including the identification of microRNAs, are being increasingly accumulated for the development of laboratory testing cassettes for cerebral malaria prevention. Therefore, understanding of the underlying complex molecular basis of cerebral malaria is important for the design of strategy for cerebral malaria treatment and control.
Collapse
Affiliation(s)
- Saw Thu Wah
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | | | - Usanee Kerdpin
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, 65000 Thailand
| | - Chotiros Plabplueng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand ; Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pornlada Nuchnoi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand ; Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Panda AK, Das BK, Panda A, Tripathy R, Pattnaik SS, Mahto H, Pied S, Pathak S, Sharma S, Ravindran B. Heterozygous mutants of TIRAP (S180L) polymorphism protect adult patients with Plasmodium falciparum infection against severe disease and mortality. INFECTION GENETICS AND EVOLUTION 2016; 43:146-50. [PMID: 27166096 DOI: 10.1016/j.meegid.2016.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022]
Abstract
Toll-interleukin-1 receptor domain containing adapter protein (TIRAP) plays a crucial role in TLR2 and TLR4 signaling pathways. Glycosylphospatidylinositol (GPI), considered a toxin molecule of Plasmodium falciparum, interacts with TLR2 and 4 to induce an immune inflammatory response. A single nucleotide polymorphism at coding region of TIRAP (S180L) has been reported to influence TLRs signaling. In the present study, we investigated the association of TIRAP (S180L) polymorphism with susceptibility/resistance to severe P. falciparum malaria in a cohort of adult patients from India. TIRAP S180L polymorphism was typed in 347 cases of severe malaria (SM), 232 uncomplicated malaria and 150 healthy controls. Plasma levels of TNF-α was quantified by ELISA. Heterozygous mutation (S/L) conferred significant protection against MOD (multi organ dysfunction), NCSM (non-cerebral severe malaria) as well as mortality. Interestingly, homozygous mutants (L/L) had 16 fold higher susceptibility to death. TIRAP mutants (S/L and L/L) were associated with significantly higher plasma TNF-α levels compared to wild type (S/S). The results of the present study demonstrate that TIRAP S180L heterozygous mutation may protect patients against severe malaria and mortality.
Collapse
Affiliation(s)
- Aditya K Panda
- Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi, India; Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Bidyut K Das
- Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, Odisha, India; Department of Medicine, S.C.B. Medical College, Cuttack 753007, Odisha, India.
| | - Abhinash Panda
- Department of Medicine, S.C.B. Medical College, Cuttack 753007, Odisha, India.
| | - Rina Tripathy
- Department of Biochemistry, S.C.B. Medical College, Cuttack 753007, Odisha, India.
| | - Sarit S Pattnaik
- Department of Medicine, S.C.B. Medical College, Cuttack 753007, Odisha, India.
| | - Harishankar Mahto
- Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi, India
| | - Sylviane Pied
- Basic and Clinical Immunology of Parasitic Diseases Group, Centre for Infection and Immunity of Lille, 59019 Lille Cedex, France.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Balachandran Ravindran
- Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
20
|
Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum: new and old. Transfus Med 2016; 26:77-88. [PMID: 26862042 DOI: 10.1111/tme.12280] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
Understanding the complex process by which the invasive form of the Plasmodium falciparum parasite, the merozoite, attaches to and invades erythrocytes as part of its blood stage life cycle represents a key area of research in the battle to combat malaria. Central to this are efforts to determine the identity of receptors on the host cell surface, their corresponding merozoite-binding proteins and the functional relevance of these binding events as part of the invasion process. This review will provide an updated summary of studies identifying receptor interactions essential for or implicated in P. falciparum merozoite invasion of human erythrocytes, highlighting the recent identification of new receptors using groundbreaking high throughput approaches and with particular focus on the properties and putative involvement of the erythrocyte proteins targeted by these invasion pathways.
Collapse
Affiliation(s)
- T J Satchwell
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, UK
| |
Collapse
|
21
|
Das BK, Panda AK. MBL-2 polymorphisms (codon 54 and Y-221X) and low MBL levels are associated with susceptibility to multi organ dysfunction in P. falciparum malaria in Odisha, India. Front Microbiol 2015; 6:778. [PMID: 26284055 PMCID: PMC4521172 DOI: 10.3389/fmicb.2015.00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
Background: Mannose binding lectin, a plasma protein protects host from virus, bacteria, and parasites. Deficiency in MBL levels has been associated with susceptibility to various infectious diseases including P. falciparum malaria. Common MBL polymorphisms in promoter and coding regions are associated with decrease in plasma MBL levels or production of deformed MBL, respectively. In the present study, we hypothesized that MBL2 variants and plasma MBL levels could be associated with different clinical phenotypes of severe P. falciparum malaria. Methods: A hospital based study was conducted in eastern Odisha, India which is endemic to P. falciparum malaria. Common MBL-2 polymorphisms (codon 54, H-550L, and Y-221X) were typed in 336 cases of severe malaria (SM) [94 cerebral malaria (CM), 120 multi-organ dysfunction (MOD), 122 non-cerebral severe malaria (NCSM)] and 131 un-complicated malaria patients (UM). Plasma MBL levels were quantified by ELISA. Results: Severe malaria patients displayed lower plasma levels of MBL compared to uncomplicated falciparum malaria. Furthermore, on categorization of severe malaria patients into various subtypes, plasma MBL levels were very low in MOD patients compared to other categories. Higher frequency of AB genotype and allele B was observed in MOD compared to UM (AB genotype: P = 0.006; B allele: P = 0.008). In addition, prevalence of YX genotype of MBL Y-221X polymorphism was also statistically more frequent in MOD case than UM (P = 0.009). Conclusions: The observations of the present study reveal that MBL-2 polymorphisms (codon 54 and Y-221X) and lower plasma MBL levels are associated with increased susceptibility to multi organ dysfunctions in P. falciparum malaria.
Collapse
Affiliation(s)
- Bidyut K Das
- Department of Medicine, SCB Medical College Cuttack, India
| | - Aditya K Panda
- Centre for Life Sciences, Central University of Jharkhand Ranchi, India
| |
Collapse
|
22
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Schmidt CQ, Kennedy AT, Tham WH. More than just immune evasion: Hijacking complement by Plasmodium falciparum. Mol Immunol 2015; 67:71-84. [PMID: 25816986 DOI: 10.1016/j.molimm.2015.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstraße 20, Ulm, Germany.
| | - Alexander T Kennedy
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia.
| |
Collapse
|
24
|
Differential positive selection of malaria resistance genes in three indigenous populations of Peninsular Malaysia. Hum Genet 2015; 134:375-92. [PMID: 25634076 DOI: 10.1007/s00439-014-1525-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/25/2014] [Indexed: 10/24/2022]
Abstract
The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.
Collapse
|
25
|
Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, Karthikeyan S, Iles L, Pollard MO, Choudhury A, Ritchie GRS, Xue Y, Asimit J, Nsubuga RN, Young EH, Pomilla C, Kivinen K, Rockett K, Kamali A, Doumatey AP, Asiki G, Seeley J, Sisay-Joof F, Jallow M, Tollman S, Mekonnen E, Ekong R, Oljira T, Bradman N, Bojang K, Ramsay M, Adeyemo A, Bekele E, Motala A, Norris SA, Pirie F, Kaleebu P, Kwiatkowski D, Tyler-Smith C, Rotimi C, Zeggini E, Sandhu MS. The African Genome Variation Project shapes medical genetics in Africa. Nature 2014; 517:327-32. [PMID: 25470054 PMCID: PMC4297536 DOI: 10.1038/nature13997] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/23/2014] [Indexed: 12/27/2022]
Abstract
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Collapse
Affiliation(s)
- Deepti Gurdasani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Tommy Carstensen
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Fasil Tekola-Ayele
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Luca Pagani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Ioanna Tachmazidou
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Savita Karthikeyan
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Louise Iles
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK [3] Department of Archaeology, University of York, King's Manor, York YO1 7EP, UK
| | - Martin O Pollard
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ananyo Choudhury
- Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | - Graham R S Ritchie
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Vertebrate Genomics, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer Asimit
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Elizabeth H Young
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Cristina Pomilla
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Katja Kivinen
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Anatoli Kamali
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Ayo P Doumatey
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Gershim Asiki
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Muminatou Jallow
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Stephen Tollman
- 1] Medical Research Council/Wits Rural Public Health and Health Transitions Unit, School of Public Health, Education Campus, 27 St Andrew's Road, Parktown 2192, Johannesburg, Gauteng, South Africa [2] INDEPTH Network, 38/40 Mensah Wood Street, East Legon, PO Box KD 213, Kanda, Accra, Ghana
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Entoto Avenue, Arat Kilo, 16087 Addis Ababa, Ethiopia
| | - Rosemary Ekong
- Department of Genetics Evolution and Environment, University College, London, Gower Street, London WC1E 6BT, UK
| | - Tamiru Oljira
- University of Haramaya, Department of Biology, PO Box 138, Dire Dawa, Ethiopia
| | - Neil Bradman
- Henry Stewart Group, 28/30 Little Russell Street, London WC1A 2HN, UK
| | - Kalifa Bojang
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Michele Ramsay
- 1] Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa [2] Division of Human Genetics, National Health Laboratory Service, C/O Hospital and de Korte Streets, Braamfontein 2000, Johannesburg, South Africa [3] School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - Adebowale Adeyemo
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Endashaw Bekele
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Arat Kilo Campus, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Ayesha Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Shane A Norris
- Department of Paediatrics, University of Witwatersrand, 7 York Road, Parktown 2198, Johannesburg, Gauteng, South Africa
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Dominic Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Charles Rotimi
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Manjinder S Sandhu
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| |
Collapse
|
26
|
King C, Du P, Otieno W, Stoute JA. Use of mosquito preventive measures is associated with increased RBC CR1 levels in a malaria holoendemic area of western Kenya. Am J Trop Med Hyg 2014; 92:34-8. [PMID: 25385855 DOI: 10.4269/ajtmh.14-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Malaria is responsible for close to 1 million deaths each year, mostly among African children. Red blood cells (RBCs) of children with severe malarial anemia show loss of complement regulatory proteins such as complement receptor 1 (CR1). We carried out this study to identify socio-economic, environmental, and biological factors associated with the loss of RBC CR1. A cross-sectional study was conducted in a malaria holoendemic area of western Kenya. Twelve socioeconomic, environmental, and biological factors were examined for a relationship with RBC CR1 level using bivariate linear regression followed by creation of a multivariate linear regression model. A significant positive relationship between RBC CR1 level and use of mosquito countermeasures was found. However, there was no evidence of a significant relationship between RBC CR1 level and malaria infection or parasitemia level. Reducing mosquito exposure may aid in the prevention of severe malarial anemia by reducing the number of infections and thus preserving RBC CR1.
Collapse
Affiliation(s)
- Christine King
- Department of Public Health Sciences, Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; The Kenya Medical Research Institute, Nairobi, Kenya
| | - Ping Du
- Department of Public Health Sciences, Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; The Kenya Medical Research Institute, Nairobi, Kenya
| | - Walter Otieno
- Department of Public Health Sciences, Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; The Kenya Medical Research Institute, Nairobi, Kenya
| | - José A Stoute
- Department of Public Health Sciences, Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; The Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
27
|
Panda AK, Pattanaik SS, Tripathy R, Das BK. TLR-9 promoter polymorphisms (T-1237C and T-1486C) are not associated with systemic lupus erythematosus: a case control study and meta-analysis. Hum Immunol 2013; 74:1672-8. [PMID: 23974051 DOI: 10.1016/j.humimm.2013.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 11/26/2022]
Abstract
Toll like receptors (TLRs) are essential molecules implicated in both innate and adaptive immune response. Polymorphisms in TLR gene have been associated with various infectious diseases and autoimmune disorders. Role of TLR9 has been elegantly demonstrated in both human systemic lupus erythematosus (SLE) and mice model of lupus. In the present study we investigated association of TLR-9 promoter polymorphisms (T-1237C and T-1486C) with susceptibility/resistance to SLE in an Eastern Indian state which is endemic to parasitic diseases. 210 Female SLE patients who fulfilled the American College of Rheumatology criteria were enrolled along with matched healthy controls from Odisha, India. TLR-9 polymorphisms (T-1237C and T-1486C) were typed by polymerase chain reaction followed by restriction fragment length polymorphism. For meta-analysis, relevant literatures were searched from PubMed database and comprehensive meta-analysis V2 software was employed for analysis. Allele and genotype frequency of TLR-9 promoter polymorphisms (T-1237C and T-1486C) were comparable among SLE patients and controls. Further, meta-analysis of earlier reports and present study did not reveal a significant association of TLR-9 (T-1237C and T-1486C) polymorphisms with SLE. Data from the present study suggest that TLR-9 promoter polymorphisms are not associated with susceptibility to SLE in an area endemic to parasitic diseases.
Collapse
Affiliation(s)
- Aditya K Panda
- Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | | | | |
Collapse
|