1
|
Van Deurs S, Reutimann O, Luqman H, Lifshitz D, Mayzlish-Gati E, Alexander J, Fior S. Genomic Signatures of Adaptation Across a Precipitation Gradient From Niche Centre to Niche Edge. Mol Ecol 2025; 34:e17696. [PMID: 39960029 DOI: 10.1111/mec.17696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Evaluating the potential for species to adapt to changing climates relies on understanding current patterns of adaptive variation and selection, which might vary in intensity across a species' niche, hence affecting our inference of where adaptation might be most important in the future. Here, we investigate the genetic basis of adaptation in Lactuca serriola along a steep precipitation gradient in Israel approaching the species' arid niche limit and use candidate loci to inform predictions of its past and future adaptive evolution. Environmental association analyses combined with generalised dissimilarity models revealed 108 candidate genes showing nonlinear shifts in allele frequencies across the gradient, with 66% of these genes under strong selection near the dry niche edge. We detected selection acting on genes with separate suites of biological functions, specifically related to phenology and responses to environmental stressors, including osmotic stress, at the dry niche edge, and related to biotic interactions and defence closer to the niche centre. The adaptive genetic composition of populations, as inferred through polygenic risk scores, point to intensified selection operating towards the dry niche edge. However, inference of past and future evolutionary change predicts larger adaptive shifts occurring in the mesic part of the range, which is most affected by climate change. Our study reveals that adaptive shifts in response to climate change can be heterogeneous across a species' range and not necessarily strongest near its niche edge.
Collapse
Affiliation(s)
| | - Oliver Reutimann
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Hirzi Luqman
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Dikla Lifshitz
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Einav Mayzlish-Gati
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Jake Alexander
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Simone Fior
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| |
Collapse
|
2
|
Zhang M, Jian H, Shang L, Wang K, Wen S, Li Z, Liu R, Jia L, Huang Z, Lyu D. Transcriptome Analysis Reveals Novel Genes Potentially Involved in Tuberization in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:795. [PMID: 38592791 PMCID: PMC10975680 DOI: 10.3390/plants13060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
The formation and development of tubers, the primary edible and economic organ of potatoes, directly affect their yield and quality. The regulatory network and mechanism of tuberization have been preliminarily revealed in recent years, but plenty of relevant genes remain to be discovered. A few candidate genes were provided due to the simplicity of sampling and result analysis of previous transcriptomes related to tuberization. We sequenced and thoroughly analyzed the transcriptomes of thirteen tissues from potato plants at the tuber proliferation phase to provide more reference information and gene resources. Among them, eight tissues were stolons and tubers at different developmental stages, which we focused on. Five critical periods of tuberization were selected to perform an analysis of differentially expressed genes (DEGs), according to the results of the tissue correlation. Compared with the unswollen stolons (Sto), 2751, 4897, 6635, and 9700 DEGs were detected in the slightly swollen stolons (Sto1), swollen stolons (Sto2), tubers of proliferation stage 1 (Tu1), and tubers of proliferation stage 4 (Tu4). A total of 854 transcription factors and 164 hormone pathway genes were identified in the DEGs. Furthermore, three co-expression networks associated with Sto-Sto1, Sto2-Tu1, and tubers of proliferation stages two to five (Tu2-Tu5) were built using the weighted gene co-expression network analysis (WGCNA). Thirty hub genes (HGs) and 30 hub transcription factors (HTFs) were screened and focalized in these networks. We found that five HGs were reported to regulate tuberization, and most of the remaining HGs and HTFs co-expressed with them. The orthologs of these HGs and HTFs were reported to regulate processes (e.g., flowering, cell division, hormone synthesis, metabolism and signal transduction, sucrose transport, and starch synthesis) that were also required for tuberization. Such results further support their potential to control tuberization. Our study provides insights and countless candidate genes of the regulatory network of tuberization, laying the foundation for further elucidating the genetic basis of tuber development.
Collapse
Affiliation(s)
- Meihua Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing 400715, China
| | - Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ke Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Zihan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rongrong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lijun Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhenlin Huang
- Chongqing Agricultural Technical Extension Station, Chongqing 401121, China;
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (M.Z.); (H.J.); (L.S.); (S.W.); (Z.L.); (R.L.); (L.J.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zheng L, Wu H, Wang A, Zhang Y, Liu Z, Ling HQ, Song XJ, Li Y. The SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake in Arabidopsis. NATURE PLANTS 2023; 9:1318-1332. [PMID: 37550368 DOI: 10.1038/s41477-023-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Organ growth is controlled by both intrinsic genetic factors and external environmental signals. However, the molecular mechanisms that coordinate plant organ growth and nutrient supply remain largely unknown. We have previously reported that the B3 domain transcriptional repressor SOD7 (NGAL2) and its closest homologue DPA4 (NGAL3) act redundantly to limit organ and seed growth in Arabidopsis. Here we report that SOD7 represses the interaction between the transcriptional coactivator GRF-INTERACTING FACTOR 1 (GIF1) and growth-regulating factors (GRFs) by competitively interacting with GIF1, thereby limiting organ and seed growth. We further reveal that GIF1 physically interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), which acts as a central regulator of iron uptake and homeostasis. SOD7 can competitively repress the interaction of GIF1 with FIT to influence iron uptake and responses. The sod7-2 dpa4-3 mutant enhances the expression of genes involved in iron uptake and displays high iron accumulation. Genetic analyses support that GIF1 functions downstream of SOD7 to regulate organ and seed growth as well as iron uptake and responses. Thus, our findings define a previously unrecognized mechanism that the SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake by targeting key regulators of growth and iron uptake.
Collapse
Affiliation(s)
- Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Anbin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Nicolas A, Maugarny-Calès A, Adroher B, Chelysheva L, Li Y, Burguet J, Bågman AM, Smit ME, Brady SM, Li Y, Laufs P. De novo stem cell establishment in meristems requires repression of organ boundary cell fate. THE PLANT CELL 2022; 34:4738-4759. [PMID: 36029254 PMCID: PMC9709991 DOI: 10.1093/plcell/koac269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Stem cells play important roles in animal and plant biology, as they sustain morphogenesis and tissue replenishment following aging or injury. In plants, stem cells are embedded in multicellular structures called meristems. The formation of new meristems is essential for the plastic expansion of the highly branched shoot and root systems. In particular, axillary meristems (AMs) that produce lateral shoots arise from the division of boundary domain cells at the leaf base. The CUP-SHAPED COTYLEDON (CUC) genes are major determinants of the boundary domain and are required for AM initiation. However, how AMs get structured and how stem cells become established de novo remain elusive. Here, we show that two NGATHA-LIKE (NGAL) transcription factors, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2, redundantly repress CUC expression in initiating AMs of Arabidopsis thaliana. Ectopic boundary fate leads to abnormal growth and organization of the AM and prevents de novo stem cell establishment. Floral meristems of the dpa4 sod7 double mutant show a similar delay in de novo stem cell establishment. Altogether, while boundary fate is required for the initiation of AMs, our work reveals how it is later repressed to allow proper meristem establishment and de novo stem cell niche formation.
Collapse
Affiliation(s)
- Antoine Nicolas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
- Université Paris-Saclay, Orsay, 91405, France
| | - Aude Maugarny-Calès
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
- Université Paris-Saclay, Orsay, 91405, France
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Liudmila Chelysheva
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Yu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jasmine Burguet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Margot E Smit
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| |
Collapse
|
5
|
Tsednee M, Tanaka M, Giehl RF, von Wirén N, Fujiwara T. Involvement of NGATHA-Like 1 Transcription Factor in Boron Transport under Low and High Boron Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:1242-1252. [PMID: 35876035 DOI: 10.1093/pcp/pcac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
NGATHA-Like 1 (NGAL1) transcription factor has been identified as a gene regulated through AUG-stop-mediated boron (B)-dependent translation stall; however, its function in B response remains unknown. Here, we show that NGAL1 plays an important role in the maintenance of B transport under both low- and high-B conditions in Arabidopsis thaliana. NGAL1 mRNA is accumulated predominantly in shoots in response to B stress. Independent ngal1 mutants carrying transferred DNA (T-DNA) and Ds-transposon insertions exhibit reduced B concentrations in aerial tissues and produce shortened and reduced number of siliques when B supply is limited. Furthermore, the expression of B transporter genes including nodulin 26-like intrinsic protein 6; 1 (NIP6;1), NIP5;1, NIP7;1 and borate exporter 1 (BOR1) is significantly decreased in ngal1 mutants under low-B condition, suggesting that NGAL1 is required for the transcript accumulation of B transporter genes to facilitate B transport and distribution under B limitation. Under high-B condition, ngal1 mutants exhibit reduced growth and increased B concentration in their shoots. The accumulation of BOR4 mRNA, a B transporter required for B efflux to soil, is significantly reduced in roots of ngal1 plants under high-B condition, suggesting that NGAL1 is involved in the upregulation of BOR4 in response to excess B. Together, our results indicate that NGAL1 is involved in the transcriptional regulation of B transporter genes to facilitate B transport and distribution under both low- and high-B conditions.
Collapse
Affiliation(s)
- Munkhtsetseg Tsednee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Mayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ricardo Fh Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, Gatersleben, 06466, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, Gatersleben, 06466, Germany
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
6
|
Salava H, Thula S, Sánchez AS, Nodzyński T, Maghuly F. Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants. Int J Mol Sci 2022; 23:7063. [PMID: 35806066 PMCID: PMC9266525 DOI: 10.3390/ijms23137063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The NGATHA (NGA) transcription factor (TF) belongs to the ABI3/VP1 (RAV) transcriptional subfamily, a subgroup of the B3 superfamily, which is relatively well-studied in Arabidopsis. However, limited data are available on the contributions of NGA TF in other plant species. In this study, 207 NGA gene family members were identified from a genome-wide search against Arabidopsis thaliana in the genome data of 18 dicots and seven monocots. The phylogenetic and sequence alignment analyses divided NGA genes into different clusters and revealed that the numbers of genes varied depending on the species. The phylogeny was followed by the characterization of the Solanaceae (tomato, potato, capsicum, tobacco) and Poaceae (Brachypodium distachyon, Oryza sativa L. japonica, and Sorghum bicolor) family members in comparison with A. thaliana. The gene and protein structures revealed a similar pattern for NGA and NGA-like sequences, suggesting that both are conserved during evolution. Promoter cis-element analysis showed that phytohormones such as abscisic acid, auxin, and gibberellins play a crucial role in regulating the NGA gene family. Gene ontology analysis revealed that the NGA gene family participates in diverse biological processes such as flower development, leaf morphogenesis, and the regulation of transcription. The gene duplication analysis indicates that most of the genes are evolved due to segmental duplications and have undergone purifying selection pressure. Finally, the gene expression analysis implicated that the NGA genes are abundantly expressed in lateral organs and flowers. This analysis has presented a detailed and comprehensive study of the NGA gene family, providing basic knowledge of the gene, protein structure, function, and evolution. These results will lay the foundation for further understanding of the role of the NGA gene family in various plant developmental processes.
Collapse
Affiliation(s)
- Hymavathi Salava
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (S.T.); (A.S.S.); (T.N.)
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
7
|
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M, Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol 2022; 20:83. [PMID: 35399062 PMCID: PMC8996529 DOI: 10.1186/s12915-022-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.
Collapse
Affiliation(s)
- Stacey A Vincent
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Jong-Myong Kim
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Ac-Planta Inc., 2-16-9 Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Taiko Kim To
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chieko Torii
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaho A Endo
- Bioinformatics and Systems Engineering Division, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Present address: Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Prajwal Bhat
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Paul F Devlin
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
8
|
Arshad W, Lenser T, Wilhelmsson PKI, Chandler JO, Steinbrecher T, Marone F, Pérez M, Collinson ME, Stuppy W, Rensing SA, Theißen G, Leubner-Metzger G. A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:166-181. [PMID: 33945185 DOI: 10.1111/tpj.15283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.
Collapse
Affiliation(s)
- Waheed Arshad
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Teresa Lenser
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, D-35043, Germany
| | - Jake O Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Margaret E Collinson
- Department of Earth Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Wolfgang Stuppy
- Botanischer Garten der Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, D-44780, Germany
- The Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, D-35043, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Palacký University, Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
9
|
Lee E, Yang X, Ha J, Kim MY, Park KY, Lee SH. Identification of a Locus Controlling Compound Raceme Inflorescence in Mungbean [ Vigna radiata (L.) R. Wilczek]. Front Genet 2021; 12:642518. [PMID: 33763121 PMCID: PMC7982598 DOI: 10.3389/fgene.2021.642518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek] produces a compound raceme inflorescence that branches into secondary inflorescences, which produce flowers. This architecture results in the less-domesticated traits of asynchronous pod maturity and multiple harvest times. This study identified the genetic factors responsible for the compound raceme of mungbean, providing a unique biological opportunity to improve simultaneous flowering. Using a recombinant inbred line (RIL) population derived from VC1973A, an elite cultivar with a compound raceme type, and IT208075, a natural mutant with a simple raceme type, a single locus that determined the inflorescence type was identified based on 1:1 segregation ratio in the F8 generation, and designated Comraceme. Linkage map analysis showed Comraceme was located on chromosome 4 within a marker interval spanning 520 kb and containing 64 genes. RILs carrying heterozygous fragments around Comraceme produced compound racemes, indicating this form was dominant to the simple raceme type. Quantitative trait loci related to plant architecture and inflorescence have been identified in genomic regions of soybean syntenic to Comraceme. In IT208075, 15 genes were present as distinct variants not observed in other landrace varieties or wild mungbean. These genes included Vradi04g00002481, a development-related gene encoding a B3 transcriptional factor. The upstream region of Vradi04g00002481 differed between lines producing the simple and compound types of raceme. Expression of Vradi04g00002481 was significantly lower at the early vegetative stage and higher at the early reproductive stage, in IT208075 than in VC1973A. Vradi04g00002481 was therefore likely to determine inflorescence type in mungbean. Although further study is required to determine the functional mechanism, this finding provides valuable genetic information for understanding the architecture of the compound raceme in mungbean.
Collapse
Affiliation(s)
- Eunsoo Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Xuefei Yang
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Keum Yong Park
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Shao J, Meng J, Wang F, Shou B, Chen Y, Xue H, Zhao J, Qi Y, An L, Yu F, Liu X. NGATHA-LIKEs Control Leaf Margin Development by Repressing CUP-SHAPED COTYLEDON2 Transcription. PLANT PHYSIOLOGY 2020; 184:345-358. [PMID: 32611785 PMCID: PMC7479875 DOI: 10.1104/pp.19.01598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/24/2020] [Indexed: 06/01/2023]
Abstract
The leaf margin is a fascinating feature of leaf morphology, contributing to the incredible diversity of leaf shapes and forms. As a central regulator of plant organ separation and margin development, CUP-SHAPED COTYLEDON2 (CUC2), a NAM, ATAF1, 2, CUC2 (NAC)-family transcription factor, governs the extent of serrations along the leaf margin. CUC2 activity is tightly regulated at transcriptional and posttranscriptional levels. However, the molecular mechanism that controls CUC2 transcription during leaf development has not been fully elucidated. Here we report that Arabidopsis (Arabidopsis thaliana) NGATHA-LIKE1 (NGAL1) to NGAL3, which are three related B3 family transcription factors, act as negative regulators of leaf margin serration formation. Over-expression of NGALs led to "cup-shaped" cotyledons and smooth leaf margins, whereas the triple loss-of-function mutant ngaltri exhibited more serrated leaves than the wild type. RNA-sequencing analyses revealed that the expression levels of a number of transcription factor genes involved in leaf development are regulated by NGALs, including CUC2 Comparative transcriptome analyses further uncovered a significant overlap between NGAL- and CUC2-regulated genes. Moreover, genetic analyses using various combinations of gain- and loss-of-function mutants of NGALs and CUC2 confirmed that CUC2 acts downstream of NGALs in promoting the formation of leaf-margin serrations. Finally, we demonstrate that NGAL1 directly binds to the CUC2 promoter causing repressed CUC2 expression. In summary, direct CUC2 transcriptional repression by NGAL1 characterizes a further regulatory module controlling leaf margin development.
Collapse
Affiliation(s)
- Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bidong Shou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Guo T, Wang S, Li Y, Yuan J, Xu L, Zhang T, Chao Y, Han L. Expression of a NGATHA1 Gene from Medicago truncatula Delays Flowering Time and Enhances Stress Tolerance. Int J Mol Sci 2020; 21:ijms21072384. [PMID: 32235619 PMCID: PMC7177866 DOI: 10.3390/ijms21072384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/02/2022] Open
Abstract
Shoot branching is one of the most variable determinants of crop yield, and the signaling pathways of plant branches have become a hot research topic. As an important transcription factor in the B3 family, NGATHA1 (NGA1), plays an important role in regulating plant lateral organ development and hormone synthesis and transport, but few studies of the role of this gene in the regulation of plant growth and stress tolerance have been reported. In this study, the NGA1 gene was isolated from Medicago truncatula (Mt) and its function was characterized. The cis-acting elements upstream of the 5′ end of MtNGA1 and the expression pattern of MtNGA1 were analyzed, and the results indicated that the gene may act as a regulator of stress resistance. A plant expression vector was constructed and transgenic Arabidopsis plants were obtained. Transgenic Arabidopsis showed delayed flowering time and reduced branching phenotypes. Genes involved in the regulation of branching and flowering were differentially expressed in transgenic plants compared with wild-type plants. Furthermore, transgenic plants demonstrated strong tolerances to salt- and mannitol-induced stresses, which may be due to the upregulated expression of NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3) by the MtNGA1 gene. These results provide useful information for the exploration and genetic modification use of MtNGA1 in the future.
Collapse
Affiliation(s)
- Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Shumin Wang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yinruizhi Li
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Jianbo Yuan
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Tiejun Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
- Correspondence: (Y.C.); (L.H.); Tel.: +86-10-6233-6399 (Y.C.); +86-10-6233-6399 (L.H.)
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (T.G.); (Y.L.); (J.Y.); (L.X.); (T.Z.)
- Correspondence: (Y.C.); (L.H.); Tel.: +86-10-6233-6399 (Y.C.); +86-10-6233-6399 (L.H.)
| |
Collapse
|
12
|
The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis. G3-GENES GENOMES GENETICS 2019; 9:4029-4043. [PMID: 31604825 PMCID: PMC6893208 DOI: 10.1534/g3.119.400559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In eukaryotes, Polycomb group (PcG) and trithorax group (trxG) factors oppositely regulate gene transcription during development through histone modifications, with PcG factors repressing and trxG factors activating the expression of their target genes. Although plant trxG factors regulate many developmental and physiological processes, their downstream targets are poorly characterized. Here we use transcriptomics to identify genome-wide targets of the Arabidopsis thaliana trxG factor ULTRAPETALA1 (ULT1) during vegetative and reproductive development and compare them with those of the PcG factor CURLY LEAF (CLF). We find that genes involved in development and transcription regulation are over-represented among ULT1 target genes. In addition, stress response genes and defense response genes such as those in glucosinolate metabolic pathways are enriched, revealing a previously unknown role for ULT1 in controlling biotic and abiotic response pathways. Finally, we show that many ULT1 target genes can be oppositely regulated by CLF, suggesting that ULT1 and CLF may have antagonistic effects on plant growth and development in response to various endogenous and environmental cues.
Collapse
|
13
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|
14
|
Yang Y, Cui B, Tan Z, Song B, Cao H, Zong C. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum. BMC Genomics 2018; 19:930. [PMID: 30545307 PMCID: PMC6293651 DOI: 10.1186/s12864-018-5351-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Vaccinium uliginosum (Ericaceae) is an important wild berry having high economic value. The white-fruited V. uliginosum variety found in the wild lacks anthocyanin and bears silvery white fruits. Hence, it is a good resource for investigating the mechanism of fruit color development. This study aimed to verify the differences in the expression levels of some structural genes and transcription factors affecting the anthocyanin biosynthesis pathway by conducting high-throughput transcriptome sequencing and real-time PCR analysis by using the ripening fruits of V. uliginosum and the white-fruited variety. RESULTS We annotated 42,837 unigenes. Of the 325 differentially expressed genes, 41 were up-regulated and 284 were down-regulated. Further, 11 structural genes of the flavonoid pathway were up-regulated, whereas two were down-regulated. Of the seven genes encoding transcription factors, five were up-regulated and two were down-regulated. The structural genes VuCHS, VuF3'H, VuFHT, VuDFR, VuANS, VuANR, and VuUFGT and the transcription factors VubHLH92, VuMYB6, VuMYBPA1, VuMYB11, and VuMYB12 were significantly down-regulated. However, the expression of only VuMYB6 and VuMYBPA1 rapidly increased during the last two stages of V. uliginosum when the fruit was ripening, consistent with anthocyanin accumulation. CONCLUSIONS VuMYB6 was annotated as MYB1 by the BLAST tool. Thus, the white fruit color in the V. uliginosum variant can be attributed to the down-regulation of transcription factors VuMYB1 and VuMYBPA1, which leads to the down-regulation of structural genes associated with the anthocyanin synthesis pathway.
Collapse
Affiliation(s)
- Yang Yang
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Baihui Cui
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Zhiwen Tan
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Bingxue Song
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Hounan Cao
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Chengwen Zong
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| |
Collapse
|
15
|
Li T, Zhang Y, Wang D, Liu Y, Dirk LMA, Goodman J, Downie AB, Wang J, Wang G, Zhao T. Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:1540-1555. [PMID: 29122666 DOI: 10.1016/j.molp.2017.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 05/28/2023]
Abstract
Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE (GOLS), RAFFINOSE SYNTHASE (RS), and STACHYOSE SYNTHASE (STS) are the enzymes responsible for RFO biosynthesis in plants. Interestingly, only raffinose is detected in maize seeds, and a unique maize RS gene (ZmRS) was identified. In this study, we found that two independent mutator (Mu)-interrupted zmrs lines, containing no raffinose but hyperaccumulating galactinol, have significantly reduced seed vigor, compared with null segregant controls. Unlike maize, Arabidopsis thaliana seeds contain several RFOs (raffinose, stachyose, and verbascose). Manipulation of A. thaliana RFO content by overexpressing ZmGOLS2, ZmRS, or AtSTS demonstrated that co-overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, significantly increased the total content of RFOs and enhanced Arabidopsis seed vigor. Surprisingly, while overexpression of ZmRS increased seed raffinose content, its overexpression dramatically decreased seed vigor and reduced the seed amounts of galactinol, stachyose, and verbascose. In contrast, the atrs5 mutant seeds are similar to those of the wild type with regard to seed vigor and RFO content, except for stachyose, which accumulated in atrs5 seeds. Total RFOs, RFO/sucrose ratio, but not absolute individual RFO amounts, positively correlated with A. thaliana seed vigor, to which stachyose and verbascose contribute more than raffinose. Taken together, these results provide new insights into regulatory mechanisms of seed vigor and reveal distinct requirement for RFOs in modulating seed vigor in a monocot and a dicot.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jack Goodman
- Department of Plant and Soil Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jianmin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Wang R, Liu X, Liang S, Ge Q, Li Y, Shao J, Qi Y, An L, Yu F. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6327-43. [PMID: 26160579 DOI: 10.1093/jxb/erv344] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The growth of higher plants is under complex regulation to ensure the elaboration of developmental programmes under a changing environment. To dissect these regulatory circuits, we carried out genetic screens for Arabidopsis abnormal shoot (abs) mutants with altered shoot development. Here, we report the isolation of two dominant mutants, abs3-1D and abs4-1D, through activation tagging. Both mutants showed a 'bushy' loss of apical dominance phenotype. ABS3 and ABS4 code for two closely related putative Multidrug and Toxic Compound Extrusion (MATE) family of efflux transporters, respectively. ABS3 and ABS4, as well as two related MATE genes, ABS3-Like1 (ABS3L1) and ABS3L2, showed diverse tissue expression profiles but their gene products all localized to the late endosome/prevacuole (LE/PVC) compartment. The over-expression of these four genes individually led to the inhibition of hypocotyl cell elongation in the light. On the other hand, the quadruple knockout mutant (mateq) showed the opposite phenotype of an enhanced hypocotyl cell elongation in the light. Hypocotyl cell elongation and de-etiolation processes in the dark were also affected by the mutations of these genes. Exogenously applied sucrose attenuated the inhibition of hypocotyl elongation caused by abs3-1D and abs4-1D in the dark, and enhanced the hypocotyl elongation of mateq under prolonged dark treatment. We determined that ABS3 genetically interacts with the photoreceptor gene PHYTOCHROME B (PHYB). Our results demonstrate that ABS3 and related MATE family transporters are potential negative regulators of hypocotyl cell elongation and support a functional link between the endomembrane system, particularly the LE/PVC, and the regulation of plant cell elongation.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Ge
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanfeng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Ballester P, Navarrete-Gómez M, Carbonero P, Oñate-Sánchez L, Ferrándiz C. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. PHYSIOLOGIA PLANTARUM 2015; 155:21-32. [PMID: 25625546 DOI: 10.1111/ppl.12327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 05/10/2023]
Abstract
The NGATHA (NGA) clade of transcription factors (TFs) forms a small subfamily of four members in Arabidopsis thaliana. NGA genes act redundantly to direct the development of apical tissues in the gynoecium, where they have been shown to be essential for style and stigma specification. In addition, NGA genes have a more general role in controlling lateral organ growth. The four NGA genes in Arabidopsis are expressed in very similar domains, although little is known about the nature of their putative regulators. Here, we have identified a conserved region within the four NGA promoters that we have used as a bait to screen a yeast library, aiming to identify such NGA regulators. Three members of the TCP family of TFs, named after the founding factors TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTOR 1 AND 2), were recovered from this screening, of which two [TCP2 and TCP3, members of the CINCINNATA (CIN) family of TCP genes (CIN-TCP) subclade] were shown to activate the NGA3 promoter in planta. We provide evidence that support that CIN-TCP genes are true regulators of NGA gene expression, and that part of the CIN-TCP role in leaf development is mediated by NGA upregulation. Moreover, we have found that this TCP-NGA regulatory interaction is likely conserved in angiosperms, including important crop species, for which the regulation of leaf development is a target for biotechnological improvement.
Collapse
Affiliation(s)
- Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Marisa Navarrete-Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, 46022, Spain
| |
Collapse
|
18
|
Kumari A, Kumar J, Kumar A, Chaudhury A, Singh SP. Grafting triggers differential responses between scion and rootstock. PLoS One 2015; 10:e0124438. [PMID: 25874958 PMCID: PMC4395316 DOI: 10.1371/journal.pone.0124438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Grafting is a well-established practice to facilitate asexual propagation in horticultural and agricultural crops. It has become a method for studying molecular aspects of root-to-shoot and/or shoot-to-root signaling events. The objective of this study was to investigate differences in gene expression between the organs of the scion and rootstock of a homograft (Arabidopsis thaliana). MapMan and Gene Ontology enrichment analysis revealed differentially expressed genes from numerous functional categories related to stress responses in the developing flower buds and leaves of scion and rootstock. Meta-analysis suggested induction of drought-type responses in flower buds and leaves of the scion. The flower buds of scion showed over-representation of the transcription factor genes, such as Homeobox, NAC, MYB, bHLH, B3, C3HC4, PLATZ etc. The scion leaves exhibited higher accumulation of the regulatory genes for flower development, such as SEPALLATA 1-4, Jumonji C and AHL16. Differential transcription of genes related to ethylene, gibberellic acid and other stimuli was observed between scion and rootstock. The study is useful in understanding the molecular basis of grafting and acclimation of scion on rootstock.
Collapse
Affiliation(s)
- Anita Kumari
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ashok Chaudhury
- Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sudhir P. Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- * E-mail:
| |
Collapse
|
19
|
An R, Liu X, Wang R, Wu H, Liang S, Shao J, Qi Y, An L, Yu F. The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PLoS One 2014; 9:e107637. [PMID: 25268707 PMCID: PMC4182325 DOI: 10.1371/journal.pone.0107637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Proper leaf development is essential for plant growth and development, and leaf morphogenesis is under the control of intricate networks of genetic and environmental cues. We are interested in dissecting these regulatory circuits genetically and report here the isolation of two Arabidopsis dominant mutants, abnormal shoot5-1D (abs5-1D) and abs7-1D identified through activation tagging screens. Both abs5-1D and abs7-1D display an intriguing upwardly curly leaf phenotype. Molecular cloning showed that the elevated expression of a bHLH transcription factor ABS5/T5L1/bHLH30 or a MYB transcription factor ABS7/MYB101 is the cause for the abnormal leaf phenotypes found in abs5-1D or abs7-1D, respectively. Protoplast transient expression assays confirmed that both ABS5/T5L1 and ABS7/MYB101 are targeted to the nucleus. Interestingly, the expression domains of auxin response reporter DR5::GUS were abnormal in leaves of abs5-1D and ABS5/T5L1 over-expression lines. Moreover, cotyledon venation analysis showed that more areoles and free-ending veins are formed in abs5-1D. We found that the epidermis-specific expressions of ABS5/T5L1 or ABS7/MYB101 driven by the Arabidopsis Meristem Layer 1 promoter (PAtML1) were sufficient to recapitulate the curly leaf phenotype of abs5-1D or abs7-1D. In addition, PAtML1::ABS5 lines exhibited similar changes in DR5::GUS expression patterns as those found in 35S-driven ABS5/T5L1 over-expression lines. Our work demonstrated that enhanced expressions of two transcription factors, ABS5/T5L1 and ABS7/MYB101, are able to alter leaf lamina development and reinforce the notion that leaf epidermis plays critical roles in regulating plant organ morphogenesis.
Collapse
Affiliation(s)
- Rui An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haicui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G, Li B, Qin J, Xia M, Zhou J, Liu J, Jiang S, Mo H, Cui J, Nagasawa N, Sivasankar S, Albertsen MC, Sakai H, Mazur BJ, Lassner MW, Broglie RM. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. PLANT CELL REPORTS 2014; 33:617-31. [PMID: 24682459 DOI: 10.1007/s00299-014-1586-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/26/2023]
Abstract
A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis. Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.
Collapse
Affiliation(s)
- Guihua Lu
- Beijing Kaituo DNA Biotech Research Center, Co., Ltd., Beijing, 102206, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|