1
|
Mohd Faizal NF, Shai S, Savaliya BP, Karen-Ng LP, Kumari R, Kumar R, Vincent-Chong VK. A Narrative Review of Prognostic Gene Signatures in Oral Squamous Cell Carcinoma Using LASSO Cox Regression. Biomedicines 2025; 13:134. [PMID: 39857718 PMCID: PMC11759772 DOI: 10.3390/biomedicines13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck squamous cell carcinoma (HNSCC). HNSCC is recognized as the eighth most commonly occurring cancer globally in men. It is essential to distinguish between cancers arising in the head and neck regions due to significant differences in their etiologies, treatment approaches, and prognoses. As the Cancer Genome Atlas (TCGA) dataset is available in HNSCC, the survival analysis prognosis of OSCC patients based on the TCGA dataset for discovering gene expression-based prognostic biomarkers is limited. To address this paucity, we aimed to provide comprehensive evidence by recruiting studies that have reported new biomarkers/signatures to establish a prognostic model to predict the survival of OSCC patients. Using PubMed search, we have identified 34 studies that have been using the least absolute shrinkage and selection operator (LASSO)-based Cox regression analyses to establish signature prognosis that related to different pathways in OSCC from the past 4 years. Our review was focused on summarizing these signatures and implications for targeted therapy using FDA-approved drugs. Furthermore, we conducted an analysis of the LASSO Cox regression gene signatures. Our findings revealed 13 studies that correlated a greater number of regulatory T cells (Tregs) cells in protective gene signatures with increased recurrence-free and overall survival rates. Conversely, two studies displayed an opposing trend in cases of OSCC. We will also explore how the dysregulation of these signatures impacts immune status, promoting tumor immune evasion or, conversely, enhancing immune surveillance. Overall, this review will provide new insight for future anti-cancer therapies based on the potential gene that is associated with poor prognosis in OSCC.
Collapse
Affiliation(s)
- Nur Fatinazwa Mohd Faizal
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Saptarsi Shai
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Bansi P. Savaliya
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Rupa Kumari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Vui King Vincent-Chong
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Stanisavljevic I, Pavlovic S, Simovic Markovic B, Jurisevic M, Krajnovic T, Mijatovic S, Spasojevic M, Mitrovic S, Corovic I, Jovanovic I. Semaglutide decelerates the growth and progression of breast cancer by enhancing the acquired antitumor immunity. Biomed Pharmacother 2024; 181:117668. [PMID: 39536536 DOI: 10.1016/j.biopha.2024.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Semaglutide, a glucagon-like peptide 1 receptor agonist, is an antidiabetic that has recently shown promising immunomodulatory and antitumor effects. Breast cancer is the most common type of cancer affecting women worldwide. The aim of this study was to analyze the effects of semaglutide on the antitumor immunity in a 4T1 mouse breast cancer model. After induction of breast cancer, BALB/C mice were treated intraperitoneally with semaglutide. Semaglutide administration decelerated tumor appearance, growth and progression. The antidiabetic drug showed neither a direct cytotoxic effect in vitro, nor an angiogenic effect. Furthermore, depletion of NK cells had no affect on tumor growth in semaglutide treated mice suggesting a non-NK cell-dependent mechanism. However, semaglutide increased the accumulation and maturation of CD11c+ dendritic cell, while decreasing the percentage of FoxP3+ regulatory T cells in the spleen and primary tumor. In addition, semaglutide increased tumor infiltration and promoted the antitumor phenotype of T cells, in vivo. Furthermore, semaglutide enhanced the cytotoxic capacity of CD8+ T cells, in vitro. These results suggest that semaglutide enhances the acquired antitumor immune response and has potential for the future treatment of malignancies.
Collapse
Affiliation(s)
- Isidora Stanisavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| | - Sladjana Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| | - Milena Jurisevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia; Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| | - Tamara Krajnovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade 11108, Serbia.
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade 11108, Serbia.
| | - Marija Spasojevic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| | - Irfan Corovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia; General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, Novi Pazar 36300, Serbia.
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.
| |
Collapse
|
3
|
Yamazaki S. Diverse roles of dendritic cell and regulatory T cell crosstalk in controlling health and disease. Int Immunol 2024; 37:5-14. [PMID: 38953561 DOI: 10.1093/intimm/dxae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells for lymphocytes, including regulatory T (Treg) cells, a subset of CD4+ T cells expressing CD25 and Foxp3, a transcription factor. Treg cells maintain immunological self-tolerance in mice and humans, and suppress autoimmunity and other various immune responses such as tumor immunity, transplant rejection, allergy, responses to microbes, and inflammation. Treg-cell proliferation is controlled by antigen-presenting DCs. On the other hand, Treg cells suppress the function of DCs by restraining DC maturation. Therefore, the interaction between DCs and Treg cells, DC-Treg crosstalk, could contribute to controlling health and disease. We recently found that unique DC-Treg crosstalk plays a role in several conditions. First, Treg cells are expanded in ultraviolet B (UVB)-exposed skin by interacting with DCs, and the UVB-expanded Treg cells have a healing function. Second, manipulating DC-Treg crosstalk can induce effective acquired immune responses against severe acute respiratory syndrome coronavirus 2 antigens without adjuvants. Third, Treg cells with a special feature interact with DCs in the tumor microenvironment of human head and neck cancer, which may contribute to the prognosis. Understanding the underlying mechanisms of DC-Treg crosstalk may provide a novel strategy to control health and disease.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
4
|
Microbiota-dependent and -independent postnatal development of salivary immunity. Cell Rep 2023; 42:111981. [PMID: 36640306 DOI: 10.1016/j.celrep.2022.111981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
While saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota. Production of salivary IgA begins following weaning and relies on CD4-help, IL-17, and the microbiota. The weaning phase is characterized by a transient accumulation of dendritic cells capable of migrating from the oral mucosa to the salivary glands upon exposure to microbial challenges and activating T cells. This study reveals the postnatal mechanisms developed in the salivary glands to induce immunity and proposes the salivary glands as an immune inductive site.
Collapse
|
5
|
Furgiuele S, Descamps G, Lechien JR, Dequanter D, Journe F, Saussez S. Immunoscore Combining CD8, FoxP3, and CD68-Positive Cells Density and Distribution Predicts the Prognosis of Head and Neck Cancer Patients. Cells 2022; 11:2050. [PMID: 35805132 PMCID: PMC9266282 DOI: 10.3390/cells11132050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023] Open
Abstract
We assessed immune cell infiltrates to develop an immunoscore for prognosis and to investigate its correlation with the clinical data of patients with head and neck cancer. CD8, FoxP3, and CD68 markers were evaluated by immunohistochemistry in 258 carcinoma samples and positive cells were counted in stromal and intra-tumoral compartments. The RStudio software was used to assess optimal cut-offs to divide the population according to survival while the prognostic value was established by using Kaplan-Meier curves and Cox regression models for each immune marker alone and in combination. We found with univariate analysis that the infiltration of immune cells in both compartments was predictive for recurrence-free survival and overall survival. Multivariate analysis revealed that CD8+ density was an independent prognostic marker. Additionally, the combination of CD8, FoxP3, and CD68 in an immunoscore provided a significant association with overall survival (p = 0.002, HR = 9.87). Such an immunoscore stayed significant (p = 0.018, HR = 11.17) in a multivariate analysis in comparison to tumor stage and histological grade, which had lower prognostic values. Altogether, our analysis indicated that CD8, FoxP3, and CD68 immunoscore was a strong, independent, and significant prognostic marker that could be introduced into the landscape of current tools to improve the clinical management of head and neck cancer patients.
Collapse
Affiliation(s)
- Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.F.); (G.D.); (F.J.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.F.); (G.D.); (F.J.)
| | - Jerome R. Lechien
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
| | - Didier Dequanter
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.F.); (G.D.); (F.J.)
- Laboratory of Clinical and Experimental Oncology, Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.F.); (G.D.); (F.J.)
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
| |
Collapse
|
6
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Recent Advances in Psoriasis Research; the Clue to Mysterious Relation to Gut Microbiome. Int J Mol Sci 2020; 21:ijms21072582. [PMID: 32276410 PMCID: PMC7177330 DOI: 10.3390/ijms21072582] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory cutaneous disease, characterized by activated plasmacytoid dendritic cells, myeloid dendritic cells, Th17 cells, and hyperproliferating keratinocytes. Recent studies revealed skin-resident cells have pivotal roles in developing psoriatic skin lesions. The balance in effector T cells and regulatory T cells is disturbed, leading Foxp3-positive regulatory T cells to produce proinflammatory IL-17. Not only acquired but also innate immunity is important in psoriasis pathogenesis, especially in triggering the disease. Group 3 innate lymphoid cell are considered one of IL-17-producing cells in psoriasis. Short chain fatty acids produced by gut microbiota stabilize expression of Foxp3 in regulatory T cells, thereby stabilizing their function. The composition of gut microbiota influences the systemic inflammatory status, and associations been shown with diabetes mellitus, cardiovascular diseases, psychomotor diseases, and other systemic inflammatory disorders. Psoriasis has been shown to frequently comorbid with diabetes mellitus, cardiovascular diseases, psychomotor disease and obesity, and recent report suggested the similar abnormality in gut microbiota as the above comorbid diseases. However, the precise mechanism and relation between psoriasis pathogenesis and gut microbiota needs further investigation. This review introduces the recent advances in psoriasis research and tries to provide clues to solve the mysterious relation of psoriasis and gut microbiota.
Collapse
|
8
|
Avila-Calderón ED, Flores-Romo L, Sharon W, Donis-Maturano L, Becerril-García MA, Arreola MGA, Reynoso BA, Güemes FS, Contreras-Rodríguez A. Dendritic cells and Brucella spp. interaction: the sentinel host and the stealthy pathogen. Folia Microbiol (Praha) 2020; 65:1-16. [PMID: 30783994 PMCID: PMC7224029 DOI: 10.1007/s12223-019-00691-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/06/2019] [Indexed: 01/18/2023]
Abstract
As dendritic cells (DCs) are among the first cells to encounter antigens, these cells trigger both innate and T cell responses, and are the most potent antigen-presenting cells. Brucella spp., which is an intracellular facultative and stealthy pathogen, is able to evade the bactericidal activities of professional phagocytes. Several studies have demonstrated that Brucella can survive and replicate intracellularly, thereby provoking impaired maturation of DCs. Therefore, the interaction between DCs and Brucella becomes an interesting model to study the immune response. In this review, we first will describe the most common techniques for DCs differentiation in vitro as well as general features of brucellosis. Then, the interaction of DCs and Brucella, including pathogen recognition, molecular mechanisms of bacterial pathogenesis, and intracellular trafficking of Brucella to subvert innate response, will be reviewed. Finally, we will debate diversity in immunological DC response and the controversial role of DC activation against Brucella infection.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Av. IPN No 2508, Zacatenco, C.P 07330, Mexico city, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Santo Tomás, 11340, Mexico city, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Av. IPN No 2508, Zacatenco, C.P 07330, Mexico city, Mexico
| | - Witonsky Sharon
- Center for Molecular Medicine and Infectious Diseases/Center for One Health, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061-0442, USA
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061-0442, USA
| | - Luis Donis-Maturano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Miguel Angel Becerril-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Avenida Francisco I Madero y Dr. Aguirre Pequeño S/N Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Ma Guadalupe Aguilera Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Santo Tomás, 11340, Mexico city, Mexico
| | - Beatriz Arellano Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico city, Mexico
| | - Francisco Suarez Güemes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico city, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Santo Tomás, 11340, Mexico city, Mexico.
| |
Collapse
|
9
|
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent Regulation of T regs and Th17 Cells in Mucosa. Front Immunol 2019; 10:426. [PMID: 30906299 PMCID: PMC6419713 DOI: 10.3389/fimmu.2019.00426] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Mammals co-exist with resident microbial ecosystem that is composed of an incredible number and diversity of bacteria, viruses and fungi. Owing to direct contact between resident microbes and mucosal surfaces, both parties are in continuous and complex interactions resulting in important functional consequences. These interactions govern immune homeostasis, host response to infection, vaccination and cancer, as well as predisposition to metabolic, inflammatory and neurological disorders. Here, we discuss recent studies on direct and indirect effects of resident microbiota on regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We review mechanisms by which commensal microbes influence mucosa in the context of bioactive molecules derived from resident bacteria, immune senescence, chronic inflammation and cancer. Lastly, we discuss potential therapeutic applications of microbiota alterations and microbial derivatives, for improving resilience of mucosal immunity and combating immunopathology.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of Short Chain Fatty Acids in Controlling T regs and Immunopathology During Mucosal Infection. Front Microbiol 2018; 9:1995. [PMID: 30197637 PMCID: PMC6117408 DOI: 10.3389/fmicb.2018.01995] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023] Open
Abstract
Interactions between mucosal tissues and commensal microbes control appropriate host immune responses and inflammation, but very little is known about these interactions. Here we show that the depletion of resident bacteria using antibiotics (Abx) causes oral and gut immunopathology during oropharyngeal candidiasis (OPC) infection. Antibiotic treatment causes reduction in the frequency of Foxp3+ regulatory cells (Tregs) and IL-17A producers, with a concomitant increase in oral tissue pathology. While C. albicans (CA) is usually controlled in the oral cavity, antibiotic treatment led to CA dependent oral and gut inflammation. A combination of short chain fatty acids (SCFA) controlled the pathology in Abx treated mice, correlating to an increase in the frequency of Foxp3+, IL-17A+, and Foxp3+IL-17A+ double positive (Treg17) cells in tongue and oral draining lymph nodes. However, SCFA treatment did not fully reverse the gut inflammation suggesting that resident microbiota have SCFA independent homeostatic mechanisms in gut mucosa. We also found that SCFA potently induce Foxp3 and IL-17A expression in CD4+ T cells, depending on the cytokine milieu in vitro. Depletion of Tregs alone in FDTR mice recapitulated oral inflammation in CA infected mice, showing that Abx mediated reduction of Tregs was involved in infection induced pathology. SCFA did not control inflammation in Treg depleted mice in CA infected FDTR mice, showing that Foxp3+ T cell induction was required for the protective effect mediated by SCFA. Taken together, our data reveal that SCFA derived from resident bacteria play a critical role in controlling immunopathology by regulating T cell cytokines during mucosal infections. This study has broader implications on protective effects of resident microbiota in regulating pathological infections.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Cheriese Quigley
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Clarissa Paw
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Shivani Butala
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Sakurai D, Uchida R, Ihara F, Kunii N, Nakagawa T, Chazono H, Hanazawa T, Motohashi S, Okamoto Y. Immunosuppressive property of submandibular lymph nodes in patients with head and neck tumors: differential distribution of regulatory T cells. BMC Res Notes 2018; 11:479. [PMID: 30012191 PMCID: PMC6048882 DOI: 10.1186/s13104-018-3587-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Objective Different sensitizations and immune responses are thought to be induced in response to antigens at different mucosal sites between the oral floor and nose. The aim of this study was to investigate differences in the distributions of lymphocyte subsets in the submandibular (SM) and upper jugular (UJ) lymph nodes (LNs), which are supposed to be regional LNs of the oral floor and nasal mucosa, respectively. SMLNs and UJLNs were collected from patients with head and neck tumors who underwent surgical resection. The populations of T cells, Natural Killer (NK) cells, Natural Killer T (NKT) cells, regulatory T cells (Tregs) and dendritic cells (DCs) in LNs without metastasis were analyzed by flow cytometry. The high-affinity IgE receptor (FcεRI) expression of LN cells were also evaluated. Results The proportions of CD4+CD25+Foxp3+ Tregs, CD4+CD45RA−Foxp3high effector Tregs and FcεRIα+CD33+CD11c+ DCs were significantly larger in SMLNs compared with UJLNs, while those of CD3+ T cells, CD3−CD56+ NK cells, CD3+Vα24+Vβ11+ NKT cells, and CD123+CD303+ DCs did not show any significant differences between SMLNs and UJLNs. The differential distributions of CD4+CD25+Foxp3+ Tregs were observed regardless of tumor region, LN metastasis and clinical staging. These data indicate that SMLNs may have immunosuppressive properties compared with UJLNs. Electronic supplementary material The online version of this article (10.1186/s13104-018-3587-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryosuke Uchida
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Fumie Ihara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoki Kunii
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hideaki Chazono
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
12
|
Brown JL, Campbell L, Malcolm J, Adrados Planell A, Butcher JP, Culshaw S. Enrichment of Innate Lymphoid Cell Populations in Gingival Tissue. J Dent Res 2018; 97:1399-1405. [PMID: 29928824 DOI: 10.1177/0022034518782141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a population of lymphocytes that act as the first line of immunologic defense at mucosal surfaces. The ILC family in the skin, lungs, and gastrointestinal tissues has been investigated, and there are reports of individual subsets of ILCs in the oral tissues. We sought to investigate the whole ILC population (group 1, 2, and 3 subsets) in the murine gingivae and the lymph nodes draining the oral cavity. We show that ILCs made up a greater proportion of the whole CD45+ lymphocyte population in the murine gingivae (0.356% ± 0.039%) as compared with the proportion of ILCs in the draining lymph nodes (0.158% ± 0.005%). Cytokine profiling of the ILC populations demonstrated different proportions of ILC subsets in the murine gingivae versus the regional lymph nodes. The majority of ILCs in the draining lymph nodes expressed IL-5, whereas there were equal proportions of IFN-γ- and IL-5 expressing ILCs in the oral mucosa. The percentage of IL-17+ ILCs was comparable between the murine gingivae and the oral draining lymph nodes. These data suggest an enrichment of ILCs in the murine gingivae, and these ILCs reflect a cytokine profile discrepant to that of the local draining lymph nodes. These studies indicate diversity and enrichment of ILCs at the oral mucosal surface. The function of ILCs in the oral cavity remains to be determined; here, we provide a premise of ILC populations that merits future consideration in investigations of mouse models and human tissues.
Collapse
Affiliation(s)
- J L Brown
- 1 Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, UK.,2 Institute of Infection, Immunity, and Inflammation and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - L Campbell
- 2 Institute of Infection, Immunity, and Inflammation and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J Malcolm
- 2 Institute of Infection, Immunity, and Inflammation and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A Adrados Planell
- 2 Institute of Infection, Immunity, and Inflammation and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J P Butcher
- 1 Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, UK.,3 Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - S Culshaw
- 2 Institute of Infection, Immunity, and Inflammation and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Bankvall M, Jontell M, Wold A, Östman S. Tissue-specific Differences in Immune Cell Subsets Located in the Naso-oropharyngeal-associated Lymphoid Tissues. Scand J Immunol 2017; 87:15-27. [PMID: 29077981 DOI: 10.1111/sji.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
Defining the immune cells within the naso-oropharyngeal-associated lymphoid tissues would promote the development of efficient orally and nasally delivered immunotherapies. The aim was to compare murine antigen-presenting cells (APCs) and T cell subsets in the nose-associated lymphoid tissues (NALT), cervical lymph nodes (CLN), mesenteric lymph nodes (MLN) and peripheral lymph nodes (PLN) using flow cytometry and in vitro proliferation assays. Overall, the NALT contained a higher proportion of APCs and a lower proportion of T cells compared to the CLN, MLN and PLN. The APCs of the NALT more often belonged to the CD11c+ CD11b+ and the CD11cneg CD11b+ subsets as compared to the other sites. Both of these APC populations showed little sign of activation, that is low expression of the markers CD40, CD86 and IAd. Instead, the APCs of the NALT more often co-expressed CX3CR1 and CD206, markers associated with a tolerogenic function. No increase in the proportion of regulatory T cells was observed in the NALT. Instead, the T cells frequently exhibited a memory/effector phenotype, expressing the homing markers α4β7, CCR4 and CCR9, but rarely the naïve phenotype cell surface marker CD45RB. In contrast, the T cells at the other sites were mostly of the naïve phenotype. In addition, cells from the NALT did not proliferate upon in vitro stimulation with Con A, whereas the cells from the other sites did. Taken together, these results suggest that the NALT is primarily an effector site rather than one for activation and differentiation, despite it being regarded as a site of induction.
Collapse
Affiliation(s)
- M Bankvall
- Department of Oral Medicine & Pathology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Jontell
- Department of Oral Medicine & Pathology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Wold
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S Östman
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Yang J, Zhang H, Jiang L, Guo H, Luo X, Ren F. Bifidobacterium longum BBMN68-specific modulated dendritic cells alleviate allergic responses to bovine β-lactoglobulin in mice. J Appl Microbiol 2016; 119:1127-37. [PMID: 26248977 DOI: 10.1111/jam.12923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
AIMS This study was designed to demonstrate the protective effects of Bifidobacterium longum BBMN68-specific modulated dendritic cells (DCs) on allergic inflammation in β-lactoglobulin (BLG)-sensitized mice. METHODS AND RESULTS BALB/c mice were sensitized to BLG in accordance with a model of food allergy protocol and given oral BBMN68 daily. BBMN68 was found to significantly reduce BLG-specific hypersensitivity reactions by suppressing the aberrant balance of Th1/Th2 responses with increasing the number of CD4+CD25+Foxp3+ Treg cells in mesenteric lymph nodes (MLN) by 48·1%. The level of CD103+DCs was up-regulated by 136·7 and 56·2% in payer's patches and MLN, respectively, in response to the lower expression levels of cell-surface molecules (CD86 and MHC-II) induced by BBMN68 supplementation. The CD11c+DCs isolated from BBMN68 mice showed 45·6% more Foxp3+ expression in vitro. CONCLUSIONS These data suggest that BBMN68-specific induction of CD11c+CD103+DCs and semi-mature DCs reduce BLG allergic reactions. SIGNIFICANCE AND IMPACT OF THE STUDY These data confirm that BBMN68 may be a suitable therapeutic approach to the alleviation of food allergies, and BBMN68-specific induction of CD11c+CD103+DCs and semi-mature DCs are associated with this protection.
Collapse
Affiliation(s)
- J Yang
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - H Zhang
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - L Jiang
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - H Guo
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - X Luo
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - F Ren
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
von Bargen K, Gagnaire A, Arce-Gorvel V, de Bovis B, Baudimont F, Chasson L, Bosilkovski M, Papadopoulos A, Martirosyan A, Henri S, Mège JL, Malissen B, Gorvel JP. Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections. PLoS One 2015; 10:e0121790. [PMID: 25919005 PMCID: PMC4412401 DOI: 10.1371/journal.pone.0121790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/23/2022] Open
Abstract
Cervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy. Among orally infected children, lymphadenopathy with CLN being the only lymph nodes affected was significantly more frequent as compared to those infected by contact with animals (83% vs. 63%), suggesting a possible involvement of CLN during orally acquired human brucellosis. Using a murine model where bacteria are delivered into the oral cavity, we show that Brucella quickly and selectively colonize the CLN where they proliferate and persist over long periods of time for up to 50 days post-infection. A similar efficient though less specific drainage to CLN was found for Brucella, Salmonella typhimurium and fluorescent microspheres delivered by gavage, a pathway likely representing a mixed infection mode of intragastric and oral infection, suggesting a central pathway of drained material. Microspheres as well as bacteria drained to CLN predominately reside in cells expressing CD68 and no or low levels of CD11c. Even though no systemic response could be detected, Brucella induced a locally restricted inflammatory reaction with increased expression levels of interferon γ, interleukin (IL)-6, IL-12, granzyme B and a delayed induction of Nos2. Inflammation led to pronounced lymphadenopathy, infiltration of macrophages/monocytes expressing high levels of major histocompatibility complex II and to formation of epitheloid granulomas. Together, these results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens. They likewise cast a new light on the significance of oral routes for means of vaccination.
Collapse
Affiliation(s)
- Kristine von Bargen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Aurélie Gagnaire
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Béatrice de Bovis
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Fannie Baudimont
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of Macedonia
| | - Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Anna Martirosyan
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Louis Mège
- Unité des Rickettsies, Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), UMR6020, Faculté de Médecine, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail:
| |
Collapse
|
16
|
Yamazaki S, Morita A. Dendritic cells in the periphery control antigen-specific natural and induced regulatory T cells. Front Immunol 2013; 4:151. [PMID: 23801989 PMCID: PMC3689032 DOI: 10.3389/fimmu.2013.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence of specialized DC subsets that act to expand Natural T-regs or induce Foxp3+ T-regs from Foxp3− CD4+ T cells. For example, two major subsets of DCs in lymphoid organs act differentially in inducing Foxp3+ T-regs from Foxp3− cells or expanding Natural T-regs with model-antigen delivery by anti-DC subset monoclonal antibodies in vivo. Furthermore, DCs expressing CD103 in the intestine induce Foxp3+ T-regs from Foxp3− CD4+ T cells with endogenous TGF-β and retinoic acid. In addition, antigen-presenting DCs have a capacity to generate Foxp3+ T-regs in the oral cavity where many antigens and commensals exist, similar to intestine and skin. In skin and skin-draining lymph nodes, at least six DC subsets have been identified, suggesting a complex DC-T-reg network. Here, we will review the specific activity of DCs in expanding Natural T-regs and inducing Foxp3+ T-regs from Foxp3− precursors, and further discuss the critical function of DCs in maintaining tolerance at various locations including skin and oral cavity.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University , Nagoya , Japan
| | | |
Collapse
|
17
|
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 2013; 8:840-56. [PMID: 23695293 PMCID: PMC7088878 DOI: 10.1007/s11481-013-9470-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/28/2013] [Indexed: 12/25/2022]
Abstract
Despite the absence of conventional lymphatics, there is efficient drainage of both cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the CNS to regional lymph nodes. CSF drains from the subarachnoid space by channels that pass through the cribriform plate of the ethmoid bone to the nasal mucosa and cervical lymph nodes in animals and in humans; antigen presenting cells (APC) migrate along this pathway to lymph nodes. ISF and solutes drain from the brain parenchyma to cervical lymph nodes by a separate route along 100–150 nm wide basement membranes in the walls of cerebral capillaries and arteries. This pathway is too narrow for the migration of APC so it is unlikely that APC traffic directly from brain parenchyma to lymph nodes by this route. We present a model for the pivotal involvement of regional lymph nodes in immunological reactions of the CNS. The role of regional lymph nodes in immune reactions of the CNS in virus infections, the remote influence of the gut microbiota, multiple sclerosis and stroke are discussed. Evidence is presented for the role of cervical lymph nodes in the induction of tolerance and its influence on neuroimmunological reactions. We look to the future by examining how nanoparticle technology will enhance our understanding of CNS-lymph node connections and by reviewing the implications of lymphatic drainage of the brain for diagnosis and therapy of diseases of the CNS ranging from neuroimmunological disorders to dementias. Finally, we review the challenges and opportunities for progress in CNS-lymph node interactions and their involvement in disease processes.
Collapse
Affiliation(s)
- Jon D. Laman
- Department of Immunology, room NB-1148a Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Roy O. Weller
- Clinical Neurosciences, Faculty of Medicine, Southampton University, Mailpoint 813, Southampton General Hospital, Southampton, SO16 6YD UK
| |
Collapse
|