1
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
2
|
Weeratunga P, Harman RM, Van de Walle GR. Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front Vet Sci 2023; 10:1129287. [PMID: 36891466 PMCID: PMC9986305 DOI: 10.3389/fvets.2023.1129287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Ruminant livestock, including cattle, sheep, goat, and buffalo, are essential for global food security and serve valuable roles in sustainable agricultural systems. With the limited availability of embryonic stem cells (ESCs) from these species, ruminant induced pluripotent stem cells (iPSCs) and iPSC-like cells provide a valuable research tool for agricultural, veterinary, biomedical, and pharmaceutical applications, as well as for the prospect of translation to human medicine. iPSCs are generated by reprogramming of adult or fetal cells to an ESC-like state by ectopic expression of defined transcription factors. Despite the slow pace the field has evolved in livestock species compared to mice and humans, significant progress has been made over the past 15 years in using different cell sources and reprogramming protocols to generate iPSCs/iPSC-like cells from ruminants. This mini review summarizes the current literature related to the derivation of iPSCs/iPSC-like cells from domesticated ruminants with a focus on reprogramming protocols, characterization, associated limitations, and potential applications in ruminant basic science research and production.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
An Alternate Approach to Generate Induced Pluripotent Stem Cells with Precise CRISPR/Cas9 Tool. Stem Cells Int 2022; 2022:4537335. [PMID: 36187228 PMCID: PMC9522500 DOI: 10.1155/2022/4537335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The induced pluripotent stem cells (iPSCs) are considered powerful tools in pharmacology, biomedicine, toxicology, and cell therapy. Multiple approaches have been used to generate iPSCs with the expression of reprogramming factors. Here, we generated iPSCs by integrating the reprogramming cassette into a genomic safe harbor, CASH-1, with the use of a precise genome editing tool, CRISPR/Cas9. The integration of cassette at CASH-1 into target cells did not alter the pattern of proliferation and interleukin-6 secretion as a response to ligands of multiple signaling pathways involving tumor necrosis factor-α receptor, interleukin-1 receptor, and toll-like receptors. Moreover, doxycycline-inducible expression of OCT4, SOX2, and KLF4 reprogrammed engineered human dermal fibroblasts and human embryonic kidney cell line into iPSCs. The generated iPSCs showed their potential to make embryoid bodies and differentiate into the derivatives of all three germ layers. Collectively, our data emphasize the exploitation of CASH-1 by CRISPR/Cas9 tool for therapeutic and biotechnological applications including but not limited to reprogramming of engineered cells into iPSCs.
Collapse
|
4
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
5
|
Lin HC, He Z, Ebert S, Schörnig M, Santel M, Nikolova MT, Weigert A, Hevers W, Kasri NN, Taverna E, Camp JG, Treutlein B. NGN2 induces diverse neuron types from human pluripotency. Stem Cell Reports 2021; 16:2118-2127. [PMID: 34358451 PMCID: PMC8452516 DOI: 10.1016/j.stemcr.2021.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Human neurons engineered from induced pluripotent stem cells (iPSCs) through neurogenin 2 (NGN2) overexpression are widely used to study neuronal differentiation mechanisms and to model neurological diseases. However, the differentiation paths and heterogeneity of emerged neurons have not been fully explored. Here, we used single-cell transcriptomics to dissect the cell states that emerge during NGN2 overexpression across a time course from pluripotency to neuron functional maturation. We find a substantial molecular heterogeneity in the neuron types generated, with at least two populations that express genes associated with neurons of the peripheral nervous system. Neuron heterogeneity is observed across multiple iPSC clones and lines from different individuals. We find that neuron fate acquisition is sensitive to NGN2 expression level and the duration of NGN2-forced expression. Our data reveal that NGN2 dosage can regulate neuron fate acquisition, and that NGN2-iN heterogeneity can confound results that are sensitive to neuron type.
Collapse
Affiliation(s)
- Hsiu-Chuan Lin
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sebastian Ebert
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria Schörnig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marina T Nikolova
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Anne Weigert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wulf Hevers
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nael Nadif Kasri
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboudumc, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Human Technopole, Milan, Italy
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
6
|
Yang K, Dong L, Duan Z, Guo R, Zhou D, Liu Z, Liang W, Liu W, Yuan F, Gao T, Tian Y. Expression profile of long non-coding RNAs in porcine lymphnode response to porcine circovirus type 2 infection. Microb Pathog 2021; 158:105118. [PMID: 34339795 DOI: 10.1016/j.micpath.2021.105118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Porcine circovirus type 2 (PCV2) can cause various clinical diseases in pigs, resulting in huge losses for the pig farms all over the world. In order to develop a new strategy to control PCV2, it is essential to understand its mechanisms firstly, especially PCV2 interferes with the host's innate immunity. In the present study, lncRNA and mRNA expression profiles in porcine lymphnode response to PCV2 infection were deeply sequenced and analyzed. 3271 novel lncRNAs were identified in all. 1898 mRNAs and 282 lncRNAs showed differential expression between control and PCV2-infected groups. The bioinformatics analysis including lncRNA-mRNA co-expression network construction, as well as GO and KEGG pathway analysis focused on the DEGs was carried out. The results indicated that lncRNAs might participate in PCV2 infection-induced the pathogenesis of immunosuppression through regulating the host's immune responses, biological regulation, response to stimulus, cellular component organization or biogenesis and metabolism. And these differentially expressed lncRNAs might play important roles in response to PCV2 infection in the host's innate immune system. These findings provided a large-scale survey of dysregulated lncRNAs after PCV2 infection, especially the lncRNAs responded to host's innate immune within the lymphnode. This study will provide a novel insight into the lncRNAs' functions and the possible immunosuppressive mechanism induced by PCV2 infection. However, further research will be required to verify the characteristic function of the dysregulated lncRNAs.
Collapse
Affiliation(s)
- Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, Hubei, PR China.
| | - Ling Dong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| |
Collapse
|
7
|
Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells. Methods Mol Biol 2020; 2239:135-151. [PMID: 33226617 DOI: 10.1007/978-1-0716-1084-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human-induced pluripotent stem cells (iPSCs) can be generated from patient-specific somatic cells by forced expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Sustained expression of the transgenes during reprogramming is crucial for the successful derivation of iPSCs. Integrating retroviruses have been used to achieve the required prolonged expression; however, issues of undesirable transgene expression in the iPSC-derived cell types post reprogramming can occur. Alternative non-integrating approaches to reprogram somatic cells into pluripotency have been established. Here, we describe a detailed method for generating human iPSCs from fibroblasts and peripheral blood mononuclear cells (PBMCs) using the non-integrating episomal plasmids. The delivery of the episomal plasmids into the somatic cells is achieved using a nucleofection technique, and reprogramming is performed in chemically defined media. This process takes approximately 30 days to establish the iPSC colonies. We also describe a method for growing iPSCs on vitronectin as well as procedures for the long-term expansion of iPSCs on human fibroblast feeder cells.
Collapse
|
8
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
9
|
Abstract
Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.
Collapse
|
10
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
11
|
Mantegazza M, Broccoli V. SCN1A/Na V 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia 2020; 60 Suppl 3:S25-S38. [PMID: 31904127 DOI: 10.1111/epi.14700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.
Collapse
Affiliation(s)
- Massimo Mantegazza
- University Cote d'Azur (UCA), CNRS UMR7275, INSERM, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,Institute of Neuroscience, National Research Council (CNR), Milan, Italy
| |
Collapse
|
12
|
Uribe-Etxebarria V, García-Gallastegui P, Pérez-Garrastachu M, Casado-Andrés M, Irastorza I, Unda F, Ibarretxe G, Subirán N. Wnt-3a Induces Epigenetic Remodeling in Human Dental Pulp Stem Cells. Cells 2020; 9:cells9030652. [PMID: 32156036 PMCID: PMC7140622 DOI: 10.3390/cells9030652] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from adult teeth show the expression of a very complete repertoire of stem pluripotency core factors and a high plasticity for cell reprogramming. Canonical Wnt and Notch signaling pathways regulate stemness and the expression of pluripotency core factors in DPSCs, and even very short-term (48 h) activations of the Wnt pathway induce a profound remodeling of DPSCs at the physiologic and metabolic levels. In this work, DPSC cultures were exposed to treatments modulating Notch and Wnt signaling, and also induced to differentiate to osteo/adipocytes. DNA methylation, histone acetylation, histone methylation, and core factor expression levels where assessed by mass spectroscopy, Western blot, and qPCR. A short-term activation of Wnt signaling by WNT-3A induced a genomic DNA demethylation, and increased histone acetylation and histone methylation in DPSCs. The efficiency of cell reprogramming methods relies on the ability to surpass the epigenetic barrier, which determines cell lineage specificity. This study brings important information about the regulation of the epigenetic barrier by Wnt signaling in DPSCs, which could contribute to the development of safer and less aggressive reprogramming methodologies with a view to cell therapy.
Collapse
Affiliation(s)
- Verónica Uribe-Etxebarria
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Pathology Department, New York University, 550 1st Avenue, New York, NY 10016, USA
| | - Patricia García-Gallastegui
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Miguel Pérez-Garrastachu
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - María Casado-Andrés
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Unité Mixte de Recherche UMR1029. INSERM-Université de Bordeaux, 33000 Bordeaux, France
| | - Igor Irastorza
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Fernando Unda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Gaskon Ibarretxe
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Correspondence: ; Tel.: +34-94-601-3218
| | - Nerea Subirán
- Physiology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain;
| |
Collapse
|
13
|
Kang PJ, Son D, Ko TH, Hong W, Yun W, Jang J, Choi JI, Song G, Lee J, Kim IY, You S. mRNA-Driven Generation of Transgene-Free Neural Stem Cells from Human Urine-Derived Cells. Cells 2019; 8:cells8091043. [PMID: 31489945 PMCID: PMC6769943 DOI: 10.3390/cells8091043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023] Open
Abstract
Human neural stem cells (NSCs) hold enormous promise for neurological disorders, typically requiring their expandable and differentiable properties for regeneration of damaged neural tissues. Despite the therapeutic potential of induced NSCs (iNSCs), a major challenge for clinical feasibility is the presence of integrated transgenes in the host genome, contributing to the risk for undesired genotoxicity and tumorigenesis. Here, we describe the advanced transgene-free generation of iNSCs from human urine-derived cells (HUCs) by combining a cocktail of defined small molecules with self-replicable mRNA delivery. The established iNSCs were completely transgene-free in their cytosol and genome and further resembled human embryonic stem cell-derived NSCs in the morphology, biological characteristics, global gene expression, and potential to differentiate into functional neurons, astrocytes, and oligodendrocytes. Moreover, iNSC colonies were observed within eight days under optimized conditions, and no teratomas formed in vivo, implying the absence of pluripotent cells. This study proposes an approach to generate transplantable iNSCs that can be broadly applied for neurological disorders in a safe, efficient, and patient-specific manner.
Collapse
Affiliation(s)
- Phil Jun Kang
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Daryeon Son
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Center, Seoul 02841, Korea
- Cardiovascular Research Institute, Korea University, Seoul 02841, South Korea
| | - Wonjun Hong
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Jihoon Jang
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Center, Seoul 02841, Korea
- Cardiovascular Research Institute, Korea University, Seoul 02841, South Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Jangbo Lee
- Department of Neurosurgery, College of Medicine, Korea University, Seoul 02841, Korea.
| | - In Yong Kim
- Department of Neurosurgery, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
14
|
Werner JH, Rosenberg JH, Um JY, Moulton MJ, Agrawal DK. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl Res 2019; 203:73-87. [PMID: 30142308 PMCID: PMC6289806 DOI: 10.1016/j.trsl.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cardiac tissue has minimal endogenous regenerative capacity in response to injury. Treatment options are limited following tissue damage after events such as myocardial infarction. Current strategies are aimed primarily at injury prevention, but attention has been increasingly targeted toward the development of regenerative therapies. This review focuses on recent developments in the field of cardiac fibroblast reprogramming into induced cardiomyocytes. Early efforts to produce cardiac regeneration centered around induced pluripotent stem cells, but clinical translation has proved elusive. Currently, techniques are being developed to directly transdifferentiate cardiac fibroblasts into induced cardiomyocytes. Viral vector-driven expression of a combination of transcription factors including Gata4, Mef2c, and Tbx5 induced cardiomyocyte development in mice. Subsequent combinational modifications have extended these results to human cell lines and increased efficacy. The miRNAs including combinations of miR-1, miR-133, miR-208, and miR-499 can improve or independently drive regeneration of cardiomyocytes. Similar results could be obtained by combinations of small molecules with or without transcription factor or miRNA expression. The local tissue environment greatly impacts favorability for reprogramming. Modulation of signaling pathways, especially those mediated by VEGF and TGF-β, enhance differentiation to cardiomyocytes. Current reprogramming strategies are not ready for clinical application, but recent breakthroughs promise regenerative cardiac therapies in the near future.
Collapse
Affiliation(s)
- John H Werner
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John H Rosenberg
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John Y Um
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
15
|
Li Y, Zhang C, Qin L, Li D, Zhou G, Dang D, Chen S, Sun T, Zhang R, Wu W, Xi Y, Jin Y, Duan G. Characterization of Critical Functions of Long Non-Coding RNAs and mRNAs in Rhabdomyosarcoma Cells and Mouse Skeletal Muscle Infected by Enterovirus 71 Using RNA-Seq. Viruses 2018; 10:556. [PMID: 30314355 PMCID: PMC6213062 DOI: 10.3390/v10100556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogen of severe hand-foot-mouth disease (HFMD). Long non-coding RNAs (lncRNAs) are recognized as pivotal factors during the pathogenesis of viral infection. However, the critical functions of lncRNAs in EV71⁻host interactions have not been characterized. Here, for the first time, we performed global transcriptome analysis of lncRNA and mRNA expression profiles in EV71-infected human rhabdomyosarcoma (RD) cells and skeletal muscle of mice using second-generation sequencing. In our study, a total of 3801 novel lncRNAs were identified. In addition, 23 lncRNAs and 372 mRNAs exhibited remarkable differences in expression levels between infected and uninfected RD cells, while 104 lncRNAs and 2647 mRNAs were differentially expressed in infected skeletal muscle from neonatal mice. Comprehensive bioinformatics analysis included target gene prediction, lncRNA‑mRNA co-expression network construction, as well as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis mainly focused on differentially-expressed genes (DEGs). Our results suggest that lncRNAs may participate in EV71 infection-induced pathogenesis through regulating immune responses, protein binding, cellular component biogenesis and metabolism. The present study provides novel insights into the functions of lncRNAs and the possible pathogenic mechanism following EV71 infection.
Collapse
MESH Headings
- Animals
- Enterovirus A, Human/genetics
- Enterovirus A, Human/physiology
- Enterovirus Infections/genetics
- Enterovirus Infections/metabolism
- Enterovirus Infections/virology
- Gene Expression Profiling
- Humans
- Mice
- Mice, Inbred BALB C
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/virology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rhabdomyosarcoma/genetics
- Rhabdomyosarcoma/metabolism
- Rhabdomyosarcoma/virology
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Ying Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Luwei Qin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 2018; 9:67. [PMID: 29544541 PMCID: PMC5856210 DOI: 10.1186/s13287-018-0812-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 01/15/2023] Open
Abstract
Background Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. Methods We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Results Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. Conclusions The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons. Electronic supplementary material The online version of this article (10.1186/s13287-018-0812-6) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Cardiac cellular reprogramming with transient expression vectors: Less is more. J Thorac Cardiovasc Surg 2016; 153:340-341. [PMID: 27866785 DOI: 10.1016/j.jtcvs.2016.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
18
|
Mathison M, Singh VP, Chiuchiolo MJ, Sanagasetti D, Mao Y, Patel VB, Yang J, Kaminsky SM, Crystal RG, Rosengart TK. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration. J Thorac Cardiovasc Surg 2016; 153:329-339.e3. [PMID: 27773576 DOI: 10.1016/j.jtcvs.2016.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells improves ventricular function in myocardial infarction models. Only integrating persistent expression vectors have thus far been used to induce reprogramming, potentially limiting its clinical applicability. We therefore tested the reprogramming potential of nonintegrating, acute expression adenoviral (Ad) vectors. METHODS Ad or lentivirus vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) were validated in vitro. Sprague-Dawley rats then underwent coronary ligation and Ad-mediated administration of vascular endothelial growth factor to generate infarct prevascularization. Three weeks later, animals received Ad or lentivirus encoding G, M, or T (AdGMT or LentiGMT) or an equivalent dose of a null vector (n = 11, 10, and 10, respectively). Outcomes were analyzed by echocardiography, magnetic resonance imaging, and histology. RESULTS Ad and lentivirus vectors provided equivalent G, M, and T expression in vitro. AdGMT and LentiGMT both likewise induced expression of the cardiomyocyte marker cardiac troponin T in approximately 6% of cardiac fibroblasts versus <1% cardiac troponin T expression in AdNull (adenoviral vector that does not encode a transgene)-treated cells. Infarcted myocardium that had been treated with AdGMT likewise demonstrated greater density of cells expressing the cardiomyocyte marker beta myosin heavy chain 7 compared with AdNull-treated animals. Echocardiography demonstrated that AdGMT and LentiGMT both increased ejection fraction compared with AdNull (AdGMT: 21% ± 3%, LentiGMT: 14% ± 5%, AdNull: -0.4% ± 2%; P < .05). CONCLUSIONS Ad vectors are at least as effective as lentiviral vectors in inducing cardiac fibroblast transdifferentiation into induced cardiomyocyte-like cells and improving cardiac function in postinfarct rat hearts. Short-term expression Ad vectors may represent an important means to induce cardiac cellular reprogramming in humans.
Collapse
Affiliation(s)
- Megumi Mathison
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Vivek P Singh
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Deepthi Sanagasetti
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Yun Mao
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Vivekkumar B Patel
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Jianchang Yang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex.
| |
Collapse
|
19
|
Briggs SF, Dominguez AA, Chavez SL, Reijo Pera RA. Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells. Stem Cells 2016; 33:1771-81. [PMID: 25753947 PMCID: PMC4441606 DOI: 10.1002/stem.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well‐understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte‐to‐embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4‐cell stage, coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally, we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however, expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells. Stem Cells2015;33:1771–1781
Collapse
Affiliation(s)
- Sharon F Briggs
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Antonia A Dominguez
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Shawn L Chavez
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Renee A Reijo Pera
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
20
|
Hartjes KA, Li X, Martinez-Fernandez A, Roemmich AJ, Larsen BT, Terzic A, Nelson TJ. Selection via pluripotency-related transcriptional screen minimizes the influence of somatic origin on iPSC differentiation propensity. Stem Cells 2015; 32:2350-9. [PMID: 24802033 DOI: 10.1002/stem.1734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 01/25/2023]
Abstract
The value of induced pluripotent stem cells (iPSCs) within regenerative medicine is contingent on predictable and consistent iPSC differentiation. However, residual influence of the somatic origin or reprogramming technique may variegate differentiation propensity and confound comparative genotype/phenotype analyses. The objective of this study was to define quality control measures to select iPSC clones that minimize the influence of somatic origin on differentiation propensity independent of the reprogramming strategy. More than 60 murine iPSC lines were derived from different fibroblast origins (embryonic, cardiac, and tail tip) via lentiviral integration and doxycycline-induced transgene expression. Despite apparent equivalency according to established iPSC histologic and cytomorphologic criteria, clustering of clonal variability in pluripotency-related gene expression identified transcriptional outliers that highlighted cell lines with unpredictable cardiogenic propensity. Following selection according to a standardized gene expression profile calibrated by embryonic stem cells, the influence of somatic origin on iPSC methylation and transcriptional patterns was negated. Furthermore, doxycycline-induced iPSCs consistently demonstrated earlier differentiation than lentiviral-reprogrammed lines using contractile cardiac tissue as a measure of functional differentiation. Moreover, delayed cardiac differentiation was predominately associated with upregulation in pluripotency-related gene expression upon differentiation. Starting from a standardized pool of iPSCs, relative expression levels of two pluripotency genes, Oct4 and Zfp42, statistically correlated with enhanced cardiogenicity independent of somatic origin or reprogramming strategy (R(2) = 0.85). These studies demonstrate that predictable iPSC differentiation is independent of somatic origin with standardized gene expression selection criteria, while the residual impact of reprogramming strategy greatly influences predictable output of tissue-specification required for comparative genotype/phenotype analyses.
Collapse
Affiliation(s)
- Katherine A Hartjes
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Delgado-Coello B, Mas-Oliva J. Relevance of the plasma membrane calcium-ATPase in the homeostasis of calcium in the fetal liver. Organogenesis 2015; 10:333-9. [PMID: 25836032 PMCID: PMC4594366 DOI: 10.1080/15476278.2015.1011918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the early stages of development, the embryo depends on the placenta as provider of oxygen and calcium, among other essential compounds. Although fetal liver accomplishes a well-known haematopoietic function, its contribution to calcium homeostasis upon development is poorly understood. The homeostasis of cell calcium contributes to diverse signaling pathways across developmental stages of most tissues and the calcium-ATPase located at the plasma membrane (PMCA) helps pumping excess calcium into the extracellular space. To date, the understanding of the equilibrium shift between PMCA isoforms during liver development is still missing. This review focuses on the characterization of the hepatic PMCA along the early stages of development, followed by a description of modern approaches to study calcium homeostasis involving several types of pluripotent cells. The application of interdisciplinary techniques to improve our understanding of liver development and the role calcium homeostasis plays in the definition of pathogenesis is also discussed.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- a Departamento de Bioquímica y Biología Estructural ; Instituto de Fisiología Celular ; Universidad Nacional Autónoma de México ; México D.F. , México
| | | |
Collapse
|
22
|
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol 2015; 16:213. [PMID: 26415775 PMCID: PMC4587738 DOI: 10.1186/s13059-015-0760-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
Background Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0760-8) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
24
|
Gallego Romero I, Pavlovic BJ, Hernando-Herraez I, Zhou X, Ward MC, Banovich NE, Kagan CL, Burnett JE, Huang CH, Mitrano A, Chavarria CI, Friedrich Ben-Nun I, Li Y, Sabatini K, Leonardo TR, Parast M, Marques-Bonet T, Laurent LC, Loring JF, Gilad Y. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. eLife 2015; 4:e07103. [PMID: 26102527 PMCID: PMC4502404 DOI: 10.7554/elife.07103] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI:http://dx.doi.org/10.7554/eLife.07103.001 Comparing the genomes of different species can reveal how they are related to one another. Such comparative studies can also reveal how genomes are modified in species-specific ways to regulate gene activity. The genomes of humans and chimpanzees are very similar in sequence. It is therefore likely that differing patterns of gene regulation underlie many of the differences observed between the two species. However, only a few kinds of chimpanzee cell that can be grown in the laboratory are available for research; this lack of samples has limited the ability of researchers to perform such comparative studies. One way around this problem is to use induced pluripotent stem cells (or iPSCs). IPSCs are created by exposing mature cells—for example, skin cells—to conditions and molecules that convert them into an embryonic-like state. This state—called ‘induced pluripotency’—allows the cells to be coaxed into becoming many different cell types that can be grown in the laboratory. But it is more difficult to establish high quality iPSCs from chimpanzees than it is from humans or mice. Gallego Romero, Pavlovic et al. have now addressed this problem by creating iPSCs from skin cells taken from seven healthy chimpanzees. These cell lines were then analysed and compared to each other and to seven iPSC lines created from human cells. The chimpanzee iPSC lines were found to be much more similar to each other than the mature cells that were used to make them. Similar results were also observed for the human iSPCs, which likely reflects the conserved changes that take place when the genomes of mature cells are reprogrammed to pluripotency. This high level of similarity between iPSCs from different individuals of the same species allowed Gallego Romero, Pavlovic et al. to discover many subtle differences in gene regulation between chimpanzees and humans. For example, over 4500 genes were found to be expressed differently in human and chimpanzee iPSCs, and over 3500 genomic regions had different patterns of certain DNA modifications that can help to regulate gene expression. These newly created chimpanzee iPSC lines represent a valuable resource for comparative studies of gene regulation. In the future, this resource could help researchers to identify further differences in gene regulation between closely related primate species. DOI:http://dx.doi.org/10.7554/eLife.07103.002
Collapse
Affiliation(s)
| | - Bryan J Pavlovic
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, United States
| | - Michelle C Ward
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Courtney L Kagan
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Jonathan E Burnett
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Constance H Huang
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Amy Mitrano
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Inbar Friedrich Ben-Nun
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Yingchun Li
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Karen Sabatini
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Trevor R Leonardo
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Mana Parast
- Department of Pathology, University of California San Diego, San Diego, United States
| | | | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, La Jolla, United States
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
25
|
Han Z, Yu C, Tian Y, Zeng T, Cui W, Mager J, Wu Q. Expression patterns of long noncoding RNAs from Dlk1-Dio3 imprinted region and the potential mechanisms of Gtl2 activation during blastocyst development. Biochem Biophys Res Commun 2015; 463:167-73. [PMID: 26005002 DOI: 10.1016/j.bbrc.2015.04.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 11/26/2022]
Abstract
The function of long noncoding RNAs (lncRNAs) in cell differentiation and development have begun to be revealed in recent years. However, the expression pattern and mechanisms regulating lncRNAs are largely unknown during mammalian preimplantation development. LncRNAs expressed from Dlk1-Dio3 imprinted region have been linked to pluripotency of induced pluripotent cells (iPSCs). In this study we show that these lncRNAs (Gtl2, Rian and Mirg) are first expressed at the morula stage and gradually restricted to the inner cell mass (ICM) as the embryo differentiates into the blastocyst. Analysis of DNA methylation at IG-DMR and Gtl2-DMR showed no change during preimplantation while the presence of the activating histone modification H3K4me3 increased significantly from 8-cell to blastocyst stage, which may explain the expression activation. Additionally, knockdown of transcription factors (Oct4, Sox2 and Nanog) in blastocyst reduced the expression of Gtl2, indicating pluripotency factors regulate transcription of these lncRNAs. This study provides the spatiotemporal expression and dynamic changes of lncRNAs from Dlk1-Dio3 imprinted region in mouse preimplantation stage embryos and offers insight into the potential mechanisms responsible for Gtl2 activation.
Collapse
Affiliation(s)
- Zhengbin Han
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China; University of Massachusetts, Veterinary and Animal Science Department, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Changwei Yu
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China
| | - Yijun Tian
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China
| | - Tiebo Zeng
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China
| | - Wei Cui
- University of Massachusetts, Veterinary and Animal Science Department, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Jesse Mager
- University of Massachusetts, Veterinary and Animal Science Department, 661 North Pleasant Street, Amherst, MA 01003, USA.
| | - Qiong Wu
- Harbin Institute of Technology, School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin 150080, China.
| |
Collapse
|
26
|
Focosi D, Maggi F, Ceccherini-Nelli L, Pistello M. Cell therapies for treatment of human immunodeficiency virus infection. Rev Med Virol 2015; 25:156-74. [PMID: 25727480 DOI: 10.1002/rmv.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
After the serendipitous discovery of HIV eradication in the "Berlin patient", interest has grown in curing HIV infection by replacing the patient's replication-competent blood cells with infection-resistant ones. At the same time, induced pluripotent stem cell technologies and genetic engineering have boosted cell therapy transfer into the clinic. Currently available cell therapy approaches to attempt to cure HIV infection include the following: (1) Transplantation of autologous or allogeneic cells spontaneously resistant or edited to resist HIV infection; (2) Transplantation of autologous T-lymphocytes spontaneously targeting or redirected against HIV; and (3) Transplantation of autologous cells engineered to work as anti-HIV antibody factories. We review here the preliminary results and potential for future applications of these approaches.
Collapse
Affiliation(s)
- Daniele Focosi
- Retrovirus Center and Virology Section, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
27
|
Opportunities and Limitations of Modelling Alzheimer's Disease with Induced Pluripotent Stem Cells. J Clin Med 2014; 3:1357-72. [PMID: 26237606 PMCID: PMC4470188 DOI: 10.3390/jcm3041357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 01/16/2023] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has opened the way for patient-specific disease modelling. Following their differentiation into neuronal cell types, iPSC have enabled the investigation of human neurodegenerative diseases, such as Alzheimer's disease (AD). While human iPSCs certainly provide great opportunities to repeatedly interrogate specific human brain cell types of individuals with familial and sporadic forms of the disease, the complex aetiology and timescale over which AD develops in humans poses particular challenges to iPSC-based AD models. Here, we discuss the current state-of-play in the context of these and other iPSC model-related challenges and elaborate on likely future developments in this field of research.
Collapse
|
28
|
Benetatos L, Vartholomatos G, Hatzimichael E. DLK1-DIO3 imprinted cluster in induced pluripotency: landscape in the mist. Cell Mol Life Sci 2014; 71:4421-30. [PMID: 25098353 PMCID: PMC11113449 DOI: 10.1007/s00018-014-1698-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Abstract
DLK1-DIO3 represents an imprinted cluster which genes are involved in physiological cell biology as early as the stem cell level and in the pathogenesis of several diseases. Transcription factor-mediated induced pluripotent cells (iPSCs) are considered an unlimited source of patient-specific hematopoietic stem cells for clinical application in patient-tailored regenerative medicine. However, to date there is no marker established able to distinguish embryonic stem cell-equivalent iPSCs or safe human iPSCs. Recent findings suggest that the DLK1-DIO3 locus possesses the potential to represent such a marker but there are also contradictory data. This review aims to report the current data on the topic describing both sides of the coin.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, Selefkeias 2, Preveza General Hospital, 48100, Preveza, Greece,
| | | | | |
Collapse
|
29
|
Tam WL, O DF, Hiramatsu K, Tsumaki N, Luyten FP, Roberts SJ. Sox9 reprogrammed dermal fibroblasts undergo hypertrophic differentiation in vitro and trigger endochondral ossification in vivo. Cell Reprogram 2014; 16:29-39. [PMID: 24459991 DOI: 10.1089/cell.2013.0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strategies for bone regeneration are undergoing a paradigm shift, moving away from the replication of end-stage bone tissue and instead aiming to recapture the initial events of fracture repair. Although this is known to resemble endochondral bone formation, chondrogenic cell types with favorable proliferative and hypertrophic differentiation properties are lacking. Recent advances in cellular reprogramming have allowed the creation of alternative cell populations with specific properties through the forced expression of transcription factors. Herein, we investigated the in vitro hypertrophic differentiation and in vivo tissue formation capacity of induced chondrogenic cells (iChon cells) obtained through direct reprogramming. In vitro hypertrophic differentiation was detected in iChon cells that contained a doxycycline-inducible expression system for Klf4, cMyc, and Sox9. Furthermore, endochondral bone formation was detected after implantation in nude mice. The bone tissue was derived entirely from host origin, whereas cartilage tissue contained cells from both host and donor. The results obtained highlight the promise of cellular reprogramming for the creation of functional skeletal cells that can be used for novel bone healing strategies.
Collapse
Affiliation(s)
- Wai Long Tam
- 1 Laboratory for Developmental and Stem Cell Biology (DSB) , Skeletal Biology and Engineering Research Center (SBE), KU Leuven, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Martinez-Fernandez A, Nelson TJ, Reyes S, Alekseev AE, Secreto F, Perez-Terzic C, Beraldi R, Sung HK, Nagy A, Terzic A. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes. ACTA ACUST UNITED AC 2014; 7:667-76. [PMID: 25077947 DOI: 10.1161/circgenetics.113.000298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Nuclear reprogramming inculcates pluripotent capacity by which de novo tissue differentiation is enabled. Yet, introduction of ectopic reprogramming factors may desynchronize natural developmental schedules. This study aims to evaluate the effect of imposed transgene load on the cardiogenic competency of induced pluripotent stem (iPS) cells. METHODS AND RESULTS Targeted inclusion and exclusion of reprogramming transgenes (c-MYC, KLF4, OCT4, and SOX2) was achieved using a drug-inducible and removable cassette according to the piggyBac transposon/transposase system. Pulsed transgene overexpression, before iPS cell differentiation, hindered cardiogenic outcomes. Delayed in counterparts with maintained integrated transgenes, transgene removal enabled proficient differentiation of iPS cells into functional cardiac tissue. Transgene-free iPS cells generated reproducible beating activity with robust expression of cardiac α-actinin, connexin 43, myosin light chain 2a, α/β-myosin heavy chain, and troponin I. Although operational excitation-contraction coupling was demonstrable in the presence or absence of transgenes, factor-free derivatives exhibited an expedited maturing phenotype with canonical responsiveness to adrenergic stimulation. CONCLUSIONS A disproportionate stemness load, caused by integrated transgenes, affects the cardiogenic competency of iPS cells. Offload of transgenes in engineered iPS cells ensures integrity of cardiac developmental programs, underscoring the value of nonintegrative nuclear reprogramming for derivation of competent cardiogenic regenerative biologics.
Collapse
Affiliation(s)
- Almudena Martinez-Fernandez
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Timothy J Nelson
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Santiago Reyes
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Alexey E Alekseev
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Frank Secreto
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Carmen Perez-Terzic
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Rosanna Beraldi
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Hoon-Ki Sung
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Andras Nagy
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Andre Terzic
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.).
| |
Collapse
|
31
|
Induced pluripotent stem cells in hematology: current and future applications. Blood Cancer J 2014; 4:e211. [PMID: 24813079 PMCID: PMC4042300 DOI: 10.1038/bcj.2014.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022] Open
Abstract
Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation.
Collapse
|
32
|
Luz-Madrigal A, Grajales-Esquivel E, McCorkle A, DiLorenzo AM, Barbosa-Sabanero K, Tsonis PA, Del Rio-Tsonis K. Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol 2014; 12:28. [PMID: 24742279 PMCID: PMC4026860 DOI: 10.1186/1741-7007-12-28] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
Background One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. Results We present evidence that upon injury, the quiescent (p27Kip1+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. Conclusion These findings delineate in detail the molecular changes that take place in the RPE during the process of transdifferentiation in the embryonic chick, and specifically identify Lin-28 as an important factor in this process. We propose a novel model in which injury signals initiate RPE dedifferentiation, while FGF2 up-regulates Lin-28, allowing for RPE transdifferentiation to proceed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
33
|
Sharma R, Livesey MR, Wyllie DJA, Proudfoot C, Whitelaw CBA, Hay DC, Donadeu FX. Generation of functional neurons from feeder-free, keratinocyte-derived equine induced pluripotent stem cells. Stem Cells Dev 2014; 23:1524-34. [PMID: 24548115 DOI: 10.1089/scd.2013.0565] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) offer unprecedented biomedical potential not only in relation to humans but also companion animals, particularly the horse. Despite this, attempts to generate bona fide equine embryonic stem cells have been unsuccessful. A very limited number of induced PSC lines have so far been generated from equine fibroblasts but their potential for directed differentiation into clinically relevant tissues has not been explored. In this study, we used retroviral vectors to generate induced pluripotent stem cells (iPSCs) with comparatively high efficiency from equine keratinocytes. Expression of endogenous PSC markers (OCT4, SOX2, LIN28, NANOG, DNMT3B, and REX1) was effectively restored in these cells, which could also form in vivo several tissue derivatives of the three germ layers, including functional neurons, keratinized epithelium, cartilage, bone, muscle, and respiratory and gastric epithelia. Comparative analysis of different reprogrammed cell lines revealed an association between the ability of iPSCs to form well-differentiated teratomas and the distinct endogenous expression of OCT4 and REX1 and reduced expression of viral transgenes. Importantly, unlike in previous studies, equine iPSCs were successfully expanded using simplified feeder-free culture conditions, constituting significant progress toward future biomedical applications. Further, under appropriate conditions equine iPSCs generated cells with features of cholinergic motor neurons including the ability to generate action potentials, providing the first report of functional cells derived from equine iPSCs. The ability to derive electrically active neurons in vitro from a large animal reveals highly conserved pathways of differentiation across species and opens the way for new and exciting applications in veterinary regenerative medicine.
Collapse
Affiliation(s)
- Ruchi Sharma
- 1 The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Picanço-Castro V, Moreira LF, Kashima S, Covas DT. Can pluripotent stem cells be used in cell-based therapy? Cell Reprogram 2014; 16:98-107. [PMID: 24606201 DOI: 10.1089/cell.2013.0072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pluripotent stem cells, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the ability to differentiate into several cell types that can be used in drug testing and also in the study and treatment of diseases. These cells can be differentiated by in vitro systems, which may serve as models for human diseases and for cell transplantation. In this review, we address the pluripotent cell types, how to obtain and characterize these cells, and differentiation assays. We also focus on the potential of these cells in clinical trials, and we describe the clinical trials that are underway.
Collapse
|
35
|
Modified lentiviral LTRs allow Flp recombinase-mediated cassette exchange and in vivo tracing of "factor-free" induced pluripotent stem cells. Mol Ther 2014; 22:919-28. [PMID: 24434935 DOI: 10.1038/mt.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.
Collapse
|
36
|
Abstract
This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols.
Collapse
|