1
|
Hamel EA, Castro JB, Gould TJ, Pellegrino R, Liang Z, Coleman LA, Patel F, Wallace DS, Bhatnagar T, Mainland JD, Gerkin RC. Pyrfume: A window to the world's olfactory data. Sci Data 2024; 11:1220. [PMID: 39532906 PMCID: PMC11557823 DOI: 10.1038/s41597-024-04051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Advances in theoretical understanding are frequently unlocked by access to large, diverse experimental datasets. Our understanding of olfactory neuroscience and psychophysics remain years behind the other senses, in part because rich datasets linking olfactory stimuli with their corresponding percepts, behaviors, and neural pathways remain scarce. Here we present a concerted effort to unlock and unify dozens of stimulus-linked olfactory datasets across species and modalities under a unified framework called Pyrfume. We present examples of how researchers might use Pyrfume to conduct novel analyses uncovering new principles, introduce trainees to the field, or construct benchmarks for machine olfaction.
Collapse
Affiliation(s)
| | - Jason B Castro
- Department of Neuroscience, Bates College, Lewiston, ME, USA
| | | | | | - Zhiwei Liang
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liyah A Coleman
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Famesh Patel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Derek S Wallace
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Joel D Mainland
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- University of Pennsylvania, Philadelphia, PA, USA.
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Osmo, New York, NY, USA
| |
Collapse
|
2
|
Park W, Liu Y, Jiao Y, Shi R, Nan J, Yiu CK, Huang X, Chen Y, Li W, Gao Y, Zhang Q, Li D, Jia S, Gao Z, Song W, Lam MMH, Dai Z, Zhao Z, Li Y, Yu X. Skin-Integrated Wireless Odor Message Delivery Electronics for the Deaf-blind. ACS NANO 2023; 17:21947-21961. [PMID: 37917185 DOI: 10.1021/acsnano.3c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Deaf-blindness limits daily human activities, especially interactive modes of audio and visual perception. Although the developed standards have been verified as alternative communication methods, they are uncommon to the nondisabled due to the complicated learning process and inefficiency in terms of communicating distance and throughput. Therefore, the development of communication techniques employing innate sensory abilities including olfaction related to the cerebral limbic system processing emotions, memories, and recognition has been suggested for reducing the training level and increasing communication efficiency. Here, a skin-integrated and wireless olfactory interface system exploiting arrays of miniaturized odor generators (OGs) based on melting/solidifying odorous wax to release smell is introduced for establishing an advanced communication system between deaf-blind and non-deaf-blind. By optimizing the structure design of the OGs, each OG device is as small as 0.24 cm3 (length × width × height of 11 mm × 10 mm × 2.2 mm), enabling integration of up to 8 OGs on the epidermis between nose and lip for direct and rapid olfactory drive with a weight of only 24.56 g. By generating single or mixed odors, different linked messages could be delivered to a user within a short period in a wireless and programmable way. By adopting the olfactory interface message delivery system, the recognition rates for the messages have been improved 1.5 times that of the touch-based method, while the response times were immensely decreased 4 times. Thus, the presented wearable olfactory interface system exhibits great potential as an alternative message delivery method for the deaf-blind.
Collapse
Affiliation(s)
- Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, People's Republic of China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, People's Republic of China
| | - Jin Nan
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191 People's Republic of China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, People's Republic of China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Yao Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Wenyang Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, People's Republic of China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, People's Republic of China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Weike Song
- China Special Equipment Inspection and Research Institute, Beijing 100029 People's Republic of China
| | - Marcus Man Ho Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun 130026, People's Republic of China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Zhao Zhao
- China Special Equipment Inspection and Research Institute, Beijing 100029 People's Republic of China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191 People's Republic of China
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology Beihang University (BUAA), Ningbo 315100, People's Republic of China
- Tianmushan Laboratory Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, People's Republic of China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, People's Republic of China
| |
Collapse
|
3
|
Pardasani M, Ramakrishnan AM, Mahajan S, Kantroo M, McGowan E, Das S, Srikanth P, Pandey S, Abraham NM. Perceptual learning deficits mediated by somatostatin releasing inhibitory interneurons of olfactory bulb in an early life stress mouse model. Mol Psychiatry 2023; 28:4693-4706. [PMID: 37726451 PMCID: PMC10914616 DOI: 10.1038/s41380-023-02244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023]
Abstract
Early life adversity (ELA) causes aberrant functioning of neural circuits affecting the health of an individual. While ELA-induced behavioural disorders resulting from sensory and cognitive disabilities can be assessed clinically, the neural mechanisms need to be probed using animal models by employing multi-pronged experimental approaches. As ELA can alter sensory perception, we investigated the effect of early weaning on murine olfaction. By implementing go/no-go odour discrimination paradigm, we observed olfactory learning and memory impairments in early life stressed (ELS) male mice. As olfactory bulb (OB) circuitry plays a critical role in odour learning, we studied the plausible changes in the OB of ELS mice. Lowered c-Fos activity in the external plexiform layer and a reduction in the number of dendritic processes of somatostatin-releasing, GABAergic interneurons (SOM-INs) in the ELS mice led us to hypothesise the underlying circuit. We recorded reduced synaptic inhibitory feedback on mitral/tufted (M/T) cells, in the OB slices from ELS mice, explaining the learning deficiency caused by compromised refinement of OB output. The reduction in synaptic inhibition was nullified by the photo-activation of ChR2-expressing SOM-INs in ELS mice. The role of SOM-INs was revealed by learning-dependent refinement of Ca2+dynamics quantified by GCaMP6f signals, which was absent in ELS mice. Further, the causal role of SOM-INs involving circuitry was investigated by optogenetic modulation during the odour discrimination learning. Photo-activating these neurons rescued the ELA-induced learning deficits. Conversely, photo-inhibition caused learning deficiency in control animals, while it completely abolished the learning in ELS mice, confirming the adverse effects mediated by SOM-INs. Our results thus establish the role of specific inhibitory circuit in pre-cortical sensory area in orchestrating ELA-dependent changes.
Collapse
Affiliation(s)
- Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Anantha Maharasi Ramakrishnan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Sarang Mahajan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Meher Kantroo
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Eleanor McGowan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Susobhan Das
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Sanyukta Pandey
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
| |
Collapse
|
4
|
Barkus C, Bergmann C, Branco T, Carandini M, Chadderton PT, Galiñanes GL, Gilmour G, Huber D, Huxter JR, Khan AG, King AJ, Maravall M, O'Mahony T, Ragan CI, Robinson ESJ, Schaefer AT, Schultz SR, Sengpiel F, Prescott MJ. Refinements to rodent head fixation and fluid/food control for neuroscience. J Neurosci Methods 2022; 381:109705. [PMID: 36096238 PMCID: PMC7617528 DOI: 10.1016/j.jneumeth.2022.109705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.
Collapse
Affiliation(s)
- Chris Barkus
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.
| | | | - Tiago Branco
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Matteo Carandini
- Institute of Ophthalmology, University College London, London, UK
| | - Paul T Chadderton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tina O'Mahony
- Sainsbury Wellcome Centre, University College London, London, UK
| | - C Ian Ragan
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Simon R Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | | | - Mark J Prescott
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
5
|
Pardasani M, Marathe SD, Purnapatre MM, Dalvi U, Abraham NM. Multimodal learning of pheromone locations. FASEB J 2021; 35:e21836. [PMID: 34407246 PMCID: PMC7611819 DOI: 10.1096/fj.202100167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Memorizing pheromonal locations is critical for many mammalian species as it involves finding mates and avoiding competitors. In rodents, pheromonal information is perceived by the main and accessory olfactory systems. However, the role of somatosensation in context-dependent learning and memorizing of pheromone locations remains unexplored. We addressed this problem by training female mice on a multimodal task to locate pheromones by sampling volatiles emanating from male urine through the orifices of varying dimensions or shapes that are sensed by their vibrissae. In this novel pheromone location assay, female mice’ preference toward male urine scent decayed over time when they were permitted to explore pheromones vs neutral stimuli, water. On training them for the associations involving olfactory and whisker systems, it was established that they were able to memorize the location of opposite sex pheromones, when tested 15 days later. This memory was not formed either when the somatosensory inputs through whisker pad were blocked or when the pheromonal cues were replaced with that of same sex. The association between olfactory and somatosensory systems was further confirmed by the enhanced expression of the activity-regulated cytoskeleton protein. Furthermore, the activation of main olfactory bulb circuitry by pheromone volatiles did not cause any modulation in learning and memorizing non-pheromonal volatiles. Our study thus provides the evidence for associations formed between different sensory modalities facilitating the long-term memory formation relevant to social and reproductive behaviors.
Collapse
Affiliation(s)
- Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shruti D Marathe
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Maitreyee Mandar Purnapatre
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.,Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Urvashi Dalvi
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.,Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
6
|
Reisert J, Golden GJ, Dibattista M, Gelperin A. Odor sampling strategies in mice with genetically altered olfactory responses. PLoS One 2021; 16:e0249798. [PMID: 33939692 PMCID: PMC8092659 DOI: 10.1371/journal.pone.0249798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral sensory cells and the central neuronal circuits that monitor environmental changes to drive behaviors should be adapted to match the behaviorally relevant kinetics of incoming stimuli, be it the detection of sound frequencies, the speed of moving objects or local temperature changes. Detection of odorants begins with the activation of olfactory receptor neurons in the nasal cavity following inhalation of air and airborne odorants carried therein. Thus, olfactory receptor neurons are stimulated in a rhythmic and repeated fashion that is determined by the breathing or sniffing frequency that can be controlled and altered by the animal. This raises the question of how the response kinetics of olfactory receptor neurons are matched to the imposed stimulation frequency and if, vice versa, the kinetics of olfactory receptor neuron responses determine the sniffing frequency. We addressed this question by using a mouse model that lacks the K+-dependent Na+/Ca2+ exchanger 4 (NCKX4), which results in markedly slowed response termination of olfactory receptor neuron responses and hence changes the temporal response kinetics of these neurons. We monitored sniffing behaviors of freely moving wildtype and NCKX4 knockout mice while they performed olfactory Go/NoGo discrimination tasks. Knockout mice performed with similar or, surprisingly, better accuracy compared to wildtype mice, but chose, depending on the task, different odorant sampling durations depending on the behavioral demands of the odorant identification task. Similarly, depending on the demands of the behavioral task, knockout mice displayed a lower basal breathing frequency prior to odorant sampling, a possible mechanism to increase the dynamic range for changes in sniffing frequency during odorant sampling. Overall, changes in sniffing behavior between wildtype and NCKX4 knockout mice were subtle, suggesting that, at least for the particular odorant-driven task we used, slowed response termination of the odorant-induced receptor neuron response either has a limited detrimental effect on odorant-driven behavior or mice are able to compensate via an as yet unknown mechanism.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
- * E-mail: (JR); (AG)
| | - Glen J. Golden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari “A. Moro”, Bari, Italy
| | - Alan Gelperin
- Princeton Neuroscience Program, Princeton University, Princeton, NJ, United States of America
- * E-mail: (JR); (AG)
| |
Collapse
|
7
|
Bhattacharjee AS, Konakamchi S, Turaev D, Vincis R, Nunes D, Dingankar AA, Spors H, Carleton A, Kuner T, Abraham NM. Similarity and Strength of Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination Time. Cell Rep 2020; 28:2966-2978.e5. [PMID: 31509755 PMCID: PMC7115995 DOI: 10.1016/j.celrep.2019.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/01/2022] Open
Abstract
The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.
Collapse
Affiliation(s)
| | - Sasank Konakamchi
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Dmitrij Turaev
- WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Molecular Neurogenetics, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Roberto Vincis
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland
| | - Daniel Nunes
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| | - Atharva A Dingankar
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Hartwig Spors
- WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Molecular Neurogenetics, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany; WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nixon M Abraham
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India; Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany; WIN Olfactory Dynamics Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany; Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Genève 4, Switzerland.
| |
Collapse
|
8
|
Woods NI, Stefanini F, Apodaca-Montano DL, Tan IMC, Biane JS, Kheirbek MA. The Dentate Gyrus Classifies Cortical Representations of Learned Stimuli. Neuron 2020; 107:173-184.e6. [PMID: 32359400 DOI: 10.1016/j.neuron.2020.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
Animals must discern important stimuli and place them onto their cognitive map of their environment. The neocortex conveys general representations of sensory events to the hippocampus, and the hippocampus is thought to classify and sharpen the distinctions between these events. We recorded populations of dentate gyrus granule cells (DG GCs) and lateral entorhinal cortex (LEC) neurons across days to understand how sensory representations are modified by experience. We found representations of odors in DG GCs that required synaptic input from the LEC. Odor classification accuracy in DG GCs correlated with future behavioral discrimination. In associative learning, DG GCs, more so than LEC neurons, changed their responses to odor stimuli, increasing the distance in neural representations between stimuli, responding more to the conditioned and less to the unconditioned odorant. Thus, with learning, DG GCs amplify the decodability of cortical representations of important stimuli, which may facilitate information storage to guide behavior.
Collapse
Affiliation(s)
- Nicholas I Woods
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabio Stefanini
- Center for Theoretical Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | | | - Isabelle M C Tan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeremy S Biane
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Wu J, Liu P, Chen F, Ge L, Lu Y, Li A. Excitability of Neural Activity is Enhanced, but Neural Discrimination of Odors is Slightly Decreased, in the Olfactory Bulb of Fasted Mice. Genes (Basel) 2020; 11:genes11040433. [PMID: 32316323 PMCID: PMC7230403 DOI: 10.3390/genes11040433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Olfaction and satiety status influence each other: cues from the olfactory system modulate eating behavior, and satiety affects olfactory abilities. However, the neural mechanisms governing the interactions between olfaction and satiety are unknown. Here, we investigate how an animal’s nutritional state modulates neural activity and odor representation in the mitral/tufted cells of the olfactory bulb, a key olfactory center that plays important roles in odor processing and representation. At the single-cell level, we found that the spontaneous firing rate of mitral/tufted cells and the number of cells showing an excitatory response both increased when mice were in a fasted state. However, the neural discrimination of odors slightly decreased. Although ongoing baseline and odor-evoked beta oscillations in the local field potential in the olfactory bulb were unchanged with fasting, the amplitude of odor-evoked gamma oscillations significantly decreased in a fasted state. These neural changes in the olfactory bulb were independent of the sniffing pattern, since both sniffing frequency and mean inhalation duration did not change with fasting. These results provide new information toward understanding the neural circuit mechanisms by which olfaction is modulated by nutritional status.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Lingying Ge
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China; (L.G.); (Y.L.)
| | - Yifan Lu
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China; (L.G.); (Y.L.)
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
- Correspondence: ; Tel.: +86-516-83262621
| |
Collapse
|
10
|
Bjerre AS, Palmer LM. Probing Cortical Activity During Head-Fixed Behavior. Front Mol Neurosci 2020; 13:30. [PMID: 32180705 PMCID: PMC7059801 DOI: 10.3389/fnmol.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cortex is crucial for many behaviors, ranging from sensory-based behaviors to working memory and social behaviors. To gain an in-depth understanding of the contribution to these behaviors, cellular and sub-cellular recordings from both individual and populations of cortical neurons are vital. However, techniques allowing such recordings, such as two-photon imaging and whole-cell electrophysiology, require absolute stability of the head, a requirement not often fulfilled in freely moving animals. Here, we review and compare behavioral paradigms that have been developed and adapted for the head-fixed preparation, which together offer the needed stability for live recordings of neural activity in behaving animals. We also review how the head-fixed preparation has been used to explore the function of primary sensory cortices, posterior parietal cortex (PPC) and anterior lateral motor (ALM) cortex in sensory-based behavioral tasks, while also discussing the considerations of performing such recordings. Overall, this review highlights the head-fixed preparation as allowing in-depth investigation into the neural activity underlying behaviors by providing highly controllable settings for precise stimuli presentation which can be combined with behavioral paradigms ranging from simple sensory detection tasks to complex, cross-modal, memory-guided decision-making tasks.
Collapse
Affiliation(s)
- Ann-Sofie Bjerre
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Liu P, Cao T, Xu J, Mao X, Wang D, Li A. Plasticity of Sniffing Pattern and Neural Activity in the Olfactory Bulb of Behaving Mice During Odor Sampling, Anticipation, and Reward. Neurosci Bull 2020; 36:598-610. [PMID: 31989425 DOI: 10.1007/s12264-019-00463-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system. In the OB, mitral/tufted cells (M/Ts), which are the main output neurons, play important roles in the processing and representation of odor information. Recent studies focusing on the function of M/Ts at the single-cell level in awake behaving mice have demonstrated that odor-evoked firing of single M/Ts displays transient/long-term plasticity during learning. Here, we tested whether the neural activity of M/Ts and sniffing patterns are dependent on anticipation and reward in awake behaving mice. We used an odor discrimination task combined with in vivo electrophysiological recordings in awake, head-fixed mice, and found that, while learning induced plasticity of spikes and beta oscillations during odor sampling, we also found plasticity of spikes, beta oscillation, sniffing pattern, and coherence between sniffing and theta oscillations during the periods of anticipation and/or reward. These results indicate that the activity of M/Ts plays important roles not only in odor representation but also in salience-related events such as anticipation and reward.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jinshan Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
12
|
Li A, Rao X, Zhou Y, Restrepo D. Complex neural representation of odour information in the olfactory bulb. Acta Physiol (Oxf) 2020; 228:e13333. [PMID: 31188539 PMCID: PMC7900671 DOI: 10.1111/apha.13333] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The most important task of the olfactory system is to generate a precise representation of odour information under different brain and behavioural states. As the first processing stage in the olfactory system and a crucial hub, the olfactory bulb plays a key role in the neural representation of odours, encoding odour identity, intensity and timing. Although the neural circuits and coding strategies used by the olfactory bulb for odour representation were initially identified in anaesthetized animals, a large number of recent studies focused on neural representation of odorants in the olfactory bulb in awake behaving animals. In this review, we discuss these recent findings, covering (a) the neural circuits for odour representation both within the olfactory bulb and the functional connections between the olfactory bulb and the higher order processing centres; (b) how related factors such as sniffing affect and shape the representation; (c) how the representation changes under different states; and (d) recent progress on the processing of temporal aspects of odour presentation in awake, behaving rodents. We highlight discussion of the current views and emerging proposals on the neural representation of odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anan Li
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological systems, Wuhan institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, 430072, China
| | - Yang Zhou
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Reinert JK, Schaefer AT, Kuner T. High-Throughput Automated Olfactory Phenotyping of Group-Housed Mice. Front Behav Neurosci 2019; 13:267. [PMID: 31920577 PMCID: PMC6927946 DOI: 10.3389/fnbeh.2019.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Behavioral phenotyping of mice is often compromised by manual interventions of the experimenter and limited throughput. Here, we describe a fully automated behavior setup that allows for quantitative analysis of mouse olfaction with minimized experimenter involvement. Mice are group-housed and tagged with unique RFID chips. They can freely initiate trials and are automatically trained on a go/no-go task, learning to distinguish a rewarded from an unrewarded odor. Further, odor discrimination tasks and detailed training aspects can be set for each animal individually for automated execution without direct experimenter intervention. The procedure described here, from initial RFID implantation to discrimination of complex odor mixtures at high accuracy, can be completed within <2 months with cohorts of up to 25 male mice. Apart from the presentation of monomolecular odors, the setup can generate arbitrary mixtures and dilutions from any set of odors to create complex stimuli, enabling demanding behavioral analyses at high-throughput.
Collapse
Affiliation(s)
- Janine K. Reinert
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas T. Schaefer
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Erskine A, Bus T, Herb JT, Schaefer AT. AutonoMouse: High throughput operant conditioning reveals progressive impairment with graded olfactory bulb lesions. PLoS One 2019; 14:e0211571. [PMID: 30840676 PMCID: PMC6402634 DOI: 10.1371/journal.pone.0211571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Operant conditioning is a crucial tool in neuroscience research for probing brain function. While molecular, anatomical and even physiological techniques have seen radical increases in throughput, efficiency, and reproducibility in recent years, behavioural tools have somewhat lagged behind. Here we present a fully automated, high-throughput system for self-initiated conditioning of up to 25 group-housed, radio-frequency identification (RFID) tagged mice over periods of several months and >106 trials. We validate this "AutonoMouse" system in a series of olfactory behavioural tasks and show that acquired data is comparable to previous semi-manual approaches. Furthermore, we use AutonoMouse to systematically probe the impact of graded olfactory bulb lesions on olfactory behaviour, demonstrating that while odour discrimination in general is robust to even most extensive disruptions, small olfactory bulb lesions already impair odour detection. Discrimination learning of similar mixtures as well as learning speed are in turn reliably impacted by medium lesion sizes. The modular nature and open-source design of AutonoMouse should allow for similar robust and systematic assessments across neuroscience research areas.
Collapse
Affiliation(s)
- Andrew Erskine
- The Francis Crick Institute, Neurophysiology of Behaviour Laboratory, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Thorsten Bus
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Jan T. Herb
- The Francis Crick Institute, Neurophysiology of Behaviour Laboratory, London, United Kingdom
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas T. Schaefer
- The Francis Crick Institute, Neurophysiology of Behaviour Laboratory, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Partial depletion of dopaminergic neurons in the substantia nigra impairs olfaction and alters neural activity in the olfactory bulb. Sci Rep 2019; 9:254. [PMID: 30670747 PMCID: PMC6342975 DOI: 10.1038/s41598-018-36538-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Olfactory dysfunction is a major non-motor symptom that appears during the early stages of Parkinson’s Disease (PD), a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra (SN). Depletion of SN dopaminergic neurons by 6-hydroxydopamine (6-OHDA) is widely used as a model for PD and ultimately results in motor deficits. However, it is largely unknown whether olfactory behavior and, more importantly, neural activity in the olfactory bulb (OB) are impaired prior to the appearance of motor deficits. We partially depleted the SN dopaminergic population in mice by injection of 6-OHDA. Seven days after injection of 6-OHDA, motor ability was unchanged but olfactory-driven behaviors were significantly impaired. Injection of 6-OHDA into the SN significantly increased the power of the ongoing local field potential in the OB for all frequency bands, and decreased odor-evoked excitatory beta responses and inhibitory high-gamma responses. Moreover, 6-OHDA treatment led to increased odor-evoked calcium responses in the mitral cells in the OB of awake mice. These data suggest that the olfactory deficits caused by depletion of the SN dopaminergic population are likely due to abnormal hyperactivity of the mitral cells in the OB.
Collapse
|
16
|
Han Z, Chen W, Chen X, Zhang K, Tong C, Zhang X, Li CT, Liang Z. Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 2019; 188:733-742. [PMID: 30611875 DOI: 10.1016/j.neuroimage.2019.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic imaging (fMRI) has been widely used to examine the functional neural networks in both the evoked and resting states. However, most fMRI studies in rodents are performed under anesthesia, which greatly limits the scope of their application, and behavioral relevance. Efforts have been made to image rodents in the awake condition, either in the resting state or in response to sensory or optogenetic stimulation. However, fMRI in awake behaving rodents has not yet been achieved. In the current study, a novel fMRI paradigm for awake and behaving mice was developed, allowing functional imaging of the mouse brain in an olfaction-based go/no-go task. High resolution functional imaging with limited motion and image distortion were achieved at 9.4T with a cryogenic coil in awake and behaving mice. Distributed whole-brain spatiotemporal patterns were revealed, with drastically different activity profiles for go versus no-go trials. Therefore, we have demonstrated the feasibility of functional imaging of an olfactory behavior in awake mice. This fMRI paradigm in awake behaving mice could lead to novel insights into neural mechanisms underlying behaviors at a whole-brain level.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xifan Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chuanjun Tong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xiaoxing Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nat Neurosci 2018; 21:1412-1420. [PMID: 30224804 DOI: 10.1038/s41593-018-0225-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023]
Abstract
Schizophrenia is a severely debilitating neurodevelopmental disorder. Establishing a causal link between circuit dysfunction and particular behavioral traits that are relevant to schizophrenia is crucial to shed new light on the mechanisms underlying the pathology. We studied an animal model of the human 22q11 deletion syndrome, the mutation that represents the highest genetic risk of developing schizophrenia. We observed a desynchronization of hippocampal neuronal assemblies that resulted from parvalbumin interneuron hypoexcitability. Rescuing parvalbumin interneuron excitability with pharmacological or chemogenetic approaches was sufficient to restore wild-type-like CA1 network dynamics and hippocampal-dependent behavior during adulthood. In conclusion, our data provide insights into the network dysfunction underlying schizophrenia and highlight the use of reverse engineering to restore physiological and behavioral phenotypes in an animal model of neurodevelopmental disorder.
Collapse
|
18
|
Goltstein PM, Reinert S, Glas A, Bonhoeffer T, Hübener M. Food and water restriction lead to differential learning behaviors in a head-fixed two-choice visual discrimination task for mice. PLoS One 2018; 13:e0204066. [PMID: 30212542 PMCID: PMC6136814 DOI: 10.1371/journal.pone.0204066] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Head-fixed behavioral tasks can provide important insights into cognitive processes in rodents. Despite the widespread use of this experimental approach, there is only limited knowledge of how differences in task parameters, such as motivational incentives, affect overall task performance. Here, we provide a detailed methodological description of the setup and procedures for training mice efficiently on a two-choice lick left/lick right visual discrimination task. We characterize the effects of two distinct restriction regimens, i.e. food and water restriction, on animal wellbeing, activity patterns, task acquisition, and performance. While we observed reduced behavioral activity during the period of food and water restriction, the average animal discomfort scores remained in the 'sub-threshold' and 'mild' categories throughout the experiment, irrespective of the restriction regimen. We found that the type of restriction significantly influenced specific aspects of task acquisition and engagement, i.e. the number of sessions until the learning criterion was reached and the number of trials performed per session, but it did not affect maximum learning curve performance. These results indicate that the choice of restriction paradigm does not strongly affect animal wellbeing, but it can have a significant effect on how mice perform in a task.
Collapse
Affiliation(s)
- Pieter M. Goltstein
- Max Planck Institute of Neurobiology, Martinsried, Germany
- * E-mail: (PG); (MH)
| | - Sandra Reinert
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Martinsried, Germany
| | - Annet Glas
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Martinsried, Germany
| | | | - Mark Hübener
- Max Planck Institute of Neurobiology, Martinsried, Germany
- * E-mail: (PG); (MH)
| |
Collapse
|
19
|
Solari N, Sviatkó K, Laszlovszky T, Hegedüs P, Hangya B. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations. Front Syst Neurosci 2018; 12:18. [PMID: 29867383 PMCID: PMC5962774 DOI: 10.3389/fnsys.2018.00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tamás Laszlovszky
- Lendület Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Han Z, Zhang X, Zhu J, Chen Y, Li CT. High-Throughput Automatic Training System for Odor-Based Learned Behaviors in Head-Fixed Mice. Front Neural Circuits 2018; 12:15. [PMID: 29487506 PMCID: PMC5816819 DOI: 10.3389/fncir.2018.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 01/30/2018] [Indexed: 11/17/2022] Open
Abstract
Understanding neuronal mechanisms of learned behaviors requires efficient behavioral assays. We designed a high-throughput automatic training system (HATS) for olfactory behaviors in head-fixed mice. The hardware and software were constructed to enable automatic training with minimal human intervention. The integrated system was composed of customized 3D-printing supporting components, an odor-delivery unit with fast response, Arduino based hardware-controlling and data-acquisition unit. Furthermore, the customized software was designed to enable automatic training in all training phases, including lick-teaching, shaping and learning. Using HATS, we trained mice to perform delayed non-match to sample (DNMS), delayed paired association (DPA), Go/No-go (GNG), and GNG reversal tasks. These tasks probed cognitive functions including sensory discrimination, working memory, decision making and cognitive flexibility. Mice reached stable levels of performance within several days in the tasks. HATS enabled an experimenter to train eight mice simultaneously, therefore greatly enhanced the experimental efficiency. Combined with causal perturbation and activity recording techniques, HATS can greatly facilitate our understanding of the neural-circuitry mechanisms underlying learned behaviors.
Collapse
Affiliation(s)
- Zhe Han
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxing Zhang
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jia Zhu
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yulei Chen
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Brooks J, Nicholas J, Robertson JJ. Task dependence of odor discrimination: choosing between speed and accuracy. J Neurophysiol 2018; 119:377-379. [PMID: 29212916 DOI: 10.1152/jn.00522.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odor discrimination is a complex task that may be improved by increasing sampling time to facilitate evidence accumulation. However, experiments testing this phenomenon in olfaction have produced conflicting results. To resolve this disparity, Frederick et al. (Frederick DE, Brown A, Tacopina S, Mehta N, Vujovic M, Brim E, Amina T, Fixsen B, Kay LM. J Neurosci 37: 4416-4426, 2017) conducted experiments that suggest that sampling time and performance are task dependent. Their findings have implications for understanding olfactory processing and experimental design, specifically the effect of subtle differences in experimental design on study results.
Collapse
Affiliation(s)
- Jack Brooks
- Neuroscience Research Australia, University of New South Wales , Sydney , Australia
| | - Jennifer Nicholas
- Black Dog Institute, School of Psychiatry, University of New South Wales , Sydney , Australia
| | - Jennifer J Robertson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, the Australian National University , Canberra , Australia
| |
Collapse
|
22
|
Hernandez CM, Vetere LM, Orsini CA, McQuail JA, Maurer AP, Burke SN, Setlow B, Bizon JL. Decline of prefrontal cortical-mediated executive functions but attenuated delay discounting in aged Fischer 344 × brown Norway hybrid rats. Neurobiol Aging 2017; 60:141-152. [PMID: 28946018 DOI: 10.1016/j.neurobiolaging.2017.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022]
Abstract
Despite the fact that prefrontal cortex (PFC) function declines with age, aged individuals generally show an enhanced ability to delay gratification, as evident by less discounting of delayed rewards in intertemporal choice tasks. The present study was designed to evaluate relationships between 2 aspects of PFC-dependent cognition (working memory and cognitive flexibility) and intertemporal choice in young (6 months) and aged (24 months) Fischer 344 × brown Norway F1 hybrid rats. Rats were also evaluated for motivation to earn rewards using a progressive ratio task. As previously reported, aged rats showed attenuated discounting of delayed rewards, impaired working memory, and impaired cognitive flexibility compared with young. Among aged rats, greater choice of delayed reward was associated with preserved working memory, impaired cognitive flexibility, and less motivation to work for food. These relationships suggest that age-related changes in PFC and incentive motivation contribute to variance in intertemporal choice within the aged population. Cognitive impairments mediated by PFC are unlikely, however, to fully account for the enhanced ability to delay gratification that accompanies aging.
Collapse
Affiliation(s)
| | - Lauren M Vetere
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Task-Dependent Behavioral Dynamics Make the Case for Temporal Integration in Multiple Strategies during Odor Processing. J Neurosci 2017; 37:4416-4426. [PMID: 28336570 DOI: 10.1523/jneurosci.1797-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/25/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023] Open
Abstract
Differing results in olfactory-based decision-making research regarding the amount of time that rats and mice use to identify odors have led to some disagreements about odor-processing mechanics, including whether or not rodents use temporal integration (i.e., sniffing longer to identify odors better). Reported differences in behavioral strategies may be due to the different types of tasks used in different laboratories. Some researchers have reported that animals performing two-alternative choice (TAC) tasks need only 1-2 sniffs and do not increase performance with longer sampling. Others have reported that animals performing go/no-go (GNG) tasks increase sampling times and performance for difficult discriminations, arguing for temporal integration. We present results from four experiments comparing GNG and TAC tasks over several behavioral variables (e.g., performance, sampling duration). When rats know only one task, they perform better in GNG than in TAC. However, performance was not statistically different when rats learned and were tested in both tasks. Rats sample odors longer in GNG than in TAC, even when they know both tasks and perform them in the same or different sessions. Longer sampling is associated with better performance for both tasks in difficult discriminations, which supports the case for temporal integration over ≥2-6 sniffs in both tasks. These results illustrate that generalizations from a single task about behavioral or cognitive abilities (e.g., processing, perception) do not capture the full range of complexity and can significantly impact inferences about general abilities in sensory perception.SIGNIFICANCE STATEMENT Behavioral tasks and training and testing history affect measured outcomes in cognitive tests. Rats sample odors longer in a go/no-go (GNG) than in a two-alternative choice (TAC) task, performing better in GNG unless they know both tasks. Odor-sampling time is extended in both tasks when the odors to be discriminated are very similar. Rats may extend sampling time to integrate odor information up to ∼0.5 s (2-6 sniffs). Such factors as task, task parameters, and training history affect decision times and performance, making it important to use multiple tasks when making inferences about sensory or cognitive processing.
Collapse
|
24
|
Yamada Y, Bhaukaurally K, Madarász TJ, Pouget A, Rodriguez I, Carleton A. Context- and Output Layer-Dependent Long-Term Ensemble Plasticity in a Sensory Circuit. Neuron 2017; 93:1198-1212.e5. [PMID: 28238548 PMCID: PMC5352733 DOI: 10.1016/j.neuron.2017.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 11/10/2016] [Accepted: 02/03/2017] [Indexed: 01/14/2023]
Abstract
Sensory information is translated into ensemble representations by various populations of projection neurons in brain circuits. The dynamics of ensemble representations formed by distinct channels of output neurons in diverse behavioral contexts remains largely unknown. We studied the two output neuron layers in the olfactory bulb (OB), mitral and tufted cells, using chronic two-photon calcium imaging in awake mice. Both output populations displayed similar odor response profiles. During passive sensory experience, both populations showed reorganization of ensemble odor representations yet stable pattern separation across days. Intriguingly, during active odor discrimination learning, mitral but not tufted cells exhibited improved pattern separation, although both populations showed reorganization of ensemble representations. An olfactory circuitry model suggests that cortical feedback on OB interneurons can trigger both forms of plasticity. In conclusion, we show that different OB output layers display unique context-dependent long-term ensemble plasticity, allowing parallel transfer of non-redundant sensory information to downstream centers. Video Abstract
Mitral and tufted cells in the olfactory bulb show similar odor-evoked responses Passive odor experience reorganizes ensemble odor representations in both cell types Associative odor learning specifically improves pattern separation in mitral cells Cortical feedback can trigger both forms of plasticity in a network model
Collapse
Affiliation(s)
- Yoshiyuki Yamada
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Khaleel Bhaukaurally
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Tamás J Madarász
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Pouget
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Gatsby Computational Neuroscience Unit, University College London, London, W1T 4JG, UK
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland.
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb. Sci Rep 2016; 6:36514. [PMID: 27824096 PMCID: PMC5099913 DOI: 10.1038/srep36514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness).
Collapse
|
26
|
Gschwend O, Abraham NM, Lagier S, Begnaud F, Rodriguez I, Carleton A. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat Neurosci 2015; 18:1474-1482. [PMID: 26301325 PMCID: PMC4845880 DOI: 10.1038/nn.4089] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022]
Abstract
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.
Collapse
Affiliation(s)
- Olivier Gschwend
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Nixon M Abraham
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Frédéric Begnaud
- Firmenich SA, Corporate R&D Division / Analytical Innovation, route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| |
Collapse
|
27
|
Desai NS, Siegel JJ, Taylor W, Chitwood RA, Johnston D. MATLAB-based automated patch-clamp system for awake behaving mice. J Neurophysiol 2015; 114:1331-45. [PMID: 26084901 PMCID: PMC4725114 DOI: 10.1152/jn.00025.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/14/2015] [Indexed: 11/22/2022] Open
Abstract
Automation has been an important part of biomedical research for decades, and the use of automated and robotic systems is now standard for such tasks as DNA sequencing, microfluidics, and high-throughput screening. Recently, Kodandaramaiah and colleagues (Nat Methods 9: 585-587, 2012) demonstrated, using anesthetized animals, the feasibility of automating blind patch-clamp recordings in vivo. Blind patch is a good target for automation because it is a complex yet highly stereotyped process that revolves around analysis of a single signal (electrode impedance) and movement along a single axis. Here, we introduce an automated system for blind patch-clamp recordings from awake, head-fixed mice running on a wheel. In its design, we were guided by 3 requirements: easy-to-use and easy-to-modify software; seamless integration of behavioral equipment; and efficient use of time. The resulting system employs equipment that is standard for patch recording rigs, moderately priced, or simple to make. It is written entirely in MATLAB, a programming environment that has an enormous user base in the neuroscience community and many available resources for analysis and instrument control. Using this system, we obtained 19 whole cell patch recordings from neurons in the prefrontal cortex of awake mice, aged 8-9 wk. Successful recordings had series resistances that averaged 52 ± 4 MΩ and required 5.7 ± 0.6 attempts to obtain. These numbers are comparable with those of experienced electrophysiologists working manually, and this system, written in a simple and familiar language, will be useful to many cellular electrophysiologists who wish to study awake behaving mice.
Collapse
Affiliation(s)
- Niraj S Desai
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Jennifer J Siegel
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - William Taylor
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Raymond A Chitwood
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Daniel Johnston
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
28
|
Yoder WM, Gaynor L, Windham E, Lyman M, Munizza O, Setlow B, Bizon JL, Smith DW. Characterizing olfactory binary mixture interactions in Fischer 344 rats using behavioral reaction times. Chem Senses 2015; 40:325-34. [PMID: 25877697 DOI: 10.1093/chemse/bjv014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Response times provide essential subthreshold perceptual data that extend beyond accuracy alone. Behavioral reaction times (RTs) were used to characterize rats' ability to detect individual odorants in a series of complimentary binary odorant mixture ratios. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on an odor identification task using nonreinforced probe trials. Binary mixture ratios composed of aliphatic odorants (citral and octanol) were arranged such that relative contributions of the 2 components varied systematically by a factor of 1% (v/v). Odorant concentrations for the target (S+), control (S-), and mixture (S+:S-) odorants were presented relative to threshold for each rat. Rats were initially trained to respond by licking at a spout to obtain liquid reward for either citral or octanol as the reinforced target (S+) odorant. After achieving 100% accuracy, rats were transferred to variable ratio (VR 2) reinforcement for correct responding. Nonreinforced probe trials (2 per block of 22 trials) were tested for each mixture ratio and recorded as either S+ (rats lick-responded in the presence of the mixture) or S- (rats refrained from licking), thereby indicating detection of the trained, S+ odorant. To determine the perceived salience for each ratio, RTs (latency from odorant onset to lick response) were recorded for each trial. Consistent with previous studies, RTs for both odorants were shortest (~150-200ms) when the probe trials consisted of a single, monomolecular component. Binary mixtures that contained as little as 1% of the S-, nontarget odorant, however, were sufficiently different perceptually to increase behavioral RTs (i.e., rats hesitated longer before responding); RTs changed systematically as a function of the binary ratio. Interestingly, the rate of RT change was dependent on which odorant served as the S+, suggesting an asymmetric interaction between the 2 odorants. The data demonstrate the value of behavioral RT as a sensitive measure of suprathreshold perceptual responding.
Collapse
Affiliation(s)
- Wendy M Yoder
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Leslie Gaynor
- Interdisciplinary Studies Major in Neurobiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ethan Windham
- Health Science Program, University of Florida, Gainesville, FL 32611, USA
| | - Michelle Lyman
- Interdisciplinary Studies Major in Neurobiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Olivia Munizza
- Interdisciplinary Studies Major in Neurobiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Barry Setlow
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL 32611, USA, Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA, Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA and
| | | | - David W Smith
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL 32611, USA, Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Tong MT, Peace ST, Cleland TA. Properties and mechanisms of olfactory learning and memory. Front Behav Neurosci 2014; 8:238. [PMID: 25071492 PMCID: PMC4083347 DOI: 10.3389/fnbeh.2014.00238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system—particularly olfactory bulb—comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.
Collapse
Affiliation(s)
- Michelle T Tong
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| | - Shane T Peace
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Thomas A Cleland
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
30
|
Abraham NM, Vincis R, Lagier S, Rodriguez I, Carleton A. Long term functional plasticity of sensory inputs mediated by olfactory learning. eLife 2014; 3:e02109. [PMID: 24642413 PMCID: PMC3953949 DOI: 10.7554/elife.02109] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sensory inputs are remarkably organized along all sensory pathways. While sensory representations are known to undergo plasticity at the higher levels of sensory pathways following peripheral lesions or sensory experience, less is known about the functional plasticity of peripheral inputs induced by learning. We addressed this question in the adult mouse olfactory system by combining odor discrimination studies with functional imaging of sensory input activity in awake mice. Here we show that associative learning, but not passive odor exposure, potentiates the strength of sensory inputs up to several weeks after the end of training. We conclude that experience-dependent plasticity can occur in the periphery of adult mouse olfactory system, which should improve odor detection and contribute towards accurate and fast odor discriminations. DOI:http://dx.doi.org/10.7554/eLife.02109.001 The mammalian brain is not static, but instead retains a significant degree of plasticity throughout an animal’s life. It is this plasticity that enables adults to learn new things, adjust to new environments and, to some degree, regain functions they have lost as a result of brain damage. However, information about the environment must first be detected and encoded by the senses. Odors, for example, activate specific receptors in the nose, and these in turn project to structures called glomeruli in a region of the brain known as the olfactory bulb. Each odor activates a unique combination of glomeruli, and the information contained within this ‘odor fingerprint’ is relayed via olfactory bulb neurons to the olfactory cortex. Now, Abraham et al. have revealed that the earliest stages of odor processing also show plasticity in adult animals. Two groups of mice were exposed to the same two odors: however, the first group was trained to discriminate between the odors to obtain a reward, whereas the second group was passively exposed to them. When both groups of mice were subsequently re-exposed to the odors, the trained group activated more glomeruli, more strongly, than a control group that had never encountered the odors before. By contrast, the responses of mice in the passively exposed group did not differ from those of a control group. Given that the response of glomeruli correlates with the ability of mice to discriminate between odors, these results suggest that trained animals would now be able to discriminate between the odors more easily than other mice. In other words, sensory plasticity ensures that stimuli that have been associatively learned with or without reward will be easier to detect should they be encountered again in the future. DOI:http://dx.doi.org/10.7554/eLife.02109.002
Collapse
Affiliation(s)
- Nixon M Abraham
- Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Guo ZV, Hires SA, Li N, O'Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D, Peron S, Xu NL, Cox J, Svoboda K. Procedures for behavioral experiments in head-fixed mice. PLoS One 2014; 9:e88678. [PMID: 24520413 PMCID: PMC3919818 DOI: 10.1371/journal.pone.0088678] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/14/2013] [Indexed: 12/03/2022] Open
Abstract
The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings.
Collapse
Affiliation(s)
- Zengcai V. Guo
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - S. Andrew Hires
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Nuo Li
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Daniel H. O'Connor
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Takaki Komiyama
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Eran Ophir
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Daniel Huber
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Claudia Bonardi
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Karin Morandell
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Diego Gutnisky
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Simon Peron
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Ning-long Xu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - James Cox
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Karel Svoboda
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yoder WM, Setlow B, Bizon JL, Smith DW. Characterizing olfactory perceptual similarity using carbon chain discrimination in Fischer 344 rats. Chem Senses 2014; 39:323-31. [PMID: 24488965 DOI: 10.1093/chemse/bju001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Performance on olfactory tests can be influenced by a number of stimulus characteristics including chemical structure, concentration, perceptual similarity, and previous experience with the test odorants. Few of these parameters have been extensively characterized in the Fischer 344 rat strain. To investigate how odor quality affects perception in this rat strain, we measured how graded perceptual similarity, created by varying carbon chain length across a series of homologous alcohol pairs, influenced odor discrimination using a liquid-motivated go/no-go task. We employed an automated, liquid-dilution olfactometer to train Fischer 344 rats (N = 8) on a 2-odor discrimination task. Six odorants (1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) were arranged to produce 15 novel odorant pairs differing between 1 and 5 carbon atoms; testing sessions included presentation of only 1 pseudorandomly assigned pair daily (200 trials). Results show that although rats can learn to discriminate between any 2 odorant pairs, performance declines systematically as the pairs become more structurally similar and, therefore, more perceptually confusing. As such, the easier discrimination pairs produced reliable ceiling effects across all rats, whereas performance for the difficult discrimination pairs was consistently worse, even after repeated testing. These data emphasize the importance of considering odorant stimulus dimensions in experimental designs employing olfactory stimuli. Moreover, establishing baseline olfactory performance in Fischer 344 rats may be particularly useful for predicting age-related cognitive decline in this model.
Collapse
Affiliation(s)
- Wendy M Yoder
- Department of Psychology, University of Florida, 114 Psychology Building, PO Box 11250, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|