1
|
Sun J, Xie Q, Sun M, Zhang W, Wang H, Liu N, Wang M. Curcumin protects mice with myasthenia gravis by regulating the gut microbiota, short-chain fatty acids, and the Th17/Treg balance. Heliyon 2024; 10:e26030. [PMID: 38420408 PMCID: PMC10900935 DOI: 10.1016/j.heliyon.2024.e26030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Curcumin is widely used as a traditional drug in Asia. Interestingly, curcumin and its metabolites have been demonstrated to influence the microbiota. However, the effect of curcumin on the gut microbiota in patients with myasthenia gravis (MG) remains unclear. This study aimed to investigate the effects of curcumin on the gut microbiota community, short-chain fatty acids (SCFAs) levels, intestinal permeability, and Th17/Treg balance in a Torpedo acetylcholine receptor (T-AChR)-induced MG mouse model. The results showed that curcumin significantly alleviated the clinical symptoms of MG mice induced by T-AChR. Curcumin modified the gut microbiota composition, increased microbial diversity, and, in particular, reduced endotoxin-producing Proteobacteria and Desulfovibrio levels in T-AChR-induced gut dysbiosis. Moreover, we found that curcumin significantly increased fecal butyrate levels in mice with T-AChR-induced gut dysbiosis. Butyrate levels increased in conjunction with the increase in butyrate-producing species such as Oscillospira, Akkermansia, and Allobaculum in the curcumin-treated group. In addition, curcumin repressed the increased levels of lipopolysaccharide (LPS), zonulin, and FD4 in plasma. It enhanced Occludin expression in the colons of MG mice induced with T-AChR, indicating dramatically alleviated gut permeability. Furthermore, curcumin treatment corrected T-AChR-induced imbalances in Th17/Treg cells. In summary, curcumin may protect mice against myasthenia gravis by modulating both the gut microbiota and SCFAs, improving gut permeability, and regulating the Th17/Treg balance. This study provides novel insights into curcumin's clinical value in MG therapy.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Qinfang Xie
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, China
| | - Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| |
Collapse
|
2
|
Shi J, Yi M, Xie S, Wang Z, Zhang X, Tan X, Tao D, Liu Y, Yang Y. Mendelian randomization study revealed a gut microbiota-neuromuscular junction axis in myasthenia gravis. Sci Rep 2024; 14:2473. [PMID: 38291090 PMCID: PMC10827739 DOI: 10.1038/s41598-024-52469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
A growing number of studies have implicated that gut microbiota abundance is associated with myasthenia gravis (MG). However, the causal relationship underlying the associations is still unclear. Here, we aim to investigate the causal effect of gut microbiota on MG using Mendelian randomization (MR) method. Publicly available Genome-wide association study (GWAS) summary-level data for gut microbiota and for MG were extracted. Inverse variance weighted was used as the main method to analyze causality. The robustness of the results was validated with sensitivity analyses. Our results indicated that genetically predicted increased phylum Lentisphaerae (OR = 1.319, p = 0.026), class Lentisphaerae (OR = 1.306, p = 0.044), order Victivallales (OR = 1.306, p = 0.044), order Mollicutes (OR = 1.424, p = 0.041), and genus Faecalibacterium (OR = 1.763, p = 0.002) were potentially associated with a higher risk of MG; while phylum Actinobacteria (OR = 0.602, p = 0.0124), class Gammaproteobacteria (OR = 0.587, p = 0.036), family Defluviitaleaceae (OR = 0.695, p = 0.047), family Peptococcaceae (OR = 0.698, p = 0.029), and family Family XIII (OR = 0.614, p = 0.017) were related to a lower risk of MG. The present study provides genetic evidence for the causal associations between gut microbiota and MG, thus suggesting novel insights into the gut microbiota-neuromuscular junction axis in the pathogenesis of MG.
Collapse
Affiliation(s)
- Jiaying Shi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Yi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Tan
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Mi C, Hou A, Wang Z, Qi X, Teng J. Causal relationship between gut microbiota and myasthenia gravis: a two-sample Mendelian randomization study. Front Neurol 2024; 15:1309530. [PMID: 38333605 PMCID: PMC10850378 DOI: 10.3389/fneur.2024.1309530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Background Previous observational studies have provided cumulative data linking gut microbiota to myasthenia gravis (MG). However, the causal link between the two remains unexplored. Hence, the current study was performed to explore the causal link between them. Methods Mendelian randomization (MR) analysis was conducted using the summary statistics of 211 gut microbiota taxa and the largest genome-wide association studies (GWAS) for MG currently available. The inverse variance-weighted (IVW), MR-Egger, weighted median, and weighted mode methods were employed to ascertain the causal influence. Sensitivity studies utilizing several methodologies were then used to assess the robustness of the findings. Lastly, to evaluate reverse causality, a reverse MR analysis was performed. Results Seven suggestive causal associations between the gastrointestinal microbiota and MG were identified based on the outcomes of the MR analysis. Specifically, phylum Actinobacteria (OR: 0.602, 95% CI: 0.405-0.896, p = 0.012), class Gammaproteobacteria (OR: 0.587, 95% CI: 0.357-0.968, p = 0.037), and families Defluviitaleaceae (OR: 0.695, 95% CI: 0.485-0.996, p = 0.047), Family XIII (OR: 0.614, 95% CI: 0.412-0.916, p = 0.017), and Peptococcaceae (OR: 0.698, 95% CI: 0.505-0.964, p = 0.029) had suggestive protective effects on MG, while order Mollicutes RF9 (OR: 1.424, 95% CI: 1.015-1.998, p = 0.041) and genus Faecalibacterium (OR: 1.763, 95% CI: 1.220-2.547, p = 0.003) were suggestive risk factors for MG. The outcomes indicate that neither heterogeneity nor horizontal pleiotropy had any discernible impact. Nevertheless, this reverse analysis did not reveal any apparent effect of MG on the gut microbiota composition. Conclusion The MR investigation has substantiated the suggestive causal connection between gut microbiota and MG, which may provide helpful insights for innovative therapeutic and preventative approaches for MG. Further randomized controlled trials are needed to elucidate the gut microbiota's precise role and therapeutic potential in the pathogenesis of MG.
Collapse
Affiliation(s)
- Chuanhao Mi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ajiao Hou
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ziyue Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xianghua Qi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023; 15:2290643. [PMID: 38087439 PMCID: PMC10718154 DOI: 10.1080/19490976.2023.2290643] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Taruna Lamba
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Sidhanta Nanda
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Affan Khan
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| |
Collapse
|
6
|
Calabrò S, Kankowski S, Cescon M, Gambarotta G, Raimondo S, Haastert-Talini K, Ronchi G. Impact of Gut Microbiota on the Peripheral Nervous System in Physiological, Regenerative and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24098061. [PMID: 37175764 PMCID: PMC10179357 DOI: 10.3390/ijms24098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
It has been widely demonstrated that the gut microbiota is responsible for essential functions in human health and that its perturbation is implicated in the development and progression of a growing list of diseases. The number of studies evaluating how the gut microbiota interacts with and influences other organs and systems in the body and vice versa is constantly increasing and several 'gut-organ axes' have already been defined. Recently, the view on the link between the gut microbiota (GM) and the peripheral nervous system (PNS) has become broader by exceeding the fact that the PNS can serve as a systemic carrier of GM-derived metabolites and products to other organs. The PNS as the communication network between the central nervous system and the periphery of the body and internal organs can rather be affected itself by GM perturbation. In this review, we summarize the current knowledge about the impact of gut microbiota on the PNS, with regard to its somatic and autonomic divisions, in physiological, regenerative and pathological conditions.
Collapse
Affiliation(s)
- Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Svenja Kankowski
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Kirsten Haastert-Talini
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), Buenteweg 2, 30559 Hannover, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| |
Collapse
|
7
|
Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmun Rev 2023; 22:103313. [PMID: 36918089 DOI: 10.1016/j.autrev.2023.103313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Dysregulated immune system with a failure to recognize self from non-self-antigens is one of the common pathogeneses seen in autoimmune diseases. The complex interplay of genetic and environmental factors is important for the occurrence and development of the disease. Among the environmental factors, disturbed gut microbiota (gut dysbiosis) has recently attracted particular attention, especially with advancement in human microbiome research. Although the alterations in microbiota have been seen in various autoimmune diseases, including those of nervous system, there is paucity of information on neuromuscular system diseases. Myasthenia gravis (MG) is one such rare autoimmune disease of neuromuscular junction, and is caused by generation of pathogenic autoantibodies to components of the postsynaptic muscle endplate. In the recent years, accumulating evidences have endorsed the key role of host microbiota, particularly those of gut, in the pathogenesis of MG. Differential microbiota composition, characterized by increased abundance of Fusobacteria, Bacteroidetes, and Proteobacteria, and decreased abundance of Actinobacteria and Firmicutes, has been seen in MG patients in comparison to healthy subjects. Disturbance of microbiota composition, particularly reduced ratio of Firmicutes/Bacteroidetes, alter the gut permeability, subsequently triggering the immunological response. Resultant reduction in levels of short chain fatty acids (SCFAs) is another factor contributing to the immunological response in MG patients. Modulation of gut microbiota via intervention of probiotics, prebiotics, synbiotics, postbiotics (metabiotics), and fecal microbiota transplantation (FMT) is considered to be the futuristic approach for the management of MG. This review summarizes the role of gut microbiota and their metabolites (postbiotics) in the progression of MG. Also, various bacteriotherapeutic approaches involving gut microbiota are discussed for the prevention of MG progression.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222, Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India
| |
Collapse
|
8
|
Schirò G, Iacono S, Balistreri CR. The Role of Human Microbiota in Myasthenia Gravis: A Narrative Review. Neurol Int 2023; 15:392-404. [PMID: 36976669 PMCID: PMC10053295 DOI: 10.3390/neurolint15010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fluctuating weakness of the skeletal muscles. Although antibodies against the neuromuscular junction components are recognized, the MG pathogenesis remains unclear, even if with a well-known multifactorial character. However, the perturbations of human microbiota have been recently suggested to contribute to MG pathogenesis and clinical course. Accordingly, some products derived from commensal flora have been demonstrated to have anti-inflammatory effects, while other have been shown to possess pro-inflammatory properties. In addition, patients with MG when compared with age-matched controls showed a distinctive composition in the oral and gut microbiota, with a typical increase in Streptococcus and Bacteroides and a reduction in Clostridia as well as short-chain fatty acid reduction. Moreover, restoring the gut microbiota perturbation has been evidenced after the administration of probiotics followed by an improvement of symptoms in MG cases. To highlight the role of the oral and gut microbiota in MG pathogenesis and clinical course, here, the current evidence has been summarized and reviewed.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Salvatore Iacono
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Correspondence:
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
9
|
Khadka S, Omura S, Sato F, Tsunoda I. Adjuvant Injections Altered the Ileal and Fecal Microbiota Differently with Changes in Immunoglobulin Isotypes and Antimycobacterial Antibody Responses. Int J Mol Sci 2023; 24:2818. [PMID: 36769136 PMCID: PMC9917480 DOI: 10.3390/ijms24032818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alterations in the gut microbiota, "dysbiosis," have been reported in autoimmune diseases, including multiple sclerosis (MS), and their animal models. Although the animal models were induced by injections of autoantigens with adjuvants, including complete Freund's adjuvant (CFA) and pertussis toxin (PT), the effects of adjuvant injections on the microbiota are largely unknown. We aimed to clarify whether adjuvant injections could affect the microbiota in the ileum and feces. Using 16S rRNA sequencing, we found decreased alpha diversities of the gut microbiota in mice injected with CFA and PT, compared with naïve mice. Overall, microbial profiles visualized by principal component analysis demonstrated dysbiosis in feces, but not in the ileum, of adjuvant-injected mice, where the genera Lachnospiraceae NK4A136 group and Alistipes contributed to dysbiosis. When we compared the relative abundances of individual bacteria, we found changes in 16 bacterial genera in feces and seven genera in the ileum of adjuvant-injected mice, in which increased serum levels of antibody against mycobacteria (a component of CFA) and total IgG2c were correlated with the genus Facklamia. On the other hand, increased IgG1 and IgA concentrations were correlated with the genus Atopostipes. Therefore, adjuvant injections alone could alter the overall microbial profiles (i.e., microbiota) and individual bacterial abundances with altered antibody responses; dysbiosis in animal models could be partly due to adjuvant injections.
Collapse
Affiliation(s)
| | | | | | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
10
|
Zhao M, Liu L, Liu F, Liu L, Liu Z, Gao Y, Cao J. Traditional Chinese medicine improves myasthenia gravis by regulating the symbiotic homeostasis of the intestinal microbiota and host. Front Microbiol 2023; 13:1082565. [PMID: 36687653 PMCID: PMC9852828 DOI: 10.3389/fmicb.2022.1082565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by autoantibodies that is dependent on T-cell immunity and complement participation and mainly involves neuromuscular junctions. In this study, 30 patients with myasthenia gravis were selected and divided into pretreatment (Case group) and posttreatment (Treatment group) and 30 healthy volunteers (CON group) were included. Among them, the treatment group was treated with Modified Buzhong Yiqi Decoction (MBZYQD), and the levels of antibodies such as AChR, Musk and Titin in blood and intestinal microbiota were compared before treatment (Case group), after treatment (Treatment group) and in healthy volunteers (CON group). The results showed that after treatment with MBZYQD, the antibody levels of AChR, MuSK, and Titin and the inflammatory factor level of IL-6, IL-1β, and IL-22 in MG patients decreased significantly and nearly returned to a healthy level. In addition, after treatment with MBZYQD, the diversity, structure and function of intestinal microorganisms in MG patients also recovered to a healthy level. At the phylum level, the relative abundance of Proteobacteria in the Case group increased significantly, accompanied by a significant decrease in the relative abundance of Bacteroides compared with that in the CON group, the relative abundance of Proteobacteria and Bacteroides in the Treatment group was similar to that in the CON group. At the genus level, the relative abundance of Shigella in the Case group was significantly increased, accompanied by a significant decrease in the relative abundance of Prevotella, and the relative abundance of Shigella and Prevotella in Treatment group was similar to that in the CON group. Moreover, the fluorobenzoate degradation pathway (KO00364) was significantly increased in the Case group, while this pathway was significantly decreased in the Treatment group. In conclusion, MBZYQD can improve the immune function of the host by regulating the diversity, structure and function of the intestinal microbiota to treat myasthenia gravis.
Collapse
Affiliation(s)
- Mingli Zhao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Li Liu
- Department of Thoracic Surgery, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Fanzhao Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lei Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhijuan Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yanli Gao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jianxi Cao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China,*Correspondence: Jianxi Cao,
| |
Collapse
|
11
|
Zanetta P, Ormelli M, Amoruso A, Pane M, Azzimonti B, Squarzanti DF. Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What's New? Int J Mol Sci 2022; 23:ijms23073489. [PMID: 35408849 PMCID: PMC8998608 DOI: 10.3390/ijms23073489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory disorder with multifactorial aetiology and malignant transformation potential. Despite the treatments so far identified, new tailored and safe specific measures are needed. Recently, human microbiota imbalance has been linked to several immune-mediated diseases, opening new therapeutic perspectives for probiotics; besides their ability to directly interact with the host microbiota, they also display a strain-specific immune-modulatory effect. Thus, this non-systematic review aims to elucidate the molecular pathways underlying probiotic activity, mainly those of Lactobacilli and Bifidobacteria and their metabolites in OLP pathogenesis and malignant transformation, focusing on the most recent in vitro and in vivo research evidence. Findings related to their activity in other immune-mediated diseases are here included, suggesting a probiotic translational use in OLP. Probiotics show immune-modulatory and microbiota-balancing activities; they protect the host from pathogens, hamper an excessive effector T cell response, reduce nuclear factor-kappa B (NF-kB) signalling and basal keratinocytes abnormal apoptosis, shifting the mucosal response towards the production of anti-inflammatory cytokines, thus preventing uncontrolled damage. Therefore, probiotics could be a highly encouraging prevention and immunotherapeutic approach for a safer and more sustainable OLP management.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Margherita Ormelli
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Angela Amoruso
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| |
Collapse
|
12
|
Jeong JJ, Park HJ, Cha MG, Park E, Won SM, Ganesan R, Gupta H, Gebru YA, Sharma SP, Lee SB, Kwon GH, Jeong MK, Min BH, Hyun JY, Eom JA, Yoon SJ, Choi MR, Kim DJ, Suk KT. The Lactobacillus as a Probiotic: Focusing on Liver Diseases. Microorganisms 2022; 10:288. [PMID: 35208742 PMCID: PMC8879051 DOI: 10.3390/microorganisms10020288] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, scientific evidence for the properties, functions, and beneficial effects of probiotics for humans has continued to accumulate. Interest in the use of probiotics for humans has increased tremendously. Among various microorganisms, probiotics using bacteria have been widely studied and commercialized, and, among them, Lactobacillus is representative. This genus contains about 300 species of bacteria (recently differentiated into 23 genera) and countless strains have been reported. They improved a wide range of diseases including liver disease, gastrointestinal diseases, respiratory diseases, and autoimmune diseases. Here, we intend to discuss in depth the genus Lactobacillus as a representative probiotic for chronic liver diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon 24252, Korea; (J.-J.J.); (H.J.P.); (M.G.C.); (E.P.); (S.-M.W.); (R.G.); (H.G.); (Y.A.G.); (S.P.S.); (S.B.L.); (G.H.K.); (M.K.J.); (B.H.M.); (J.Y.H.); (J.A.E.); (S.J.Y.); (M.R.C.); (D.J.K.)
| |
Collapse
|
13
|
Chen P, Tang X. Gut Microbiota as Regulators of Th17/Treg Balance in Patients With Myasthenia Gravis. Front Immunol 2022; 12:803101. [PMID: 35003133 PMCID: PMC8732367 DOI: 10.3389/fimmu.2021.803101] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is an acquired neurological autoimmune disorder characterized by dysfunctional transmission at the neuromuscular junction, with its etiology associated with genetic and environmental factors. Anti-inflammatory regulatory T cells (Tregs) and pro-inflammatory T helper 17 (Th17) cells functionally antagonize each other, and the immune imbalance between them contributes to the pathogenesis of MG. Among the numerous factors influencing the balance of Th17/Treg cells, the gut microbiota have received attention from scholars. Gut microbial dysbiosis and altered microbial metabolites have been seen in patients with MG. Therefore, correcting Th17/Treg imbalances may be a novel therapeutic approach to MG by modifying the gut microbiota. In this review, we initially review the association between Treg/Th17 and the occurrence of MG and subsequently focus on recent findings on alterations of gut microbiota and microbial metabolites in patients with MG. We also explore the effects of gut microbiota on Th17/Treg balance in patients with MG, which may provide a new direction for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Pan Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Shah F, Dwivedi M. Pathophysiological Role of Gut Microbiota Affecting Gut–Brain Axis and Intervention of Probiotics and Prebiotics in Autism Spectrum Disorder. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:69-115. [DOI: 10.1007/978-981-16-6760-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Ravi AK, Muthukrishnan SK. Combination of Probiotics and Natural Compounds to Treat Multiple Sclerosis via Warburg Effect. Adv Pharm Bull 2021; 12:515-523. [PMID: 35935051 PMCID: PMC9348531 DOI: 10.34172/apb.2022.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). It is an auto-immune disorder. Its usual symptoms are unique to each person. In MS lesions vast fractions of pyruvate molecules are instantly transformed into lactate. This reprogramming mechanism of glycolysis is known as the Warburg effect. MS has no efficient treatment yet. Hence, there is a requirement for profitable immunomodulatory agents in MS. Probiotics perform as an immunomodulator because they regulate the host’s immune responses. Its efficacy gets enhanced for an extended period when it combines with prebiotics. In this review, we focus on the metabolic alterations behind the MS lesions via the Warburg effect, and also suggesting, the combined efficacy of prebiotics and probiotics for the effective treatment of MS without side effects. The Warburg effect mechanism intensifies the infiltration of activated T-cells and B-cells into the CNS. It provokes the inflammation process on the myelin sheath. The infiltration of immune cells can be inhibited by the combination therapy of probiotics and prebiotics. By this review, we can recommend that the idea of this combinational therapy can do miracles in the treatment of MS in the future.
Collapse
|
16
|
Qian K, Xu JX, Deng Y, Peng H, Peng J, Ou CM, Liu Z, Jiang LH, Tai YH. Signaling pathways of genetic variants and miRNAs in the pathogenesis of myasthenia gravis. Gland Surg 2020; 9:1933-1944. [PMID: 33447544 PMCID: PMC7804555 DOI: 10.21037/gs-20-39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder causing muscle weakness and characterized by a defect in synaptic transmission at the neuromuscular junction. The pathogenesis of this disease remains unclear. We aimed to predict the key signaling pathways of genetic variants and miRNAs in the pathogenesis of MG, and identify the key genes among them. METHODS We searched published information regarding associated single nucleotide polymorphisms (SNPs) and differentially-expressed miRNAs in MG cases. We search of SNPs and miRNAs in literature databases about MG, then we used bioinformatic tools to predict target genes of miRNAs. Moreover, functional enrichment analysis for key genes was carried out utilizing the Cytoscape-plugin, known as ClueGO. These key genes were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then a miRNA-target gene regulatory network was established to screen key genes. RESULTS Five genes containing SNPs associated with MG risk were involved in the inflammatory bowel disease (IBD) signaling pathway, and FoxP3 was the key gene. MAPK1, SMAD4, SMAD2 and BCL2 were predicted to be targeted by the 18 miRNAs and to act as the key genes in adherens, junctions, apoptosis, or cancer-related pathways respectively. These five key genes containing SNPs or targeted by miRNAs were found to be involved in negative regulation of T cell differentiation. CONCLUSIONS We speculate that SNPs cause the genes to be defective or the miRNAs to downregulate the factors that subsequently negatively regulate regulatory T cells and trigger the onset of MG.
Collapse
Affiliation(s)
- Kai Qian
- Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China
- Department of Thoracic Surgery, Institute of The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jia-Xin Xu
- Department of Cardiovascular surgery, Yan’ an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Deng
- Department of Oncology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Peng
- Department of Thoracic Surgery, Institute of The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jun Peng
- Department of Thoracic Surgery, Institute of The First People’s Hospital of Yunnan Province, Kunming, China
| | - Chun-Mei Ou
- Department of Cardiovascular surgery, Institute of the First People’s Hospital of Yunnan Province, Kunming, China
| | - Zu Liu
- Department of Cardiovascular surgery, Yan’ an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Hong Jiang
- Department of Thoracic Surgery, Institute of The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yong-Hang Tai
- School of Electronic Information in the Yunnan Normal University, Kunming, China
| |
Collapse
|
17
|
Moon J, Ryu JS, Kim JY, Im SH, Kim MK. Effect of IRT5 probiotics on dry eye in the experimental dry eye mouse model. PLoS One 2020; 15:e0243176. [PMID: 33259525 PMCID: PMC7707591 DOI: 10.1371/journal.pone.0243176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the clinical effects of IRT5 probiotics in the environmental dry eye model. Methods Eight week old male C57BL/6 mice were randomly divided into two groups; control group (n = 16) received oral gavage of 300 μL phosphate-buffered saline (PBS) alone once daily, IRT5 group (n = 9) received oral gavage of 1 x 109 CFU IRT5 probiotics powder in 300 μL PBS once daily, both groups for 11 to 12 days. Simultaneously, all mice underwent dry eye induction. Tear secretion, corneal staining and conjunctival goblet cell density were evaluated. Quantative real-time polymerase chain reaction (RT-PCR) for inflammation-related markers was performed. 16S ribosomal RNA of fecal microbiome was analyzed and compositional difference, alpha and beta diversities were assessed. Results There was no difference in NEI score but significant increase in tear secretion was observed in IRT5 group (p < 0.001). There was no significant difference in goblet cell density between groups. Quantative RT-PCR of cornea and conjunctiva revealed increased TNF-α expression in IRT5 group (p < 0.001) whereas other markers did not significantly differ from control. IRT5 group had significantly increased species diversity by Shannon index (p = 0.041). Beta diversity of genus by UniFrac principle coordinates analysis showed significant distance between groups (p = 0.001). Compositional differences between groups were observed and some were significantly associated with tear secretion. Multivariate linear regression analysis revealed Christensenellaceae (p = 0.009), Lactobacillus Helveticus group (p = 0.002) and PAC001797_s (p = 0.011) to strongly influence tear secretion. Conclusion In experimental dry eye model, IRT5 probiotics treatment partially improves experimental dry eye by increasing tear secretion which was associated with and influenced by the change in intestinal microbiome. Also, intestinal microbiome may affect the lacrimal gland through a different mechanism other than regulating inflammation.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jun Yeop Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
- ImmunoBiome Inc. POSTECH Biotech Center, Pohang, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Stavropoulou E, Bezirtzoglou E. Probiotics in Medicine: A Long Debate. Front Immunol 2020; 11:2192. [PMID: 33072084 PMCID: PMC7544950 DOI: 10.3389/fimmu.2020.02192] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years probiotics gained the attention of clinicians for their use in the prevention and treatment of multiple diseases. Probiotics main mechanisms of action include enhanced mucosal barrier function, direct antagonism with pathogens, inhibition of bacterial adherence and invasion capacity in the intestinal epithelium, boosting of the immune system and regulation of the central nervous system. It is accepted that there is a mutual communication between the gut microbiota and the liver, the so-called “microbiota-gut-liver axis” as well as a reciprocal communication between the intestinal microbiota and the central nervous system through the “microbiota-gut-brain axis.” Moreover, recently the “gut-lung axis” in bacterial and viral infections is considerably discussed for bacterial and viral infections, as the intestinal microbiota amplifies the alveolar macrophage activity having a protective role in the host defense against pneumonia. The importance of the normal human intestinal microbiota is recognized in the preservation of health. Disease states such as, infections, autoimmune conditions, allergy and other may occur when the intestinal balance is disturbed. Probiotics seem to be a promising approach to prevent and even reduce the symptoms of such clinical states as an adjuvant therapy by preserving the balance of the normal intestinal microbiota and improving the immune system. The present review states globally all different disorders in which probiotics can be given. To date, Stronger data in favor of their clinical use are provided in the prevention of gastrointestinal disorders, antibiotic-associated diarrhea, allergy and respiratory infections. We hereby discuss the role of probiotics in the reduction of the respiratory infection symptoms and we focus on the possibility to use them as an adjuvant to the therapeutic approach of the pandemic COVID-19. Nevertheless, it is accepted by the scientific community that more clinical studies should be undertaken in large samples of diseased populations so that the assessment of their therapeutic potential provide us with strong evidence for their efficacy and safety in clinical use.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- CHUV (Centre Hospitalier Universitaire Vaudois), Lausanne, Switzerland.,Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
19
|
Choi SH, Oh JW, Ryu JS, Kim HM, Im SH, Kim KP, Kim MK. IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Invest Ophthalmol Vis Sci 2020; 61:42. [PMID: 32232342 PMCID: PMC7401425 DOI: 10.1167/iovs.61.3.42] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose While the association between the gut microbiome and the immune system has been studied in autoimmune disorders, little is known about ocular disease. Previously we reported that IRT5, a mixture of five probiotic strains, could suppress autoimmune dry eye. In this study, we investigated the mechanism by which IRT5 performs its immunomodulatory function in a mouse model of autoimmune dry eye. Methods NOD.B10.H2b mice were used as an autoimmune dry eye model. Either IRT5 or PBS was gavaged orally for 3 weeks, with or without 5 days of antibiotic pretreatment. The effects on clinical features, extraorbital lacrimal gland and spleen proteins, and fecal microbiota were analyzed. Results The ocular staining score was lower, and tear secretion was higher, in the IRT5-treated groups than in the PBS-treated groups. After IRT5 treatment, the downregulated lacrimal gland proteins were enriched in the biological processes of defense response and immune system process. The relative abundances of 33 operational taxonomic units were higher, and 53 were lower, in the feces of the IRT5-treated groups than in those of the PBS-treated groups. IRT5 administration without antibiotic pretreatment also showed immunomodulatory functions with increases in the Lactobacillus helveticus group and Lactobacillus hamsteri. Additional proteomic assays revealed a decrease of proteins related to antigen-presenting processes in the CD11b+ and CD11c+ cells of spleen in the IRT5-treated groups. Conclusions Changes in the gut microbiome after IRT5 treatment improved clinical manifestations in the autoimmune dry eye model via the downregulation of antigen-presenting processes in immune networks.
Collapse
|
20
|
Garcia-Vello P, Sharma G, Speciale I, Molinaro A, Im SH, De Castro C. Structural features and immunological perception of the cell surface glycans of Lactobacillus plantarum: a novel rhamnose-rich polysaccharide and teichoic acids. Carbohydr Polym 2020; 233:115857. [PMID: 32059908 DOI: 10.1016/j.carbpol.2020.115857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/26/2022]
|
21
|
Rinaldi E, Consonni A, Cordiglieri C, Sacco G, Crasà C, Fontana A, Morelli L, Elli M, Mantegazza R, Baggi F. Therapeutic Effect of Bifidobacterium Administration on Experimental Autoimmune Myasthenia Gravis in Lewis Rats. Front Immunol 2019; 10:2949. [PMID: 31956324 PMCID: PMC6951413 DOI: 10.3389/fimmu.2019.02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Beneficial effects of probiotics on gut microbiota homeostasis and inflammatory immune responses suggested the investigation of their potential clinical efficacy in experimental models of autoimmune diseases. Indeed, administration of two bifidobacteria and lactobacilli probiotic strains prevented disease manifestations in the Lewis rat model of Myasthenia Gravis (EAMG). Here, we demonstrate the clinical efficacy of therapeutic administration of vital bifidobacteria (i.e., from EAMG onset). The mechanisms involved in immunomodulation were investigated with ex vivo and in vitro experiments. Improvement of EAMG symptoms was associated to decreased anti-rat AChR antibody levels, and differential expression of TGFβ and FoxP3 immunoregulatory transcripts in draining lymph nodes and spleen of treated-EAMG rats. Exposure of rat bone marrow-derived dendritic cells to bifidobacteria or lactobacilli strains upregulated toll-like receptor 2 mRNA expression, a key molecule involved in bacterium recognition via lipotheicoic acid. Live imaging experiments of AChR-specific effector T cells, co-cultured with BMDCs pre-exposed to bifidobacteria, demonstrated increased percentages of motile effector T cells, suggesting a hindered formation of TCR-peptide-MHC complex. Composition of gut microbiota was studied by 16S rRNA gene sequencing, and α and β diversity were determined in probiotic treated EAMG rats, with altered ratios between Tenericutes and Verrucomicrobia (phylum level), and Ruminococcaceae and Lachnospiraceae (family level). Moreover, the relative abundance of Akkermansia genus was found increased compared to healthy and probiotic treated EAMG rats. In conclusion, our findings confirms that the administration of vital bifidobacteria at EAMG onset has beneficial effects on disease progression; this study further supports preclinical research in human MG to evaluate probiotic efficacy as supplementary therapy in MG.
Collapse
Affiliation(s)
- Elena Rinaldi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Consonni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia Sacco
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Crasà
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fulvio Baggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
22
|
Song J, Lim HX, Lee A, Kim S, Lee JH, Kim TS. Staphylococcus succinus 14BME20 Prevents Allergic Airway Inflammation by Induction of Regulatory T Cells via Interleukin-10. Front Immunol 2019; 10:1269. [PMID: 31231389 PMCID: PMC6559308 DOI: 10.3389/fimmu.2019.01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Asthma is a common chronic inflammatory disease, which is characterized by airway hyperresponsiveness (AHR), high serum levels of immunoglobulin (Ig)E, and recruitment of various inflammatory cells such as eosinophils and lymphocytes. Korean traditional fermented foods have been reported to exert beneficial effects against allergic diseases such as asthma and atopic dermatitis. In this study, we investigated whether Staphylococcus succinus strain 14BME20 (14BME20) isolated from doenjang, a traditional high-salt-fermented soybean food of Korea, exerts suppressive effects on allergic airway inflammation in a murine model. Mice were orally administered with 14BME20, then sensitized and challenged with ovalbumin as an allergen. Administration of the 14BME20 significantly suppressed AHR and influx of inflammatory cells into the lungs and reduced serum IgE levels. Moreover, the proportion of T helper type 2 (Th2) cells and the production of Th2 cytokines were decreased in 14BME20-treated mice, whereas dendritic cells (DCs) with tolerogenic characteristics were increased. In contrast, oral administration of 14BME20 increased the proportion of CD4+CD25+Foxp3+ regulatory T (Treg) cells and the level of interleukin (IL)-10 in 14BME20-treated mice. Furthermore, 14BME20 induced maturation of tolerogenic DCs, and 14BME20-treated DCs increased Treg cell population in a co-culture system of DCs and CD4+ T cells. The addition of a neutralizing anti-IL-10 mAb to the culture of cells that had been treated with 14BME20 decreased the enhanced Treg cell population, thereby indicating that 14BME20-treated DCs increase Treg cell population via DC-derived IL-10. These results demonstrate that oral administration of 14BME20 suppresses airway inflammation by enhancing Treg responses and suggest that the 14BME20 isolated from doenjang may be a therapeutic agent for allergic asthma.
Collapse
Affiliation(s)
- Jisun Song
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hui Xuan Lim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Soojung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019; 11:521. [PMID: 30823414 PMCID: PMC6471505 DOI: 10.3390/nu11030521] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
In recent years, there has been an emerging interest in the possible role of the gut microbiota as a co-factor in the development of autism spectrum disorders (ASDs), as many studies have highlighted the bidirectional communication between the gut and brain (the so-called "gut-brain axis"). Accumulating evidence has shown a link between alterations in the composition of the gut microbiota and both gastrointestinal and neurobehavioural symptoms in children with ASD. The aim of this narrative review was to analyse the current knowledge about dysbiosis and gastrointestinal (GI) disorders in ASD and assess the current evidence for the role of probiotics and other non-pharmacological approaches in the treatment of children with ASD. Analysis of the literature showed that gut dysbiosis in ASD has been widely demonstrated; however, there is no single distinctive profile of the composition of the microbiota in people with ASD. Gut dysbiosis could contribute to the low-grade systemic inflammatory state reported in patients with GI comorbidities. The administration of probiotics (mostly a mixture of Bifidobacteria, Streptococci and Lactobacilli) is the most promising treatment for neurobehavioural symptoms and bowel dysfunction, but clinical trials are still limited and heterogeneous. Well-designed, randomized, placebo-controlled clinical trials are required to validate the effectiveness of probiotics in the treatment of ASD and to identify the appropriate strains, dose, and timing of treatment.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Lorenza Di Genova
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Giovanni Battista Dell'Isola
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Elisabetta Mencaroni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
24
|
Sharma G, Im SH. Probiotics as a Potential Immunomodulating Pharmabiotics in Allergic Diseases: Current Status and Future Prospects. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:575-590. [PMID: 30306743 PMCID: PMC6182196 DOI: 10.4168/aair.2018.10.6.575] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023]
Abstract
The prevalence of allergic disorders has dramatically increased over the past decade, particularly in developed countries. Apart from gastrointestinal disorders, neoplasia, genital and dermatological diseases etc., dysregulation of gut microbiota (dysbiosis) has also been found to be associated with increased risk of allergies. Probiotics are increasingly being employed to correct dysbiosis and, in turn, to modulate allergic diseases. However, several factors like strain variations and effector metabolites or component of them in a bacterial species can affect the efficacy of those as probiotics. On the other hand, host variations like geographical locations, food habits etc. could also affect the expected results from probiotic usage. Thus, there is a glaring deficiency in our approach to establish probiotics as an irrefutable treatment avenue for suitable disorders. In this review, we explicate on the reported probiotics and their effects on certain allergic diseases like atopic dermatitis, food allergy and asthma to establish their utility. We propose possible measures like elucidation of effector molecules and functional mechanisms of probiotics towards establishing probiotics for therapeutic use. Certain probiotics studies have led to very alarming outcomes which could have been precluded, had effective guidelines been in place. Thus, we also propose ways to secure the safety of probiotics. Overall, our efforts tend to propose necessary discovery and quality assurance guidelines for developing probiotics as potential immunomodulatory 'Pharmabiotics.'
Collapse
Affiliation(s)
- Garima Sharma
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sin Hyeog Im
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
25
|
Verma R, Lee C, Jeun EJ, Yi J, Kim KS, Ghosh A, Byun S, Lee CG, Kang HJ, Kim GC, Jun CD, Jan G, Suh CH, Jung JY, Sprent J, Rudra D, De Castro C, Molinaro A, Surh CD, Im SH. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3 + regulatory T cells. Sci Immunol 2018; 3:eaat6975. [PMID: 30341145 DOI: 10.1126/sciimmunol.aat6975] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
Abstract
Dysregulation of intestinal microflora is linked to inflammatory disorders associated with compromised immunosuppressive functions of Foxp3+ T regulatory (Treg) cells. Although mucosa-associated commensal microbiota has been implicated in Treg generation, molecular identities of the "effector" components controlling this process remain largely unknown. Here, we have defined Bifidobacterium bifidum as a potent inducer of Foxp3+ Treg cells with diverse T cell receptor specificity to dietary antigens, commensal bacteria, and B. bifidum itself. Cell surface β-glucan/galactan (CSGG) polysaccharides of B. bifidum were identified as key components responsible for Treg induction. CSGG efficiently recapitulated the activity of whole bacteria and acted via regulatory dendritic cells through a partially Toll-like receptor 2-mediated mechanism. Treg cells induced by B. bifidum or purified CSGG display stable and robust suppressive capacity toward experimental colitis. By identifying CSGG as a functional component of Treg-inducing bacteria, our studies highlight the immunomodulatory potential of CSGG and CSGG-producing microbes.
Collapse
Affiliation(s)
- Ravi Verma
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Changhon Lee
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eun-Ji Jeun
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaeu Yi
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Ambarnil Ghosh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Seohyun Byun
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Choong-Gu Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Hye-Ji Kang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Gi-Cheon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gwenaël Jan
- INRA-Agrocampus Ouest Rennes, UMR 1253 STLO, Rennes, France
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine,164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine,164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jonathan Sprent
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, 80055 Portici, Italy
- Department of Chemical Sciences, University of Napoli, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, 80126 Napoli, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
26
|
Vahidi Z, Samadi M, Mahmoudi M, RezaieYazdi Z, Sahebari M, Tabasi N, Esmaeili SA, Sahebkar A, Rastin M. Lactobacillus rhamnosus and Lactobacillus delbrueckii ameliorate the expression of miR-155 and miR-181a in SLE patients. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
27
|
Kim J, Lee BS, Kim B, Na I, Lee J, Lee JY, Park MR, Kim H, Sohn I, Ahn K. Identification of atopic dermatitis phenotypes with good responses to probiotics (Lactobacillus plantarum CJLP133) in children. Benef Microbes 2018; 8:755-761. [PMID: 29035111 DOI: 10.3920/bm2017.0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The therapeutic effect of probiotics in atopic dermatitis (AD) remains controversial and varies according to the individual patient. We aimed to identify a population of AD patients with a good clinical response to probiotic treatment. We recruited 76 children with a median age of 7.1 years who suffered from moderate to severe AD. After a 2-week washout period, all patients were given Lactobacillus plantarum CJLP133 at a dosage of 1×1010 colony-forming units once a day for 12 weeks. We measured eosinophil counts in the peripheral blood, the proportion of CD4+CD25+Foxp3+ regulatory T (Treg) cells in CD4+ T cells, serum total immunoglobulin E (IgE) levels, and specific IgE against common allergens before the start of the treatment (T1) and at discontinuation (T2). Responders were defined as patients with at least a 30% reduction in the SCORing of AD (SCORAD) index after treatment. There were 36 responders and 40 non-responders after probiotic treatment. The median SCORAD was reduced from 29.5 (range 20.6-46.3) at T1 to 16.4 (range 6.3-30.8) at T2 in the responder group (P<0.001). In multivariable logistic regression analysis, a good clinical response was significantly associated with high total IgE levels (aOR 5.1, 95% CI 1.1-23.6), increased expression of transforming growth factor (TGF)-β (aOR 4.6, 95% CI 1.3-15.9), and a high proportion of Treg cells in CD4+ T cells (aOR 3.7, 95% CI 1.1-12.7) at T1. In the responder group, the proportion of Treg cells was significantly increased after 12 weeks of treatment (P=0.004), while TGF-β mRNA expression was decreased (P=0.017). Our results suggest that a subgroup of patients with a specific AD phenotype showing an immunologically active state (high total IgE, increased expression of TGF-β, high numbers of Treg cells) may benefit from probiotic treatment with L. plantarum CJLP133.
Collapse
Affiliation(s)
- J Kim
- 1 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea.,2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - B S Lee
- 2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - B Kim
- 3 Beneficial Microbes R&D Center, CJ CheilJedang Corporation, Suwon, Republic of Korea
| | - I Na
- 2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - J Lee
- 2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - J Y Lee
- 1 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea.,2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| | - M R Park
- 4 Department of Pediatrics, Sung-Ae Hospital, Seoul, Republic of Korea
| | - H Kim
- 5 Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Republic of Korea
| | - I Sohn
- 5 Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Republic of Korea
| | - K Ahn
- 1 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea.,2 Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
28
|
Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, Elli M, Mantegazza R, Baggi F. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 2018; 9:22269-22287. [PMID: 29854277 PMCID: PMC5976463 DOI: 10.18632/oncotarget.25170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Probiotics beneficial effects on the host are associated with regulation of the intestinal microbial homeostasis and with modulation of inflammatory immune responses in the gut and in periphery. In this study, we investigated the clinical efficacy of two lactobacillus and two bifidobacterium probiotic strains in experimental autoimmune myasthenia gravis (EAMG) and experimental autoimmune encephalomyelitis (EAE) models, induced in Lewis rats. Treatment with probiotics led to less severe disease manifestation in both models; ex vivo analyses showed preservation of neuromuscular junction in EAMG and myelin content in EAE spinal cord. Immunoregulatory transcripts were found differentially expressed in gut associated lymphoid tissue and in peripheral immunocompetent organs. Feeding EAMG animals with probiotics resulted in increased levels of Transforming Growth Factor-β (TGFβ) in serum, and increased percentages of regulatory T cells (Treg) in peripheral blood leukocyte. Exposure of immature dendritic cells to probiotics induced their maturation toward an immunomodulatory phenotype, and secretion of TGFβ. Our data showed that bifidobacteria and lactobacilli treatment effectively modulates disease symptoms in EAMG and EAE models, and support further investigations to evaluate their use in autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Chiara Cordiglieri
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Roberta Marolda
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Ilaria Ravanelli
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| |
Collapse
|
29
|
Rinaldi E, Consonni A, Guidesi E, Elli M, Mantegazza R, Baggi F. Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis? Ann N Y Acad Sci 2018; 1413:49-58. [PMID: 29341125 DOI: 10.1111/nyas.13567] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Gut microorganisms (microbiota) live in symbiosis with the host and influence human nutrition, metabolism, physiology, and immune development and function. The microbiota prevents pathogen infection to the host, and in turn the host provides a niche for survival. The alteration of gut bacteria composition (dysbiosis) could contribute to the development of immune-mediated diseases by influencing the immune system activation and driving the pro- and anti-inflammatory responses in order to promote or counteract immune reactions. Probiotics are nonpathogenic microorganisms able to interact with the gut microbiota and provide health benefits; their use has recently been exploited to dampen immunological response in several experimental models of autoimmune diseases. Here, we focus on the relationships among commensal bacteria, probiotics, and the gut, describing the main interactions occurring with the immune system and recent data supporting the clinical efficacy of probiotic administration in rheumatoid arthritis, multiple sclerosis, and myasthenia gravis (MG) animal models. The encouraging results suggest that selected strains of probiotics should be evaluated in clinical trials as adjuvant therapy to restore the disrupted tolerance in myasthenia gravis.
Collapse
Affiliation(s)
- Elena Rinaldi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| | - Alessandra Consonni
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| | - Fulvio Baggi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| |
Collapse
|
30
|
Wang Z, Yan Y. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica. Front Immunol 2017; 8:1785. [PMID: 29312313 PMCID: PMC5732908 DOI: 10.3389/fimmu.2017.01785] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
31
|
Kim J, Choi SH, Kim YJ, Jeong HJ, Ryu JS, Lee HJ, Kim TW, Im SH, Oh JY, Kim MK. Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients 2017; 9:1166. [PMID: 29068389 PMCID: PMC5707638 DOI: 10.3390/nu9111166] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although the relation of the gut microbiota to a development of autoimmune and inflammatory diseases has been investigated in various animal models, there are limited studies that evaluate the effect of probiotics in the autoimmune eye disease. Therefore, we aimed to investigate the effect of IRT-5 probiotics consisting of Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium bifidum, and Streptococcus thermophilus on the autoimmunity of uveitis and dry eye and alloimmunity of corneal transplantation. METHODS Experimental autoimmune uveitis was induced by subcutaneous immunization with interphotoreceptor-binding protein and intraperitoneal injection of pertussis toxin in C57BL/6 (B6) mice. For an autoimmune dry eye model, 12-weeks-old NOD.B10.H2b mice were used. Donor cornea of B6 mice was transplanted into BALB/C mice. IRT-5 probiotics or phosphate buffered saline (PBS) were administered for three weeks immediately after induction of uveitis or transplantation. The inflammation score of the retinal tissues, dry eye manifestations (corneal staining and tear secretion), and graft survival were measured in each model. The changes of T cells were evaluated in drainage lymph nodes using fluorescence-activated cell sorting. RESULTS Retinal histology score in IRT-5 group of uveitis was lower than that in PBS group (p = 0.045). Ocular staining score was lower (p < 0.0001) and tear secretion was higher (p < 0.0001) in the IRT-5 group of NOD.B10.H2b mice than that in the PBS group. However, the graft survival in the IRT-5 group was not different from those of PBS group. The percentage of regulatory T cells was increased in the IRT-5-treated dry eye models (p = 0.032). The percentage of CD8⁺IL-17hi (p = 0.027) and CD8⁺ interferon gamma (IFNγ)hi cells (p = 0.022) were significantly decreased in the IRT-5-treated uveitis models and the percentage of CD8⁺IFNγhi cells was markedly reduced (p = 0.036) in IRT-5-treated dry eye model. CONCLUSION Our results suggest that administration of IRT-5 probiotics may modulate clinical manifestations of autoimmunity in the eye, but not on alloimmunity of corneal transplantation.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Se Hyun Choi
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Yu Jeong Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Hyun Jeong Jeong
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
| | - Tae Wan Kim
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea.
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea.
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Korea.
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
32
|
Pizano JM, Williamson CB, Dolan KE, Gossard CM, Burns CM, Gasta MG, Finley HJ, Parker EC, Lipski EA. Probiotics and Disease: A Comprehensive Summary-Part 7, Immune Disorders. Integr Med (Encinitas) 2017; 16:46-57. [PMID: 30936805 PMCID: PMC6438099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article series provides a literature review of the disease-specific probiotic strains associated with immune and autoimmune conditions that have been studied in published clinical trials in humans and animals. This is not an exhaustive review. The table design allows for quick access to supportive data and will be helpful as a guide for both researchers and clinicians. The goal of the probiotics and disease series is to provide clinically useful tools. The first article (part 1) focused on mental health and neurological conditions, and the second article (part 2) explored cultured and fermented foods that are commonly available in the United States. The third article (part 3) explored the relationship between bacterial strains and 2 of the most prevalent diseases we have in modern society: cardiometabolic disease and fatigue syndromes. The fourth article (part 4) elucidated the role of the microbiome in infectious diseases, and the fifth article (part 5) examined respiratory conditions of the ears, nose, and throat. The sixth article (part 6) explored the relationship between beneficial microbiota and skin disorders. This seventh article (part 7) reviews the relationship between beneficial microbiota and autoimmune diseases, allergies, asthma, and other immunity-related disorders. Future articles will review the relationship between probiotics and skin disorders, the influence of the microbiome on cancer development and prognosis, and gastrointestinal and genitourinary diseases associated with dysbiosis, followed by an article focused on probiotic supplements. This literature review is specific to disease condition, probiotic classification, and individual strain.
Collapse
|
33
|
Li X, Song Y, Ma X, Zhang Y, Liu X, Cheng L, Han D, Shi Y, Sun Q, Yang C, Pan B, Sun Q. Lactobacillus plantarum
and
Lactobacillus fermentum
alone or in combination regulate intestinal flora composition and systemic immunity to alleviate obesity syndrome in high‐fat diet rat. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiuliang Li
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Yong Song
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Xiuyan Ma
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Yanyan Zhang
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Xinyang Liu
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Li Cheng
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Dequan Han
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Yue Shi
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Quan Sun
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Chunhai Yang
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Bo Pan
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| | - Qingshen Sun
- Laboratory of Microbiology College of Life Science Heilongjiang University Harbin 150080 China
| |
Collapse
|
34
|
Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med 2016; 14:298. [PMID: 27756430 PMCID: PMC5069982 DOI: 10.1186/s12967-016-1058-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background The microbiota colonizing the gastrointestinal tract have been associated with both gastrointestinal and extra-gastrointestinal diseases. In recent years, considerable interest has been devoted to their role in the development of neurologic diseases, as many studies have described bidirectional communication between the central nervous system and the gut, the so-called “microbiota-gut-brain axis”. Considering the ability of probiotics (i.e., live non-pathogenic microorganisms) to restore the normal microbial population and produce benefits for the host, their potential effects have been investigated in the context of neurologic diseases. The main aims of this review are to analyse the relationship between the gut microbiota and brain disorders and to evaluate the current evidence for the use of probiotics in the treatment and prevention of neurologic conditions. Discussion Overall, trials involving animal models and adults have reported encouraging results, suggesting that the administration of probiotic strains may exert some prophylactic and therapeutic effects in a wide range of neurologic conditions. Studies involving children have mainly focused on autism spectrum disorder and have shown that probiotics seem to improve neuro behavioural symptoms. However, the available data are incomplete and far from conclusive. Conclusions The potential usefulness of probiotics in preventing or treating neurologic diseases is becoming a topic of great interest. However, deeper studies are needed to understand which formulation, dosage and timing might represent the optimal regimen for each specific neurologic disease and what populations can benefit. Moreover, future trials should also consider the tolerability and safety of probiotics in patients with neurologic diseases.
Collapse
|
35
|
Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. Int J Gen Med 2016; 9:53-64. [PMID: 27019601 PMCID: PMC4786081 DOI: 10.2147/ijgm.s88552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease caused by the immune attack of the neuromuscular junction. Antibodies directed against the acetylcholine receptor (AChR) induce receptor degradation, complement cascade activation, and postsynaptic membrane destruction, resulting in functional reduction in AChR availability. Besides anti-AChR antibodies, other autoantibodies are known to play pathogenic roles in MG. The experimental autoimmune MG (EAMG) models have been of great help over the years in understanding the pathophysiological role of specific autoantibodies and T helper lymphocytes and in suggesting new therapies for prevention and modulation of the ongoing disease. EAMG can be induced in mice and rats of susceptible strains that show clinical symptoms mimicking the human disease. EAMG models are helpful for studying both the muscle and the immune compartments to evaluate new treatment perspectives. In this review, we concentrate on recent findings on EAMG models, focusing on their utility and limitations.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Alessandra Consonni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| |
Collapse
|
36
|
Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization. Exp Neurol 2015; 270:11-7. [DOI: 10.1016/j.expneurol.2015.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/13/2015] [Accepted: 02/04/2015] [Indexed: 01/25/2023]
|
37
|
The probiotic mixture IRT5 ameliorates age-dependent colitis in rats. Int Immunopharmacol 2015; 26:416-22. [PMID: 25907245 DOI: 10.1016/j.intimp.2015.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/20/2015] [Accepted: 04/04/2015] [Indexed: 01/20/2023]
Abstract
To investigate the anti-inflammatory effect of probiotics, we orally administered IRT5 (1×10(9)CFU/rat) for 8 weeks to aged (16 months-old) Fischer 344 rats, and measured parameters of colitis. The expression levels of the inflammatory markers' inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were higher in the colons of normal aged rats (18 months-old) than in the colons of normal young rats (6 months-old). Treatment with IRT5 suppressed the age-associated increased expression of iNOS, COX2, TNF-α, and IL-1β, and activation of NF-κB and mitogen-activated protein kinases. In a similar manner, the expression of tight junction proteins in the colon of normal aged rats was suppressed more potently than in normal young rats, and treatment of aged rats with IRT5 decreased the age-dependent suppression of tight junction proteins ZO-1, occludin, and claudin-1. Treatment with IRT5 suppressed age-associated increases in expressions of senescence markers p16 and p53 in the colon of aged rats, but increased age-suppressed expression of SIRT1. However, treatment with IRT5 inhibited age-associated increased myeloperoxidase activity in the colon. In addition, treatment with IRT5 lowered the levels of LPS in intestinal fluid and blood of aged rats, as well as the reduced concentrations of reactive oxygen species, malondialdehyde, and C-reactive protein in the blood. These findings suggest that IRT5 treatment may suppress age-dependent colitis by inhibiting gut microbiota LPS production.
Collapse
|
38
|
Kim JE, Chae CS, Kim GC, Hwang W, Hwang JS, Hwang SM, Kim Y, Ahn YT, Park SG, Jun CD, Rudra D, Im SH. Lactobacillus helveticus suppresses experimental rheumatoid arthritis by reducing inflammatory T cell responses. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Kandasamy S, Chattha KS, Vlasova AN, Rajashekara G, Saif LJ. Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes 2014; 5:639-51. [PMID: 25483333 PMCID: PMC4615723 DOI: 10.4161/19490976.2014.969972] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
B cells play a key role in generation of protective immunity against rotavirus infection, a major cause of gastroenteritis in children. Current RV vaccines are less effective in developing countries compared to developed countries. Commensals/probiotics influence mucosal immunity, but the role of early gut colonizing bacteria in modulating intestinal B cell responses to RV vaccines is largely unknown. We co-colonized neonatal gnotobiotic pigs, the only animal model susceptible to HRV diarrhea, with 2 dominant bacterial species present in the gut of breastfed infants, Lactobacillus rhamnosus strain GG and Bifidobacterium animalis lactis Bb12 to evaluate their impact on B cell responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine. Following HRV challenge, probiotic-colonized, AttHRV vaccinated piglets had significantly lower fecal scores and reduced HRV shedding titers compared to uncolonized, AttHRV vaccinated pigs. The reduction in HRV diarrhea was significantly correlated with higher intestinal IgA HRV antibody titers and intestinal HRV-specific IgA antibody secreting cell (ASC) numbers in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs. The significantly higher small intestinal HRV IgA antibody responses coincided with higher IL-6, IL-10 and APRIL responses of ileal mononuclear cells (MNCs) and the immunomodulatory effects of probiotics genomic DNA on TGF-β and IL-10 responses. However, serum RV IgG antibody titers and total IgG titers were significantly lower in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs, both pre- and post-challenge. In summary, LGG and Bb12 beneficially modulated intestinal B cell responses to HRV vaccine.
Collapse
Key Words
- APRIL, a proliferation-inducing ligand
- ASC, antibody secreting cell
- AUC, area under the curve
- AttHRV, attenuated human rotavirus
- B cell responses
- Bb12, Bifidobacterium lactis Bb12
- FFU, fluorescent foci forming unit
- Gn, gnotobiotic
- HRV, human rotavirus
- LGG, Lactobacillus rhamnosus strain GG
- MNCs, mononuclear cells
- PBCD, post bacterial colonization day.
- PCD, postchallenge day
- PID, postinoculation day
- RAM, rat anti-mouse
- RV, rotavirus
- Vac+Pro, vaccinated probiotic colonized group
- Vac, 3XAttHRV Wa vaccinated only group
- VirHRV, virulent human rotavirus
- human rotavirus
- neonatal diarrhea
- probiotics
- vaccine
Collapse
Affiliation(s)
- Sukumar Kandasamy
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; Ohio Agricultural Research and Development Center; The Ohio State University; Wooster, OH USA
| | - Kuldeep S Chattha
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; Ohio Agricultural Research and Development Center; The Ohio State University; Wooster, OH USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; Ohio Agricultural Research and Development Center; The Ohio State University; Wooster, OH USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; Ohio Agricultural Research and Development Center; The Ohio State University; Wooster, OH USA
| | - Linda J Saif
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; Ohio Agricultural Research and Development Center; The Ohio State University; Wooster, OH USA,Correspondence to: Linda J Saif;
| |
Collapse
|
40
|
Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 2014; 52:1-28. [PMID: 24934596 DOI: 10.1016/j.jaut.2014.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Myasthenia Gravis (MG) is a paradigm of organ-specific autoimmune disease (AID). It is mediated by antibodies that target the neuromuscular junction. The purpose of this review is to place MG in the general context of autoimmunity, to summarize the common mechanisms between MG and other AIDs, and to describe the specific mechanisms of MG. We have chosen the most common organ-specific AIDs to compare with MG: type 1 diabetes mellitus (T1DM), autoimmune thyroid diseases (AITD), multiple sclerosis (MS), some systemic AIDs (systemic lupus erythematous (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS)), as well as inflammatory diseases of the gut and liver (celiac disease (CeD), Crohn's disease (CD), and primary biliary cirrhosis (PBC)). Several features are similar between all AIDs, suggesting that common pathogenic mechanisms lead to their development. In this review, we address the predisposing factors (genetic, epigenetic, hormones, vitamin D, microbiota), the triggering components (infections, drugs) and their interactions with the immune system [1,2]. The dysregulation of the immune system is detailed and includes the role of B cells, Treg cells, Th17 and cytokines. We particularly focused on the role of TNF-α and interferon type I whose role in MG is very analogous to that in several other AIDS. The implication of AIRE, a key factor in central tolerance is also discussed. Finally, if MG is a prototype of AIDS, it has a clear specificity compared to the other AIDS, by the fact that the target organ, the muscle, is not the site of immune infiltration and B cell expansion, but exclusively that of antibody-mediated pathogenic mechanisms. By contrast, the thymus in the early onset subtype frequently undergoes tissue remodeling, resulting in the development of ectopic germinal centers surrounded by high endothelial venules (HEV), as observed in the target organs of many other AIDs.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Myology Research Center UM76, F-75013 Paris, France; INSERM U974, F-75013 Paris, France; CNRS FRE 3617, F-75013 Paris, France; Institute of Myology, F-75013 Paris, France.
| |
Collapse
|
41
|
Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. J Interferon Cytokine Res 2013. [PMID: 23962004 DOI: 10.1089/jlr.2013.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or "dysbiosis" in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry.
Collapse
Affiliation(s)
- Jennifer L Owen
- 1 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | | |
Collapse
|
42
|
Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. J Interferon Cytokine Res 2013; 33:619-31. [PMID: 23962004 DOI: 10.1089/jir.2013.0046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or "dysbiosis" in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry.
Collapse
Affiliation(s)
- Jennifer L Owen
- 1 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | | |
Collapse
|
43
|
Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. J Interferon Cytokine Res 2013. [PMID: 23962004 DOI: 10.1089/jir.2013.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or "dysbiosis" in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry.
Collapse
Affiliation(s)
- Jennifer L Owen
- 1 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | | |
Collapse
|
44
|
Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol 2013; 146:217-27. [PMID: 23416238 DOI: 10.1016/j.clim.2013.01.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/24/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
Abstract
The immunomodulatory effect of probiotics has been shown mainly in gastro-intestinal immune disorders and little information is available on the inflammation of central nervous system. Recently we reported that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental inflammatory disorders. In this study, we evaluated the prophylactic and therapeutic effects of IRT5 probiotics in experimental autoimmune encephalomyelitis (EAE), a T cell mediated inflammatory autoimmune disease of the central nervous system. Pretreatment of IRT5 probiotics before disease induction significantly suppressed EAE development. In addition, treatment with IRT5 probiotics to the ongoing EAE delayed the disease onset. Administration of IRT5 probiotics inhibited the pro-inflammatory Th1/Th17 polarization, while inducing IL10(+) producing or/and Foxp3(+) regulatory T cells, both in the peripheral immune system and at the site of inflammation. Collectively, our data suggest that IRT5 probiotics could be applicable to modulate T cell mediated neuronal autoimmune diseases, including multiple sclerosis.
Collapse
|