1
|
Kou H, Han Q, Xu C, Liao L, Hou Y, Wang H, Zhang J. The fibrillogenesis influence the binding specificity of collagen to discoidin domain receptor 2 and cell behavior. Colloids Surf B Biointerfaces 2025; 250:114554. [PMID: 39947096 DOI: 10.1016/j.colsurfb.2025.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025]
Abstract
Collagen is one of the most important natural biopolymers, it plays its role as a load-bearing structure in tissues only after polymerizing into fibrils. DDR2 is a collagen-binding receptor tyrosine kinases, playing a role in the regulation of collagen-cell interactions. Here, we studied the recognition of collagen fibrils by DDR2 and the effect of fibrillogenesis on cell biological activity. Our results showed that for monomeric collagen, the binding affinity of DDR2 to mammalian porcine skin collagen is higher than that to fish collagen. When the assembly of collagen monomers into the collagen fibril, the binding affinity of DDR2 is enhanced. In contrast, the binding ability of the hybrid fibril is stronger than the corresponding black carp skin collagen fibrils, and slightly weaker than corresponding porcine skin collagen fibril. This indicates that the introduction of porcine skin collagen in the co-assembly system can regulate the binding of DDR2 to fish-sourced collagen. We also find that compared to monomers, the fibrillogenesis of collagen promotes cell interaction with the collagen substrate, and has an increased ability to induce cells spreading. Our results confirmed that the physical state of collagen impacts its binding with DDR2 and cell behavior. These findings provide new insights into cell-collagen interactions.
Collapse
Affiliation(s)
- Huizhi Kou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqiu Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lixia Liao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China.
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhou T, C. Cavalcante R, Ge C, Franceschi RT, Ma PX. Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration. Bioact Mater 2025; 43:98-113. [PMID: 39381328 PMCID: PMC11458538 DOI: 10.1016/j.bioactmat.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 10/10/2024] Open
Abstract
More than 500,000 bone grafting procedures are performed annually in the USA. Considering the significant limitations of available bone grafts, we previously invented a phase-separation technology to generate nanofibrous poly(l-lactic acid) (PLLA) scaffolds that mimic the bone matrix collagen in nanofiber geometry and enhance bone regeneration. Here we report the development of nanofibrous scaffolds with covalently attached synthetic peptides that mimic native collagen peptides to activate the two main collagen receptors in bone cells, discoidin domain receptor 2 (DDR2) and β1 integrins. We synthesized a PLLA-based graft-copolymer to enable covalent peptide conjugation via a click reaction. Using PLLA and the graft-copolymer, we developed 3D scaffolds with interconnected pores and peptides-containing nanofibers to activate DDR2 and β1 integrins of osteogenic cells. The degradation rate and mechanical properties of the scaffolds are tunable. The peptides-decorated nanofibrous scaffolds demonstrated 7.8 times more mineralized bone regeneration over the control scaffolds without the peptides in a critical-sized bone defect regeneration model after 8 weeks of implantation, showing a synergistic effect of the two peptides. This study demonstrates the power of scaffolds to mimic ECM at both nanometer and molecular levels, activating cell surface receptors to liberate the innate regenerative potential of host stem/progenitor cells.
Collapse
Affiliation(s)
- Tongqing Zhou
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rafael C. Cavalcante
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Coelho NM, Riahi P, Wang Y, Ali A, Norouzi M, Kotlyar M, Jurisica I, McCulloch CA. The major vault protein integrates adhesion-driven signals to regulate collagen remodeling. Cell Signal 2024; 124:111447. [PMID: 39368789 DOI: 10.1016/j.cellsig.2024.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
DDR1 interacts with fibrillar collagen and can affect β1 integrin-dependent signaling, but the mechanism that mediates functional interactions between these two different receptors is not defined. We searched for molecules that link DDR1 and β1 integrin-dependent signaling in response to collagen binding. The activation of DDR1 by binding to fibrillar collagen reduced by 5-fold, β1 integrin-dependent ERK phosphorylation that leads to MMP1 expression. In contrast, pharmacological inhibition of DDR1 or culturing cells on fibronectin restored ERK phosphorylation and MMP1 expression mediated by the β1 integrin. A phospho-site screen indicated that collagen-induced DDR1 activation inhibited β1 integrin-dependent ERK signaling by regulating autophosphorylation of focal adhesion kinase (FAK). Immunoprecipitation, mass spectrometry, and protein-protein interaction mapping showed that while DDR1 and FAK do not interact directly, the major vault protein (MVP) binds DDR1 and FAK depending on the substrate. MVP associated with DDR1 in cells expressing β1 integrin that were cultured on collagen. Knockdown of MVP restored ERK activation and MMP1 expression in DDR1-expressing cells cultured on collagen. Immunostaining of invasive cancers in human colon showed colocalization of DDR1 with MVP. These data indicate that MVP interactions with DDR1 and FAK contribute to the regulation of β1 integrin-dependent signaling pathways that drive collagen degradation.
Collapse
Affiliation(s)
- Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Pardis Riahi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Aiman Ali
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Masoud Norouzi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, UHN, Toronto, ON, Canada
| | - Igor Jurisica
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Osteoarthritis Research Program, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, UHN, Toronto, ON, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, ON, Canada
| | | |
Collapse
|
5
|
Hou Y, Li F, Liu W, Guo R, Wu H, Huang S, Xu C, Zhu L, Zhang J, Wei B, Wang H. Unraveling the role of integrating signal peptides into natural collagen on modulating cancer cell adhesion. Int J Biol Macromol 2024; 283:137808. [PMID: 39561836 DOI: 10.1016/j.ijbiomac.2024.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The signal peptides GVMGFO and GFOGER exhibit differential binding affinities towards Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and HT-1080 human fibrosarcoma cells, respectively, which in turn modulate the cell adhesion properties of natural collagen. GVMGFO demonstrates a more potent interaction with discoidin domain receptor 1(DDR1)-expressing MCF-7 cells, whereas GFOGER preferentially binds to the integrin α2β1 present on HT-1080 cells. The integration of GVMGFO into natural collagen through direct doping or crosslinking markedly enhances its association with MCF-7 cells, especially when optimal peptide concentrations and blending ratios are utilized, indicating a synergistic effect. This augmented adhesion is attributed to specific binding at the DDR1-collagen interface, facilitated by a constellation of amino acids within the collagen scaffold engaging with the DDR1 discoidin (DS) domain through polar interactions and hydrogen bonding. Conversely, the incorporation of GFOGER into natural collagen through co-assembling or crosslinking leads to a progressive increase in adherence to HT-1080 cells, as evidenced by the peptide's affinity for integrin α2β1. These findings advance the design of collagen-based biomaterials for targeted cellular interactions in the medical, pharmaceutical, and enhance our understanding of the molecular mechanisms governing peptide-collagen mediated cell adhesion processes.
Collapse
Affiliation(s)
- Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Fang Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wei Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ruiming Guo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Hui Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Siying Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China.
| |
Collapse
|
6
|
Nakayama-Kitamura K, Shigemoto-Mogami Y, Piantino M, Naka Y, Yamada A, Kitano S, Furihata T, Matsusaki M, Sato K. Collagen I Microfiber Promotes Brain Capillary Network Formation in Three-Dimensional Blood-Brain Barrier Microphysiological Systems. Biomedicines 2024; 12:2500. [PMID: 39595066 PMCID: PMC11591679 DOI: 10.3390/biomedicines12112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) strictly regulates the penetration of substances into the brain, which, although important for maintaining brain homeostasis, may delay drug development because of the difficulties in predicting pharmacokinetics/pharmacodynamics (PKPD), toxicokinetics/toxicodynamics (TKTD), toxicity, safety, and efficacy in the central nervous system (CNS). Moreover, BBB functional proteins show species differences; therefore, humanized in vitro BBB models are urgently needed to improve the predictability of preclinical studies. Recently, international trends in the 3Rs in animal experiments and the approval of the FDA Modernization Act 2.0 have accelerated the application of microphysiological systems (MPSs) in preclinical studies, and in vitro BBB models have become synonymous with BBB-MPSs. Recently, we developed an industrialized humanized BBB-MPS, BBB-NET. In our previous report, we reproduced transferrin receptor (TfR)-mediated transcytosis with high efficiency and robustness, using hydrogels including fibrin and collagen I microfibers (CMFs). METHODS We investigated how adding CMFs to the fibrin gel benefits BBB-NETs. RESULTS We showed that CMFs accelerate capillary network formation and maturation by promoting astrocyte (AC) survival, and clarified that integrin β1 is involved in the mechanism of CMFs. CONCLUSIONS Our data suggest that the quality control (QC) of CMFs is important for ensuring the stable production of BBB-NETs.
Collapse
Affiliation(s)
- Kimiko Nakayama-Kitamura
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki City 210-9501, Kanagawa, Japan; (K.N.-K.); (Y.S.-M.)
| | - Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki City 210-9501, Kanagawa, Japan; (K.N.-K.); (Y.S.-M.)
| | - Marie Piantino
- Joint Research Laboratory for Social Implementation of Cultured Meat, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (M.P.); (M.M.)
| | - Yasuhiro Naka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Asuka Yamada
- TOPPAN Holdings Inc., TOPPAN Technical Research Institute, 4-2 Takanodaiminami, Sugitomachi, Saitama 345-8508, Saitama, Japan; (A.Y.); (S.K.)
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Shiro Kitano
- TOPPAN Holdings Inc., TOPPAN Technical Research Institute, 4-2 Takanodaiminami, Sugitomachi, Saitama 345-8508, Saitama, Japan; (A.Y.); (S.K.)
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Tomomi Furihata
- Laboratory of Advanced Drug Developmen Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan;
| | - Michiya Matsusaki
- Joint Research Laboratory for Social Implementation of Cultured Meat, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (M.P.); (M.M.)
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki City 210-9501, Kanagawa, Japan; (K.N.-K.); (Y.S.-M.)
| |
Collapse
|
7
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Reger De Moura C, Louveau B, Jouenne F, Vilquin P, Battistella M, Bellahsen-Harrar Y, Sadoux A, Menashi S, Dumaz N, Lebbé C, Mourah S. Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1. Oncogene 2024; 43:1620-1630. [PMID: 38570692 DOI: 10.1038/s41388-024-03014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAFV600mut melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice. Mechanistic analysis reveals that kindlin-3 interacts with the collagen-activated tyrosine kinase receptor DDR1 (Discoidin domain receptor 1) modulating its expression and its interaction with β1-integrin. Kindlin-3 knockdown or mutational inactivation disrupt DDR1/β1-integrin complex in vitro and in vivo and its loss improves the anti-proliferative effect of DDR1 inhibition. In agreement, kindlin-3 downregulation is associated with DDR1 over-expression in situ and linked to worse melanoma prognosis. Our study reveals a unique mechanism of action of kindlin-3 in the regulation of tumorigenesis mediated by the collagen-activated tyrosine kinase receptor DDR1 thus paving the way for innovative therapeutic targeting approaches in melanoma.
Collapse
Affiliation(s)
- Coralie Reger De Moura
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Baptiste Louveau
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Paul Vilquin
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Yaelle Bellahsen-Harrar
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Suzanne Menashi
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Nicolas Dumaz
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Céleste Lebbé
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
- Department of Dermatology and CIC, Hôpital Saint Louis, Cancer Institute, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France.
| |
Collapse
|
10
|
Wu D, Ding Z, Lu T, Chen Y, Zhang F, Lu S. DDR1-targeted therapies: current limitations and future potential. Drug Discov Today 2024; 29:103975. [PMID: 38580164 DOI: 10.1016/j.drudis.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Discoidin domain receptor (DDR)-1 has a crucial role in regulating vital processes, including cell differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. Overexpression or activation of DDR1 in various pathological scenarios makes it a potential therapeutic target for the treatment of cancer, fibrosis, atherosclerosis, and neuropsychiatric, psychiatric, and neurodegenerative disorders. In this review, we summarize current therapeutic approaches targeting DDR1 from a medicinal chemistry perspective. Furthermore, we analyze factors other than issues of low selectivity and risk of resistance, contributing to the infrequent success of DDR1 inhibitors. The complex interplay between DDR1 and the extracellular matrix (ECM) necessitates additional validation, given that DDR1 might exhibit complex and synergistic interactions with other signaling molecules during ECM regulation. The mechanisms involved in DDR1 regulation in cancer and inflammation-related diseases also remain unknown.
Collapse
Affiliation(s)
- Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zihui Ding
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| | - Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Zeltz C, Kusche-Gullberg M, Heljasvaara R, Gullberg D. Novel roles for cooperating collagen receptor families in fibrotic niches. Curr Opin Cell Biol 2023; 85:102273. [PMID: 37918273 DOI: 10.1016/j.ceb.2023.102273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Recent data indicate that integrin and non-integrin collagen receptors cooperate in the fibrosis-specific microenvironment (i.e., the fibrotic niche). In certain tumor types, DDR1 can regulate the interaction with collagen III to regulate dormancy and metastasis, whereas in other tumor types, DDR1 can be shed and used to reorganize collagen. DDR1 expressed on tumor cells, together with DDR2 and α11β1 integrin expressed on cancer-associated fibroblasts, can increase tumor tissue stiffness. Integrin α1β1 and α2β1 are present on immune cells where they together with the immunosuppressive collagen receptor LAIR-1 can mediate binding to intratumor collagens. In summary, collagen-binding integrins together with DDRs, can create fibrillar collagen niches that act as traps to hinder immune cell trafficking into the tumor cell mass. Binding of collagens via LAIR-1 on immune cells in turn results in CD8+T-cell exhaustion. Continued studies of these complex interactions are needed for successful new stroma-based therapeutic interventions. In the current review, we will summarize recent data on collagen receptors with a special focus on their potential role in tumor fibrosis and highlight their collaborative roles in tumor fibrotic niches.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway
| | - Marion Kusche-Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
12
|
Sawant M, Wang F, Koester J, Niehoff A, Nava MM, Lundgren-Akerlund E, Gullberg D, Leitinger B, Wickström S, Eckes B, Krieg T. Ablation of integrin-mediated cell-collagen communication alleviates fibrosis. Ann Rheum Dis 2023; 82:1474-1486. [PMID: 37479494 DOI: 10.1136/ard-2023-224129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS Triple knockout (tKO) mice with a combined ablation of integrins α1β1, α2β1 and α11β1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Fang Wang
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Janis Koester
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Medical Faculty, Cologne, Germany
| | - Michele M Nava
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Sara Wickström
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, Helsinki, Finland
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Ge C, Li Y, Wu F, Ma P, Franceschi RT. Synthetic peptides activating discoidin domain receptor 2 and collagen-binding integrins cooperate to stimulate osteoblast differentiation of skeletal progenitor cells. Acta Biomater 2023; 166:109-118. [PMID: 37245640 PMCID: PMC10617013 DOI: 10.1016/j.actbio.2023.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Skeletal progenitor: collagen interactions are critical for bone development and regeneration. Both collagen-binding integrins and discoidin domain receptors (DDR1 and DDR2) function as collagen receptors in bone. Each receptor is activated by a distinct collagen sequence; GFOGER for integrins and GVMGFO for DDRs. Specific triple helical peptides containing each of these binding domains were evaluated for ability to stimulate DDR2 and integrin signaling and osteoblast differentiation. GVMGFO peptide stimulated DDR2 Y740 phosphorylation and osteoblast differentiation as measured by induction of osteoblast marker mRNAs and mineralization without affecting integrin activity. In contrast, GFOGER peptide stimulated focal adhesion kinase (FAK) Y397 phosphorylation, an early measure of integrin activation, and to a lesser extent osteoblast differentiation without affecting DDR2-P. Significantly, the combination of both peptides cooperatively enhanced both DDR2 and FAK signaling and osteoblast differentiation, a response that was blocked in Ddr2-deficient cells. These studies suggest that the development of scaffolds containing DDR and integrin-activating peptides may provide a new route for promoting bone regeneration. STATEMENT OF SIGNIFICANCE: A method for stimulating osteoblast differentiation of skeletal progenitor cells is described that uses culture surfaces coated with a collagen-derived triple-helical peptide to selectively activate discoidin domain receptors. When this peptide is combined with an integrin-activating peptide, synergistic stimulation of differentiation is seen. This approach of combining collagen-derived peptides to stimulate the two main collagen receptors in bone (DDR2 and collagen-binding integrins) provides a route for developing a new class of tissue engineering scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | - Yiming Li
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | - Fashuai Wu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peter Ma
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
14
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
15
|
Park K, Jayadev R, Payne SG, Kenny-Ganzert IW, Chi Q, Costa DS, Ramos-Lewis W, Thendral SB, Sherwood DR. Reciprocal discoidin domain receptor signaling strengthens integrin adhesion to connect adjacent tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532639. [PMID: 36993349 PMCID: PMC10055161 DOI: 10.1101/2023.03.14.532639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.
Collapse
Affiliation(s)
- Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G. Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | | | | | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Correspondence:
| |
Collapse
|
16
|
Effect of Electrospun PLGA/Collagen Scaffolds on Cell Adhesion, Viability, and Collagen Release: Potential Applications in Tissue Engineering. Polymers (Basel) 2023; 15:polym15051079. [PMID: 36904322 PMCID: PMC10006987 DOI: 10.3390/polym15051079] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
The development of scaffolding obtained by electrospinning is widely used in tissue engineering due to porous and fibrous structures that can mimic the extracellular matrix. In this study, poly (lactic-co-glycolic acid) (PLGA)/collagen fibers were fabricated by electrospinning method and then evaluated in the cell adhesion and viability of human cervical carcinoma HeLa and NIH-3T3 fibroblast for potential application in tissue regeneration. Additionally, collagen release was assessed in NIH-3T3 fibroblasts. The fibrillar morphology of PLGA/collagen fibers was verified by scanning electron microscopy. The fiber diameter decreased in the fibers (PLGA/collagen) up to 0.6 µm. FT-IR spectroscopy and thermal analysis confirmed that both the electrospinning process and the blend with PLGA give structural stability to collagen. Incorporating collagen in the PLGA matrix promotes an increase in the material's rigidity, showing an increase in the elastic modulus (38%) and tensile strength (70%) compared to pure PLGA. PLGA and PLGA/collagen fibers were found to provide a suitable environment for the adhesion and growth of HeLa and NIH-3T3 cell lines as well as stimulate collagen release. We conclude that these scaffolds could be very effective as biocompatible materials for extracellular matrix regeneration, suggesting their potential applications in tissue bioengineering.
Collapse
|
17
|
Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. SEPARATIONS 2023. [DOI: 10.3390/separations10010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to establish a collagen determination method based on an isotope-labeled collagen peptide as an internal reference via high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS), and using the established method to evaluate the degradation process of collagen-based implants in vivo. The specific peptide (GPAGPQGPR) of bovine type I collagen was identified with an Orbitrap mass spectrometer. Then, the quantification method based on the peptide detection with HPLC-MS/MS was established and validated, and then further used to analyze the degradation trend of the collagen sponge and acellular matrix (ACM) in vivo at 2, 4, 6, 8, 12, 16, and 18 weeks after implantation. The results indicate that the relative standard deviation (RSD) of the detection precision and repeatability of the peptide-based HPLC-MS/MS quantification method were 3.55% and 0.63%, respectively. The limitations of quantification and detection were 2.05 × 10−3 μg/mL and 1.12 × 10−3 μg/mL, respectively. The collagen sponge and ACM were completely degraded at 10 weeks and 18 weeks, respectively. Conclusion: A specific peptide (GPAGPQGPR) of bovine type I collagen was identified with an Orbitrap mass spectrometer, and a standardized HPLC-MS/MS-based internal reference method for the quantification of bovine type I collagen was established. The method can be used for the analysis of the degradation of collagen-based implants in vivo.
Collapse
|
18
|
Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol 2023; 88:46-66. [PMID: 36521737 DOI: 10.1016/j.semcancer.2022.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Gao J, Guo Z, Zhang Y, Liu Y, Xing F, Wang J, Luo X, Kong Y, Zhang G. Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin. Regen Biomater 2022; 10:rbac110. [PMID: 36683742 PMCID: PMC9847517 DOI: 10.1093/rb/rbac110] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The content of type I collagen (COL-I) and type III collagen (COL-III) and the ratio between them not only affect the skin elasticity and mechanical strength, but also determine the fibril diameter. In this research, we investigated the age-related changes in COL-I/COL-III ratio with their formed fibril diameter. The experimental result was obtained from high performance liquid chromatography-mass spectrometer, hydroxyproline determination, picrosirius red staining and transmission electron microscopes (TEM), respectively. The result indicated that the COL-I/COL-III ratio in mouse skin increased with aging. From the 0th to 9th week, the COL-I/COLIII ratio increased from 1.3:1 to 4.5:1. From the 9th to the 18th week, it remained between 4.5:1 and 4.9:1. The total content of COL-I and COL-III firstly increased and then decreased with aging. The TEM result showed that the fibril diameter increased with aging. From the 0th to 9th week, the average fibril diameter increased from 40 to 112 nm; From the 9th to 18th weeks, it increased from 112 to 140 nm. After the 9th week. The fibril diameter showed obvious uneven distribution. Thus, the COL-I/COLIII ratio was proportional to the fibril diameter, but inversely proportional to the uniformity of fibril diameter.
Collapse
Affiliation(s)
- Jianping Gao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhu Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyu Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Luo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjun Kong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guifeng Zhang
- Correspondence address. Tel: +86 010 82613421, E-mail:
| |
Collapse
|
20
|
Wang J, Xie SA, Li N, Zhang T, Yao W, Zhao H, Pang W, Han L, Liu J, Zhou J. Matrix stiffness exacerbates the proinflammatory responses of vascular smooth muscle cell through the DDR1-DNMT1 mechanotransduction axis. Bioact Mater 2022; 17:406-424. [PMID: 35386458 PMCID: PMC8964982 DOI: 10.1016/j.bioactmat.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular smooth muscle cell (vSMC) is highly plastic as its phenotype can change in response to mechanical cues inherent to the extracellular matrix (ECM). VSMC may be activated from its quiescent contractile phenotype to a proinflammatory phenotype, whereby the cell secretes chemotactic and inflammatory cytokines, e.g. MCP1 and IL6, to functionally regulate monocyte and macrophage infiltration during the development of various vascular diseases including arteriosclerosis. Here, by culturing vSMCs on polyacrylamide (PA) substrates with variable elastic moduli, we discovered a role of discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that binds collagens, in mediating the mechanical regulation of vSMC gene expression, phenotype, and proinflammatory responses. We found that ECM stiffness induced DDR1 phosphorylation, oligomerization, and endocytosis to repress the expression of DNA methyltransferase 1 (DNMT1), very likely in a collagen-independent manner. The DDR1-to-DNMT1 signaling was sequentially mediated by the extracellular signal-regulated kinases (ERKs) and p53 pathways. ECM stiffness primed vSMC to a proinflammatory phenotype and this regulation was diminished by DDR1 inhibition. In agreement with the in vitro findings, increased DDR1 phosphorylation was observed in human arterial stiffening. DDR1 inhibition in mouse attenuated the acute injury or adenine diet-induced vascular stiffening and inflammation. Furthermore, mouse vasculature with SMC-specific deletion of Dnmt1 exhibited proinflammatory and stiffening phenotypes. Our study demonstrates a role of SMC DDR1 in perceiving the mechanical microenvironments and down-regulating expression of DNMT1 to result in vascular pathologies and has potential implications for optimization of engineering artificial vascular grafts and vascular networks. DDR1 is a mechanosensor in vSMC to perceive ECM stiffness in a collagen binding-independent way. Activation of DDR1 leads to repression of DNMT1 expression via the ERK-p53 pathway. The DDR1-DNMT1 axis mediates ECM stiffening-induced vascular inflammation.
Collapse
Affiliation(s)
- Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, PR China
| | - Si-an Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, PR China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), And Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, PR China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, PR China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing, PR China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Lili Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, PR China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, PR China
- Corresponding author. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, PR China.
| |
Collapse
|
21
|
Heinl ES, Lorenz S, Schmidt B, Nasser M Laqtom N, Mazzulli JR, Francelle L, Yu TW, Greenberg B, Storch S, Tegtmeier I, Othmen H, Maurer K, Steinfurth M, Witzgall R, Milenkovic V, Wetzel CH, Reichold M. CLN7/MFSD8 may be an important factor for SARS-CoV-2 cell entry. iScience 2022; 25:105082. [PMID: 36093380 PMCID: PMC9444308 DOI: 10.1016/j.isci.2022.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/12/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
The SARS-CoV-2 virus has triggered a worldwide pandemic. According to the BioGrid database, CLN7 (MFSD8) is thought to interact with several viral proteins. The aim of this work was to investigate a possible involvement of CLN7 in the infection process. Experiments on a CLN7-deficient HEK293T cell line exhibited a 90% reduced viral load compared to wild-type cells. This observation may be linked to the finding that CLN7 ko cells have a significantly reduced GM1 content in their cell membrane. GM1 is found highly enriched in lipid rafts, which are thought to play an important role in SARS-CoV-2 infection. In contrast, overexpression of CLN7 led to an increase in viral load. This study provides evidence that CLN7 is involved in SARS-CoV-2 infection. This makes it a potential pharmacological target for drug development against COVID-19. Furthermore, it provides insights into the physiological function of CLN7 where still only little is known about.
Collapse
Affiliation(s)
- Elena-Sofia Heinl
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Lorenz
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Nouf Nasser M Laqtom
- Departments of Chemical Engineering and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laetitia Francelle
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Timothy W. Yu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benjamin Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Storch
- Children’s Hospital Biochemistry, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Helga Othmen
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
- Institute for Molecular and Cellular Anatomy, University Regensburg, 93053 Regensburg, Germany
| | - Katja Maurer
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Malin Steinfurth
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University Regensburg, 93053 Regensburg, Germany
| | - Vladimir Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
22
|
Prasad Shenoy G, Pal R, Gurubasavaraja Swamy P, Singh E, Manjunathaiah Raghavendra N, Sanjay Dhiwar P. Discoidin Domain Receptor Inhibitors as Anticancer Agents: A Systematic Review on Recent Development of DDRs Inhibitors, their Resistance and Structure Activity Relationship. Bioorg Chem 2022; 130:106215. [DOI: 10.1016/j.bioorg.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
23
|
Madison J, Wilhelm K, Meehan DT, Delimont D, Samuelson G, Cosgrove D. Glomerular basement membrane deposition of collagen α1(III) in Alport glomeruli by mesangial filopodia injures podocytes via aberrant signaling through DDR1 and integrin α2β1. J Pathol 2022; 258:26-37. [PMID: 35607980 PMCID: PMC9378723 DOI: 10.1002/path.5969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
In Alport mice, activation of the endothelin A receptor (ETA R) in mesangial cells results in sub-endothelial invasion of glomerular capillaries by mesangial filopodia. Filopodia deposit mesangial matrix in the glomerular basement membrane (GBM), including laminin 211 which activates NF-κB, resulting in induction of inflammatory cytokines. Herein we show that collagen α1(III) is also deposited in the GBM. Collagen α1(III) localized to the mesangium in wild-type mice and was found in both the mesangium and the GBM in Alport mice. We show that collagen α1(III) activates discoidin domain receptor family, member 1 (DDR1) receptors both in vitro and in vivo. To elucidate whether collagen α1(III) might cause podocyte injury, cultured murine Alport podocytes were overlaid with recombinant collagen α1(III), or not, for 24 h and RNA was analyzed by RNA sequencing (RNA-seq). These same cells were subjected to siRNA knockdown for integrin α2 or DDR1 and the RNA was analyzed by RNA-seq. Results were validated in vivo using RNA-seq from RNA isolated from wild-type and Alport mouse glomeruli. Numerous genes associated with podocyte injury were up- or down-regulated in both Alport glomeruli and cultured podocytes treated with collagen α1(III), 18 of which have been associated previously with podocyte injury or glomerulonephritis. The data indicate α2β1 integrin/DDR1 co-receptor signaling as the dominant regulatory mechanism. This may explain earlier studies where deletion of either DDR1 or α2β1 integrin in Alport mice ameliorates renal pathology. © 2022 Boys Town National Research Hospital. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
24
|
Borza CM, Bolas G, Zhang X, Browning Monroe MB, Zhang MZ, Meiler J, Skwark MJ, Harris RC, Lapierre LA, Goldenring JR, Hook M, Rivera J, Brown KL, Leitinger B, Tyska MJ, Moser M, Böttcher RT, Zent R, Pozzi A. The Collagen Receptor Discoidin Domain Receptor 1b Enhances Integrin β1-Mediated Cell Migration by Interacting With Talin and Promoting Rac1 Activation. Front Cell Dev Biol 2022; 10:836797. [PMID: 35309920 PMCID: PMC8928223 DOI: 10.3389/fcell.2022.836797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 01/17/2023] Open
Abstract
Integrins and discoidin domain receptors (DDRs) 1 and 2 promote cell adhesion and migration on both fibrillar and non fibrillar collagens. Collagen I contains DDR and integrin selective binding motifs; however, the relative contribution of these two receptors in regulating cell migration is unclear. DDR1 has five isoforms (DDR1a-e), with most cells expressing the DDR1a and DDR1b isoforms. We show that human embryonic kidney 293 cells expressing DDR1b migrate more than DDR1a expressing cells on DDR selective substrata as well as on collagen I in vitro. In addition, DDR1b expressing cells show increased lung colonization after tail vein injection in nude mice. DDR1a and DDR1b differ from each other by an extra 37 amino acids in the DDR1b cytoplasmic domain. Interestingly, these 37 amino acids contain an NPxY motif which is a central control module within the cytoplasmic domain of β integrins and acts by binding scaffold proteins, including talin. Using purified recombinant DDR1 cytoplasmic tail proteins, we show that DDR1b directly binds talin with higher affinity than DDR1a. In cells, DDR1b, but not DDR1a, colocalizes with talin and integrin β1 to focal adhesions and enhances integrin β1-mediated cell migration. Moreover, we show that DDR1b promotes cell migration by enhancing Rac1 activation. Mechanistically DDR1b interacts with the GTPase-activating protein (GAP) Breakpoint cluster region protein (BCR) thus reducing its GAP activity and enhancing Rac activation. Our study identifies DDR1b as a major driver of cell migration and talin and BCR as key players in the interplay between integrins and DDR1b in regulating cell migration.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Gema Bolas
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Xiuqi Zhang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Leipzig University Medical School, Institute for Drug Discovery, Leipzig, Germany
| | - Marcin J. Skwark
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Magnus Hook
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, United States
| | - Jose Rivera
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, United States
| | - Kyle L. Brown
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Markus Moser
- Department for Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Ralph T. Böttcher
- Department for Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
| |
Collapse
|
25
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
26
|
Li H, You S, Yang X, Liu S, Hu L. Injectable recombinant human collagen-derived material with high cell adhesion activity limits adverse remodelling and improves pelvic floor function in pelvic floor dysfunction rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112715. [DOI: 10.1016/j.msec.2022.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
27
|
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 2022; 172:41-52. [PMID: 35114357 DOI: 10.1016/j.ejpb.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.
Collapse
Affiliation(s)
- P Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - C Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - O Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
28
|
Ichise SF, Koide T. Synthetic Collagen-like Polymer That Undergoes a Sol–Gel Transition Triggered by O–N Acyl Migration at Physiological pH. Int J Mol Sci 2022; 23:ijms23031584. [PMID: 35163505 PMCID: PMC8835898 DOI: 10.3390/ijms23031584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
We previously reported an artificial collagen gel that can be used as a cell-culture substrate by end-to-end cross-linking of collagen-like triple-helical peptides via disulfide bonds. However, the gel had to be formed a priori by polymerizing the peptide in an acidic solution containing dimethyl sulfoxide for several days, which prevented its use as an injectable gel or three-dimensional (3D) scaffold for cell culture. In this study, we developed a collagen-like peptide polymer by incorporating an O–N acyl migration-triggered triple helix formation mechanism into a collagen-like peptide, which formed a gel within 10 min. We demonstrated that the collagen-like peptide polymer can be used as a 3D cell scaffold and that the 3D structure formation of cells can be controlled by collagen-derived bioactive sequences introduced into the peptide sequence.
Collapse
Affiliation(s)
- Shinichiro F. Ichise
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Takaki Koide
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Correspondence:
| |
Collapse
|
29
|
Erdem D, Gunaldi M, Karaman I, Adilay U, Yılmaz İ, Eseoglu M, Avcıkurt A, Isıksacan N, Erdogan U, Gunaldi O. Discoidin domain receptor 1 as a promising biomarker for high-grade gliomas. J Cancer Res Ther 2022; 19:S0. [PMID: 37147958 DOI: 10.4103/jcrt.jcrt_708_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Two fundamental challenges in the current therapeutic approach for central nervous system tumors are the tumor heterogeneity and the absence of specific treatments and biomarkers that selectively target the tumor tissue. Therefore, we aimed to investigate the potential relationship between discoidin domain receptor 1 (DDR1) expression and the prognosis and characteristics of glioma patients. Materials and Methods Tissue and serum samples from 34 brain tumor patients were evaluated for DDR1 messenger ribonucleic acid levels in comparison to 10 samples from the control group, and Kaplan-Meier survival analysis has performed. Results DDR1 expression was observed in both tissue and serum samples of the patient and control groups. DDR1 expression levels in tissue and serum samples from patients were higher in comparison to the control group, although not statistically significant (P > 0.05). A significant correlation between tumor size and DDR1 serum measurements at the level of 0.370 was reported (r = 0.370; P = 0.034). The levels of DDR1 in serum showed a positive correlation with the increasing size of tumor. The results of the 5-year survival analysis depending on the DDR1 tissue levels showed a significantly higher survival rate (P = 0.041) for patients who have DDR1 tissue levels above cutoff value. Conclusions DDR1 expression was significantly higher among brain tumor tissues and serum samples and its levels showed a positive correlation with the increased size of tumor. This study can be a starting point, since it investigated and indicated, for the first time, that DDR1 can be a novel therapeutic and prognostic target for aggressive high-grade gliomas.
Collapse
|
30
|
Chen L, Kong X, Fang Y, Paunikar S, Wang X, Brown JAL, Bourke E, Li X, Wang J. Recent Advances in the Role of Discoidin Domain Receptor Tyrosine Kinase 1 and Discoidin Domain Receptor Tyrosine Kinase 2 in Breast and Ovarian Cancer. Front Cell Dev Biol 2021; 9:747314. [PMID: 34805157 PMCID: PMC8595330 DOI: 10.3389/fcell.2021.747314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Discoidin domain receptor tyrosine kinases (DDRs) are a class of receptor tyrosine kinases (RTKs), and their dysregulation is associated with multiple diseases (including cancer, chronic inflammatory conditions, and fibrosis). The DDR family members (DDR1a-e and DDR2) are widely expressed, with predominant expression of DDR1 in epithelial cells and DDR2 in mesenchymal cells. Structurally, DDRs consist of three regions (an extracellular ligand binding domain, a transmembrane domain, and an intracellular region containing a kinase domain), with their kinase activity induced by receptor-specific ligand binding. Collagen binding to DDRs stimulates DDR phosphorylation activating kinase activity, signaling to MAPK, integrin, TGF-β, insulin receptor, and Notch signaling pathways. Abnormal DDR expression is detected in a range of solid tumors (including breast, ovarian, cervical liver, gastric, colorectal, lung, and brain). During tumorigenesis, abnormal activation of DDRs leads to invasion and metastasis, via dysregulation of cell adhesion, migration, proliferation, secretion of cytokines, and extracellular matrix remodeling. Differential expression or mutation of DDRs correlates with pathological classification, clinical characteristics, treatment response, and prognosis. Here, we discuss the discovery, structural characteristics, organizational distribution, and DDR-dependent signaling. Importantly, we highlight the key role of DDRs in the development and progression of breast and ovarian cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shishir Paunikar
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - James A. L. Brown
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Emer Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Romayor I, Badiola I, Olaso E. Inhibition of DDR1 reduces invasive features of human A375 melanoma, HT29 colon carcinoma and SK-HEP hepatoma cells. Cell Adh Migr 2021; 14:69-81. [PMID: 32090682 PMCID: PMC7153652 DOI: 10.1080/19336918.2020.1733892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DDR1 is a receptor tyrosine kinases for collagen and an adverse prognostic factor in primary and metastatic tumors.Despite this, DDR1 signaling and its functional consequences in tumor development remain unclear. RT-PCR and Western blot show that A375, colon carcinoma HT29 and liver carcinoma SK-HEP human cell lines express functional DDR1 that phosphorylates in response to collagen type I. Chemical inhibition of DDR1 phosphorylation or DDR1 mRNA silencing reduced AKT and ERK phosphorylation, expression of ICAM1 and VCAM1, Ki67 and secretion of MMP9. DDR1 silenced cells showed reduced adhesion to collagen type I, MMP-dependent invasion, and chemotactic and proliferative responses to collagen type I. Our work indicates an essential role for DDR1 signaling in key prometastatic features of collagen type I in human carcinoma cells.
Collapse
Affiliation(s)
- Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Elvira Olaso
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| |
Collapse
|
32
|
Xue F, Zhou W, Lan Z. The expression of two collagen receptor subfamilies, integrins and discoidin domains during osteogenic and chondrogenic differentiation of human mesenehymal stem cells. Biomed Mater Eng 2021; 32:195-205. [PMID: 33780357 DOI: 10.3233/bme-201151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Collagen receptors are characterized by binding to and being activated by collagens. We know little about the molecular mechanism by which the integrins and discoidin domains (DDRs) recognize collagen. OBJECTIVE The aim of this study was to investigate the expression of two main collagen receptor subfamilies, integrins and DDRs, during osteogenic and chondrogenic differentiation of human mesenehymal stem cells (hMSCs). METHODS Using qRT-PCR, Western blots and FACS, the levels of DDR1, DDR2, integrin subunits β1, α1, α2, α10 and α11 receptors on hMSCs, were assessed upon activation by collagen type I, as well as during osteogenic and chondrogenic differentiation. RESULTS The expression of DDR2 and integrin α11β1 was altered compared with other receptors when the cells were cultured under undifferentiated conditions. During osteogenic and chondrogenetic differentiation, DDR2 and α11 were up-regulated during early stages (6 day) of osteogenesis and chondrogenesis, respectively. The expression and activation of DDR2 was concomitant with another receptor integrin subunit β1 during osteogenetic differentiation. CONCLUSIONS The results suggested that DDR2 was more specific for osteogenesis than chondrogenesis, while integrin α11β1 was more specific in chondrogenesis. DDR2 and α11 may play a role in the regulation of osteogenesis and chondrogenesis based on the differential expression of these receptors during lineage-dependent changes.
Collapse
Affiliation(s)
- Fan Xue
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Wei Zhou
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
33
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
34
|
Nallanthighal S, Heiserman JP, Cheon DJ. Collagen Type XI Alpha 1 (COL11A1): A Novel Biomarker and a Key Player in Cancer. Cancers (Basel) 2021; 13:935. [PMID: 33668097 PMCID: PMC7956367 DOI: 10.3390/cancers13050935] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Collagen type XI alpha 1 (COL11A1), one of the three alpha chains of type XI collagen, is crucial for bone development and collagen fiber assembly. Interestingly, COL11A1 expression is increased in several cancers and high levels of COL11A1 are often associated with poor survival, chemoresistance, and recurrence. This review will discuss the recent discoveries in the biological functions of COL11A1 in cancer. COL11A1 is predominantly expressed and secreted by a subset of cancer-associated fibroblasts, modulating tumor-stroma interaction and mechanical properties of extracellular matrix. COL11A1 also promotes cancer cell migration, metastasis, and therapy resistance by activating pro-survival pathways and modulating tumor metabolic phenotype. Several inhibitors that are currently being tested in clinical trials for cancer or used in clinic for other diseases, can be potentially used to target COL11A1 signaling. Collectively, this review underscores the role of COL11A1 as a promising biomarker and a key player in cancer.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (S.N.); (J.P.H.)
| |
Collapse
|
35
|
Wang H, Ren R, Yang Z, Cai J, Du S, Shen X. The COL11A1/Akt/CREB signaling axis enables mitochondrial-mediated apoptotic evasion to promote chemoresistance in pancreatic cancer cells through modulating BAX/BCL-2 function. J Cancer 2021; 12:1406-1420. [PMID: 33531986 PMCID: PMC7847647 DOI: 10.7150/jca.47032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022] Open
Abstract
Collagen XI, a member of the collagen family, is present in the extracellular matrix (ECM), and high collagen XI/αI (COL11A1) expression in tumor tissue is reportedly correlated with the clinicopathological parameters of pancreatic ductal adenocarcinoma (PDAC). However, the function of COL11A1 in the development of pancreatic cancer cells remains unclear. In the current study, we assessed mRNA expression of COL11A1 and its receptors and created a testing-model of both a COL11A1-overexpressing tumor microenvironment and/or altered-COL11A1 expression in pancreatic cancer cell lines. Next, we investigated the mechanism by which COL11A1 affects growth, gemcitabine (GEM) resistance and apoptosis in pancreatic cancer cells. We demonstrated that COL11A1 phosphorylated AktSer473, promoting proliferation of cancer cells and inhibiting their apoptosis. Additionally, our data showed that COL11A1/Akt/CREB altered the balance between BCL-2 and BAX and mediated their mitochondrial translocation in pancreatic cancer cells. The COL11A1/Akt axis induced disruption of mitochondrial transmembrane function, enabling mitochondria-mediated apoptotic evasion to promote chemoresistance. We also explored the regulatory effect of COL11A1/Akt on molecular signaling in the mitochondria-mediated apoptotic program. COL11A1/Akt disturbed the BCL-2/BAX balance, inhibiting cytochrome c (Cyt-C) release and binding of Apaf-1/procaspase-9/Cyt-C, which suppressed the apoptotic program and induced GEM resistance in pancreatic cancer cells. In conclusion, COL11A1 modulates apoptotic inhibition and chemoresistance in pancreatic cancer cells by activating the Akt/CREB/BCL-2/BAX signaling pathway. COL11A1 may represent a distinct prognostic indicator and may be an attractive therapeutic target for PDAC.
Collapse
Affiliation(s)
- Hui Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Runling Ren
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zizhong Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jun Cai
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shaoxia Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaohong Shen
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Malcor JD, Hunter EJ, Davidenko N, Bax DV, Cameron R, Best S, Sinha S, Farndale RW. Collagen scaffolds functionalized with triple-helical peptides support 3D HUVEC culture. Regen Biomater 2020; 7:471-482. [PMID: 33149936 PMCID: PMC7597804 DOI: 10.1093/rb/rbaa025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Porous biomaterials which provide a structural and biological support for cells have immense potential in tissue engineering and cell-based therapies for tissue repair. Collagen biomaterials that can host endothelial cells represent promising tools for the vascularization of engineered tissues. Three-dimensional collagen scaffolds possessing controlled architecture and mechanical stiffness are obtained through freeze-drying of collagen suspensions, followed by chemical cross-linking which maintains their stability. However, cross-linking scaffolds renders their biological activity suboptimal for many cell types, including human umbilical vein endothelial cells (HUVECs), by inhibiting cell-collagen interactions. Here, we have improved crucial HUVEC interactions with such cross-linked collagen biomaterials by covalently coupling combinations of triple-helical peptides (THPs). These are ligands for collagen-binding cell-surface receptors (integrins or discoidin domain receptors) or secreted proteins (SPARC and von Willebrand factor). THPs enhanced HUVEC adhesion, spreading and proliferation on 2D collagen films. THPs grafted to 3D-cross-linked collagen scaffolds promoted cell survival over seven days. This study demonstrates that THP-functionalized collagen scaffolds are promising candidates for hosting endothelial cells with potential for the production of vascularized engineered tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Emma J Hunter
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Daniel V Bax
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Serena Best
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Sanjay Sinha
- Division of Medicine and Wellcome Trust, Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
37
|
Targeting Discoidin Domain Receptor 1 (DDR1) Signaling and Its Crosstalk with β 1-integrin Emerges as a Key Factor for Breast Cancer Chemosensitization upon Collagen Type 1 Binding. Int J Mol Sci 2020; 21:ijms21144956. [PMID: 32668815 PMCID: PMC7404217 DOI: 10.3390/ijms21144956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Collagen type 1 (COL1) is a ubiquitously existing extracellular matrix protein whose high density in breast tissue favors metastasis and chemoresistance. COL1-binding of MDA-MB-231 and MCF-7 breast cancer cells is mainly dependent on β1-integrins (ITGB1). Here, we elucidate the signaling of chemoresistance in both cell lines and their ITGB1-knockdown mutants and elucidated MAPK pathway to be strongly upregulated upon COL1 binding. Notably, Discoidin Domain Receptor 1 (DDR1) was identified as another important COL1-sensor, which is permanently active but takes over the role of COL1-receptor maintaining MAPK activation in ITGB1-knockdown cells. Consequently, inhibition of DDR1 and ERK1/2 act synergistically, and sensitize the cells for cytostatic treatments using mitoxantrone, or doxorubicin, which was associated with an impaired ABCG2 drug efflux transporter activity. These data favor DDR1 as a promising target for cancer cell sensitization, most likely in combination with MAPK pathway inhibitors to circumvent COL1 induced transporter resistance axis. Since ITGB1-knockdown also induces upregulation of pEGFR in MDA-MB-231 cells, inhibitory approaches including EGFR inhibitors, such as gefitinib appear promising for pharmacological interference. These findings provide evidence for the highly dynamic adaptation of breast cancer cells in maintaining matrix binding to circumvent cytotoxicity and highlight DDR1 signaling as a target for sensitization approaches.
Collapse
|
38
|
Luo Y, Xu T, Xie HQ, Guo Z, Zhang W, Chen Y, Sha R, Liu Y, Ma Y, Xu L, Zhao B. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on spontaneous movement of human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136805. [PMID: 32041038 DOI: 10.1016/j.scitotenv.2020.136805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Aryl hydrocarbon receptor (AhR) plays important roles in the interferences of dioxin exposure with the occurrence and development of tumors. Neuroblastoma is a kind of malignant tumor with high mortality and its occurrence is getting higher in dioxin exposed populations. However, there is still a lack of direct evidence of influences of dioxin on neuroblastoma cell migration. SK-N-SH is a human neuroblastoma cell line which has been used to reveal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced dysregulation of certain promigratory gene. Thus, in this study, we employed SK-N-SH cells to investigate the effects of TCDD on the spontaneous movement of neuroblastoma cells, which is a short-range cell migratory behavior related to clone formation and tumor metastasis in vitro. Using unlabeled live cell imaging and high content analysis, we characterized the spontaneous movement under a full-nutrient condition in SK-N-SH cells. We found that the spontaneous movement of SK-N-SH cells was inhibited after 36- or 48-h treatment with TCDD at relative low concentrations (10-10 or 2 × 10-10 M). The TCDD-treated cells were unable to move as freely as that of control cells, resulting in less diffusive trajectories and a decreased displacement of the movement. In line with this cellular effect, the expression of pro-adhesive genes was significantly induced in time- and concentration-dependent manners after TCDD treatment. In addition, with the presence of AhR antagonist, CH223191, the effects of TCDD on the gene expression and the spontaneous cell movement were effectively reversed. Thus, we proposed that AhR-mediated up-regulation of pro-adhesive genes might be involved in the inhibitory effects of dioxin on the spontaneous movement of neuroblastoma cells. To our knowledge, this is the first piece of direct evidence about the influence of dioxin on neuroblastoma cell motility.
Collapse
Affiliation(s)
- Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
39
|
Guo J, Zhang Z, Ding K. A patent review of discoidin domain receptor 1 (DDR1) modulators (2014-present). Expert Opin Ther Pat 2020; 30:341-350. [PMID: 32077340 DOI: 10.1080/13543776.2020.1732925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase. Upon collagen binding, DDR1 undergoes tyrosine autophosphorylation, which consequently triggers downstream genetic and cellular pathways and plays critical roles in the regulation of cellular morphogenesis, differentiation, proliferation, adhesion, migration, and invasion. Increasing evidence suggests the potential roles of DDR1 in various human diseases including cancer, fibrosis, atherosclerosis, and other inflammatory disorders. Modulating the activity of DDR1 may be considered as a new therapeutic strategy for human cancer and inflammation-related diseases.Areas covered: This article summarizes current progress on the development of selective DDR1 inhibitors and their potential therapeutic application during the period from 2014 to 2019.Expert opinion: DDR1 is closely linked to a variety of human diseases, including fibrotic disorders, atherosclerosis, and cancer, etc. Thus, DDR1 has been considered as a new potential target for drug discovery. A number of DDR1 inhibitors has been identified in the past 5 years, but most of them display relatively broad inhibition across the kinome. New generation DDR1 inhibitors targeting the allosteric sites outside of the canonical ATP-binding pocket or extracellular domain (allosteric inhibitors) may offer a new opportunity for selective DDR1 inhibition therapy development.
Collapse
Affiliation(s)
- Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Zhen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
DDR1 autophosphorylation is a result of aggregation into dense clusters. Sci Rep 2019; 9:17104. [PMID: 31745115 PMCID: PMC6863838 DOI: 10.1038/s41598-019-53176-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
The collagen receptor DDR1 is a receptor tyrosine kinase that promotes progression of a wide range of human disorders. Little is known about how ligand binding triggers DDR1 kinase activity. We previously reported that collagen induces DDR1 activation through lateral dimer association and phosphorylation between dimers, a process that requires specific transmembrane association. Here we demonstrate ligand-induced DDR1 clustering by widefield and super-resolution imaging and provide evidence for a mechanism whereby DDR1 kinase activity is determined by its molecular density. Ligand binding resulted in initial DDR1 reorganisation into morphologically distinct clusters with unphosphorylated DDR1. Further compaction over time led to clusters with highly aggregated and phosphorylated DDR1. Ligand-induced DDR1 clustering was abolished by transmembrane mutations but did not require kinase activity. Our results significantly advance our understanding of the molecular events underpinning ligand-induced DDR1 kinase activity and provide an explanation for the unusually slow DDR1 activation kinetics.
Collapse
|
41
|
V H, Titus AS, Cowling RT, Kailasam S. Collagen receptor cross-talk determines α-smooth muscle actin-dependent collagen gene expression in angiotensin II-stimulated cardiac fibroblasts. J Biol Chem 2019; 294:19723-19739. [PMID: 31699892 DOI: 10.1074/jbc.ra119.009744] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive collagen deposition by myofibroblasts during adverse cardiac remodeling leads to myocardial fibrosis that can compromise cardiac function. Unraveling the mechanisms underlying collagen gene expression in cardiac myofibroblasts is therefore an important clinical goal. The collagen receptors, discoidin domain receptor 2 (DDR2), a collagen-specific receptor tyrosine kinase, and integrin-β1, are reported to mediate tissue fibrosis. Here, we probed the role of DDR2-integrin-β1 cross-talk in the regulation of collagen α1(I) gene expression in angiotensin II (Ang II)-stimulated cardiac fibroblasts. Results from gene silencing/overexpression approaches, electrophoretic mobility shift assays, and ChIP revealed that DDR2 acts via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK)-dependent transforming growth factor-β1 (TGF-β1) signaling to activate activator protein-1 (AP-1) that in turn transcriptionally enhances the expression of collagen-binding integrin-β1 in Ang II-stimulated cardiac fibroblasts. The DDR2-integrin-β1 link was also evident in spontaneously hypertensive rats and DDR2-knockout mice. Further, DDR2 acted via integrin-β1 to regulate α-smooth muscle actin (α-SMA) and collagen type I expression in Ang II-exposed cardiac fibroblasts. Downstream of the DDR2-integrin-β1 axis, α-SMA was found to regulate collagen α1(I) gene expression via the Ca2+ channel, transient receptor potential cation channel subfamily C member 6 (TRPC6), and the profibrotic transcription factor, Yes-associated protein (YAP). This finding indicated that fibroblast-to-myofibroblast conversion is mechanistically coupled to collagen expression. The observation that collagen receptor cross-talk underlies α-SMA-dependent collagen type I expression in cardiac fibroblasts expands our understanding of the complex mechanisms involved in collagen gene expression in the heart and may be relevant to cardiac fibrogenesis.
Collapse
Affiliation(s)
- Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| |
Collapse
|
42
|
Farndale RW. Collagen-binding proteins: insights from the Collagen Toolkits. Essays Biochem 2019; 63:337-348. [PMID: 31266822 DOI: 10.1042/ebc20180070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
The Collagen Toolkits are libraries of 56 and 57 triple-helical synthetic peptides spanning the length of the collagen II and collagen III helices. These have been used in solid-phase binding assays to locate sites where collagen receptors and extracellular matrix components bind to collagens. Truncation and substitution allowed exact binding sites to be identified, and corresponding minimal peptides to be synthesised for use in structural and functional studies. 170 sites where over 30 proteins bind to collagen II have been mapped, providing firm conclusions about the amino acid distribution within such binding sites. Protein binding to collagen II is not random, but displays a periodicity of approximately 28 nm, with several prominent nodes where multiple proteins bind. Notably, the vicinity of the collagenase-cleavage site in Toolkit peptide II-44 is highly promiscuous, binding over 20 different proteins. This may reflect either the diverse chemistry of that locus or its diverse function, together with the interplay between regulatory binding partners. Peptides derived from Toolkit studies have been used to determine atomic level resolution of interactions between collagen and several of its binding partners and are finding practical application in tissue engineering.
Collapse
Affiliation(s)
- Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, U.K.
- CambCol Laboratories, PO Box 727, Station Rd, Wilburton Ely, CB7 9RP, U.K
| |
Collapse
|
43
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 2019; 62:166-181. [PMID: 31415910 DOI: 10.1016/j.semcancer.2019.08.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemoresistance-induced events, with a special focus on the "interaction landscape" in desmoplastic breast, lung and pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin α11β1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three tumor types.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Pugazendhi Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
| |
Collapse
|
44
|
Coelho NM, Wang A, McCulloch CA. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118510. [PMID: 31319111 DOI: 10.1016/j.bbamcr.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Discoidin Domain Receptor (DDR) genes and their homologues have been identified in sponges, worms and flies. These genes code for proteins that are implicated in cell adhesion to matrix proteins. DDRs are now recognized as playing central regulatory roles in several high prevalence human diseases, including invasive cancers, atherosclerosis, and organ fibrosis. While the mechanisms by which DDRs contribute to these diseases are just now being delineated, one of the common themes involves cell adhesion to collagen and the assembly and organization of collagen fibers in the extracellular matrix. In mammals, the multi-functional roles of DDRs in promoting cell adhesion to collagen fibers and in mediating collagen-dependent signaling, suggest that DDRs contribute to multiple pathways of extracellular matrix remodeling, which are centrally important processes in health and disease. In this review we consider that interactions of the cytoplasmic domains of DDR1 with cytoskeletal motor proteins may contribute to matrix remodeling by promoting collagen fiber alignment and compaction. Poorly controlled collagen remodeling with excessive compaction of matrix proteins is a hallmark of fibrotic lesions in many organs and tissues that are affected by infectious, traumatic or chemical-mediated injury. An improved understanding of the mechanisms by which DDRs mediate collagen remodeling and collagen-dependent signaling could suggest new drug targets for treatment of fibrotic diseases.
Collapse
Affiliation(s)
- N M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - A Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - C A McCulloch
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Bayer SV, Grither WR, Brenot A, Hwang PY, Barcus CE, Ernst M, Pence P, Walter C, Pathak A, Longmore GD. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. eLife 2019; 8:45508. [PMID: 31144616 PMCID: PMC6555593 DOI: 10.7554/elife.45508] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Biomechanical changes in the tumor microenvironment influence tumor progression and metastases. Collagen content and fiber organization within the tumor stroma are major contributors to biomechanical changes (e., tumor stiffness) and correlated with tumor aggressiveness and outcome. What signals and in what cells control collagen organization within the tumors, and how, is not fully understood. We show in mouse breast tumors that the action of the collagen receptor DDR2 in CAFs controls tumor stiffness by reorganizing collagen fibers specifically at the tumor-stromal boundary. These changes were associated with lung metastases. The action of DDR2 in mouse and human CAFs, and tumors in vivo, was found to influence mechanotransduction by controlling full collagen-binding integrin activation via Rap1-mediated Talin1 and Kindlin2 recruitment. The action of DDR2 in tumor CAFs is thus critical for remodeling collagen fibers at the tumor-stromal boundary to generate a physically permissive tumor microenvironment for tumor cell invasion and metastases.
Collapse
Affiliation(s)
- Samantha Vh Bayer
- ICCE Institute, Washington University, St Louis, United States.,Department of Cell Biology and Physiology, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Whitney R Grither
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States.,Department of Biochemistry, Washington University, St Louis, United States
| | - Audrey Brenot
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Priscilla Y Hwang
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Craig E Barcus
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Melanie Ernst
- ICCE Institute, Washington University, St Louis, United States.,Department of Biochemistry, Washington University, St Louis, United States
| | - Patrick Pence
- ICCE Institute, Washington University, St Louis, United States
| | - Christopher Walter
- Department of Mechanical Engineering, Washington University, St Louis, United States
| | - Amit Pathak
- Department of Mechanical Engineering, Washington University, St Louis, United States
| | - Gregory D Longmore
- ICCE Institute, Washington University, St Louis, United States.,Department of Cell Biology and Physiology, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| |
Collapse
|
46
|
Jia S, Agarwal M, Yang J, Horowitz JC, White ES, Kim KK. Discoidin Domain Receptor 2 Signaling Regulates Fibroblast Apoptosis through PDK1/Akt. Am J Respir Cell Mol Biol 2019; 59:295-305. [PMID: 29652518 DOI: 10.1165/rcmb.2017-0419oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Progressive fibrosis is a complication of many chronic diseases, and collectively, organ fibrosis is the leading cause of death in the United States. Fibrosis is characterized by accumulation of activated fibroblasts and excessive deposition of extracellular matrix proteins, especially type I collagen. Extensive research has supported a role for matrix signaling in propagating fibrosis, but type I collagen itself is often considered an end product of fibrosis rather than an important regulator of continued collagen deposition. Type I collagen can activate several cell surface receptors, including α2β1 integrin and discoidin domain receptor 2 (DDR2). We have previously shown that mice deficient in type I collagen have reduced activation of DDR2 and reduced accumulation of activated myofibroblasts. In the present study, we found that DDR2-null mice are protected from fibrosis. Surprisingly, DDR2-null fibroblasts have a normal and possibly exaggerated activation response to transforming growth factor-β and do not have diminished proliferation compared with wild-type fibroblasts. DDR2-null fibroblasts are significantly more prone to apoptosis, in vitro and in vivo, than wild-type fibroblasts, supporting a paradigm in which fibroblast resistance to apoptosis is critical for progression of fibrosis. We have identified a novel molecular mechanism by which DDR2 can promote the activation of a PDK1 (3-phosphoinositide dependent protein kinase-1)/Akt survival pathway, and we have found that inhibition of PDK1 can augment fibroblast apoptosis. Furthermore, our studies demonstrate that DDR2 expression is heavily skewed to mesenchymal cells compared with epithelial cells and that idiopathic pulmonary fibrosis cells and tissue demonstrate increased activation of DDR2 and PDK1. Collectively, these findings identify a promising target for fibrosis therapy.
Collapse
Affiliation(s)
- Shijing Jia
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Manisha Agarwal
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Jibing Yang
- 2 Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeffrey C Horowitz
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Eric S White
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Kevin K Kim
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| |
Collapse
|
47
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | | | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
48
|
Vehlow A, Klapproth E, Jin S, Hannen R, Hauswald M, Bartsch JW, Nimsky C, Temme A, Leitinger B, Cordes N. Interaction of Discoidin Domain Receptor 1 with a 14-3-3-Beclin-1-Akt1 Complex Modulates Glioblastoma Therapy Sensitivity. Cell Rep 2019; 26:3672-3683.e7. [DOI: 10.1016/j.celrep.2019.02.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/13/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
|
49
|
Chen LY, Zhi Z, Wang L, Zhao YY, Deng M, Liu YH, Qin Y, Tian MM, Liu Y, Shen T, Sun LN, Li JM. NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling. J Pathol 2019; 248:103-115. [PMID: 30666650 DOI: 10.1002/path.5238] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022]
Abstract
Liver metastasis is the main cause of death in patients with colorectal cancer (CRC). Here, we searched for CRC metastasis-associated circular RNA in a mouse model of liver metastasis of CRC by using RNA (transcriptome)-sequencing. We identified a novel and conserved circular RNA, circ-NSD2, functioning as a promoter of CRC metastasis. Circ-NSD2 expression was elevated in CRC tissues and was markedly increased in advanced stages or metastatic tumours of CRC patients. Gain-of-function and loss-of-function experiments demonstrated that circ-NSD2 promoted migration and metastasis of CRC in vitro and in vivo. Mechanistically, circ-NSD2 acted as a sponge for the tumour suppressor miR-199b-5p and activated DDR1 (discoidin domain receptor tyrosine kinase 1) and JAG1 (Jagged 1) genes, which synergistically helped with cell-matrix interaction, migration and metastasis of CRC cells. Taken together, our findings highlight a novel oncogenic function of circ-NSD2 and uncover a key mechanism for the circ-NSD2/miR-199b-5p/DDR1/JAG1 axis in CRC metastasis, which may serve as a prognostic factor and therapeutic target for antimetastatic therapy in CRC patients. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liang-Yan Chen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Lian Wang
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Yuan-Yuan Zhao
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Min Deng
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Yu-Hong Liu
- Department of Pathology, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, PR China
| | - Yan Qin
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China.,Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi 4th People's Hospital, Wuxi, PR China
| | - Meng-Meng Tian
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Tong Shen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Li-Na Sun
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China
| | - Jian-Ming Li
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, PR China.,Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
50
|
Bernadskaya YY, Brahmbhatt S, Gline SE, Wang W, Christiaen L. Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors. Nat Commun 2019; 10:57. [PMID: 30610187 PMCID: PMC6320373 DOI: 10.1038/s41467-018-07976-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
Integrated analyses of regulated effector genes, cellular processes, and extrinsic signals are required to understand how transcriptional networks coordinate fate specification and cell behavior during embryogenesis. Ciona cardiopharyngeal progenitors, the trunk ventral cells (TVCs), polarize as leader and trailer cells that migrate between the ventral epidermis and trunk endoderm. We show that the TVC-specific collagen-binding Discoidin-domain receptor (Ddr) cooperates with Integrin-β1 to promote cell-matrix adhesion. We find that endodermal cells secrete a collagen, Col9-a1, that is deposited in the basal epidermal matrix and promotes Ddr activation at the ventral membrane of migrating TVCs. A functional antagonism between Ddr/Intβ1-mediated cell-matrix adhesion and Vegfr signaling appears to modulate the position of cardiopharyngeal progenitors between the endoderm and epidermis. We show that Ddr promotes leader-trailer-polarized BMP-Smad signaling independently of its role in cell-matrix adhesion. We propose that dual functions of Ddr integrate transcriptional inputs to coordinate subcellular processes underlying collective polarity and migration.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Saahil Brahmbhatt
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Stephanie E Gline
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Wei Wang
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, 10003, NY, USA.
| |
Collapse
|