1
|
Bugeda A, Shi X, Castillo L, Marcos JF, Manzanares P, López-Moya JJ, Coca M. High yield production of the antifungal proteins PeAfpA and PdAfpB by vacuole targeting in a TMV-based expression vector. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40318202 DOI: 10.1111/pbi.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
Antifungal proteins (AFPs) derived from filamentous fungi show great potential against economically significant fungi that cause plant diseases and consequently threat food safety and security. This study focuses on the Penicillium expansum PeAfpA and Penicillium digitatum PdAfpB proteins and their activity against several phytopathogens. The AFPs were synthesized through a highly productive tobacco mosaic virus-based expression vector in the fast-growing model plant Nicotiana benthamiana, combining signalling sequences for apoplastic and vacuolar compartmentalization to increase yields. Adding a vacuolar signalling peptide from a Nicotiana sylvestris chitinase at the C-termini of the AFPs in combination with an apoplastic N-terminal signalling peptide from N. benthamiana osmotin significantly enhanced AFP yields without altering functionality. Results showed an improvement of ninefold for PeAfpA and 3,5-fold for PdAfpB compared to constructs with only the apoplastic N-terminal signalling. Transmission electron microscopy and immunogold labelling confirmed the localization of AFPs in both the apoplast and the vacuole, highlighting its compatibility with vacuolar environments. In vitro and in vivo assessments against key pathogenic fungi, including Magnaporthe oryzae, Botrytis cinerea and Fusarium proliferatum, revealed that the activities of easily purified PeAfpA- and PdAfpB-enriched plant extracts closely mirrored those of their purified fungal counterparts. This innovative approach represents a notable advance towards the application of AFPs as effective, safe and environmentally friendly 'green biofungicides' for safeguarding crop and postharvest produce and could also be applied to control other pathogenic fungi that threat human health.
Collapse
Affiliation(s)
- Adrià Bugeda
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jose F Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Song SJ, Diao HP, Guo YF, Hwang I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BIODESIGN RESEARCH 2024; 6:0047. [PMID: 39206181 PMCID: PMC11350518 DOI: 10.34133/bdr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.
Collapse
Affiliation(s)
- Shi-Jian Song
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hai-Ping Diao
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong-Feng Guo
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Inhwan Hwang
- Department of Life Science,
Pohang University of Science and Technology, Pohang, Republic of Korea
- BioApplications Inc., Pohang, Republic of Korea
| |
Collapse
|
3
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Li XX, Gorman DM, Lee JD, Clark RJ, Woodruff TM. Unexpected Off-Target Activities for Recombinant C5a in Human Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:133-142. [PMID: 34853076 DOI: 10.4049/jimmunol.2100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The anaphylatoxin C5a is core effector of complement activation. C5a exerts potent proinflammatory and immunomodulatory actions through interacting with its C5a receptors, C5aR1 and C5aR2, modulating multiple signaling and functional activities of immune cells. Native C5a contains a large N-linked glycosylation site at Asn64, which accounts for up to 25% of its m.w. To date, the vast majority of published studies examining C5a are performed using Escherichia coli-generated recombinant C5a, which is readily available from numerous commercial suppliers, but lacks this glycosylation moiety. However, a plasma-purified "native" form of C5a is also commercially available. The different size and glycosylation of these two C5a versions could have functional implications. Therefore, the current study aimed to compare recombinant human C5a to purified plasma-derived human C5a in driving the signaling and functional activities of human primary macrophages. We found that both versions of C5a displayed similar potencies at triggering C5aR1- and C5aR2-mediated cell signaling, but elicited distinct functional responses in primary human monocyte-derived macrophages. Multiple commercial sources of recombinant C5a, but not the plasma-purified or a synthetic C5a version, induced human monocyte-derived macrophages to produce IL-6 and IL-10 in a C5a receptor-independent manner, which was driven through Syk and NF-κB signaling and apparently not due to endotoxin contamination. Our results, therefore, offer caution against the sole use of recombinant human C5a, particularly in functional/cytokine assays conducted in human primary immune cells, and suggest studies using recombinant human C5a should be paired with C5aR1 inhibitors or purified/synthetic human C5a to confirm relevant findings.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
5
|
马 洁, 吴 乐, 丁 向, 李 志, 王 盛. [Transient expression of bioactive recombinant human plasminogen activator in tobacco leaf]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:515-522. [PMID: 31140413 PMCID: PMC6743930 DOI: 10.12122/j.issn.1673-4254.2019.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the potential of transient expression of recombinant human plasminogen activator (rhPA) in plants as a cost-effective approach for recombinant rhPA production. METHODS Tobacco mosaic virus-based expression vector pTMV rhPA-NSK and plant binary expression vector pJ Zera-rhPA were constructed by in vitro sequence synthesis and subcloning. The two vectors were inoculated on either Nicotiana benthamiana or N. excelsiana leaves via agroinfiltration. The expression of recombinant rhPA in Nicotiana leaves was examined using Western blotting and ELISA, and the in vitro fibrinolysis activity of plant-produced rhPA was assessed by fibrin agarose plate assay (FAPA). RESULTS Five to nine days after infiltration with an Agrobacterium inoculum containing pTMV rhPA-NSK, necrosis appeared in the infiltrated area on the leaves of both Nicotiana plants, but intact recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of recombinant rhPA in infiltrated N. benthamiana leaves was significantly higher than that in N. excelsiana leaves (P < 0.05). The yield of recombinant rhPA was up to 0.6% of the total soluble protein (or about 60.0 μg per gram) in the fresh leaf biomass at 7 days post-inoculation. The plant-derived rhPA was bioactive to convert inactive plasminogen to active plasmin. No necrosis occurred in pJ Zera-rhPA-infiltrated leaves. The Zera-rhPA protein was partially cleaved between the site of Zera tag and rhPA sequence in both Nicotiana leaves. We speculated that the formation of Zera tags-induced particles in the plant cells was a dynamic process of progressive aggregation in which some of the soluble polypeptides were encapsulated in these particles. CONCLUSIONS Enzymatically active recombinant rhPA can be rapidly expressed in tobacco plants using the plant viral ampliconbased system, which offers a promising alternative for cost-effective production of recombinant rhPA.
Collapse
Affiliation(s)
- 洁雪 马
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
| | - 乐乐 吴
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
| | - 向真 丁
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - 志英 李
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - 盛 王
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| |
Collapse
|
6
|
Ma T, Li Z, Wang S. Production of Bioactive Recombinant Reteplase by Virus-Based Transient Expression System in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2019; 10:1225. [PMID: 31649696 PMCID: PMC6791962 DOI: 10.3389/fpls.2019.01225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/04/2019] [Indexed: 05/08/2023]
Abstract
To explore a cost-effective alternative method to produce the recombinant thrombolytic drug Reteplase (rPA), a plant viral amplicon-based gene expression system was employed to transiently express bioactive Strep II-tagged recombinant rPA in Nicotiana benthamiana leaves via agro-infiltration. Several gene expression cassettes were designed, synthesized in vitro, and then cloned into Tobacco mosaic virus RNA-based overexpression vector. Codon optimization, subcellular targeting, and the effect of attached Strep-tag II were assessed to identify conditions that maximized expression levels of the recombinant rPA in tobacco leaves. We found that codon-optimized rPA with N-terminal Strep-tag II that was aimed to the endoplasmic reticulum as target provided the highest amount of biologically active protein, i.e., up to ∼50 mg from per kilogram fresh weight leaf biomass in less than 1 week. Furthermore, the recombinant rPA was conveniently purified from inoculated leaf extracts by a one-step purification procedure via the Strep-tag II. The plant-made rPA was glycosylated with molecular mass of ∼45.0 kDa, and its in vitro fibrinolysis activity was equivalent to the commercial available rPA. These results indicate that the plant viral amplicon-based system offers a simple and highly effective approach for cost-effective large-scale production of recombinant rPA.
Collapse
Affiliation(s)
- Ting Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, School of Life Science, Ningxia Universisty, Yinchuan, China
| | - Zhiying Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, School of Life Science, Ningxia Universisty, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia Universisty, Yinchuan, China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, School of Life Science, Ningxia Universisty, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia Universisty, Yinchuan, China
- *Correspondence: Sheng Wang,
| |
Collapse
|
7
|
Matsuda R, Abe T, Fujiuchi N, Matoba N, Fujiwara K. Effect of temperature post viral vector inoculation on the amount of hemagglutinin transiently expressed in Nicotiana benthamiana leaves. J Biosci Bioeng 2017; 124:346-350. [PMID: 28460871 DOI: 10.1016/j.jbiosc.2017.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Transient gene expression in whole plants by using viral vectors is promising as a rapid, mass production system for biopharmaceutical proteins. Recent studies have indicated that plant growth conditions such as air temperature markedly influence the accumulation levels of target proteins. Here, we investigated time course of the amount of recombinant hemagglutinin (HA), a vaccine antigen of influenza virus, in leaves of Nicotiana benthamiana plants grown at 20°C or 25°C post viral vector inoculation. The HA content per unit of leaf biomass increased and decreased from 4 to 6 days post inoculation at 20°C and 25°C, respectively, irrespective of the subcellular localization of HA. The overall HA contents were higher when HA was targeted to the endoplasmic reticulum (ER) rather than the apoplast. Necrosis of leaf tissues was specifically observed in plants inoculated with the ER-targeting vector and grown at 25°C. With the ER-targeting vector, the maximum HA contents at 20°C and 25°C were recorded at 6 and 4 days post inoculation, respectively, and were comparable to each other. HA contents thereafter decreased at both temperatures; the rate of reduction appeared faster at 25°C than at 20°C. From a practical point of view, our results indicate that the strategy of targeting HA to the ER, growing plants at a lower temperature of 20°C, and harvesting leaves at around a week after vector inoculation should be implemented to obtain a high HA yield stably and efficiently.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | - Tatsuki Abe
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, Center for Predictive Medicine and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Room 615, Louisville, KY 40202, USA
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Ponndorf D, Broer I, Nausch H. Expression of CphB- and CphE-type cyanophycinases in cyanophycin-producing tobacco and comparison of their ability to degrade cyanophycin in plant and plant extracts. Transgenic Res 2017; 26:491-499. [PMID: 28432544 DOI: 10.1007/s11248-017-0019-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/17/2017] [Indexed: 11/28/2022]
Abstract
Increasing the arginine (Arg) content in plants used as feed or food is of interest, since the supplementation of food with conditionally essential Arg has been shown to have nutritional benefits. An increase was achieved by the expression of the Arg-rich bacterial storage component, cyanophycin (CGP), in the chloroplast of transgenic plants. CGP is stable in plants and its degradation into β-aspartic acid (Asp)-Arg dipeptides, is solely catalyzed by bacterial cyanophycinases (CGPase). Dipeptides can be absorbed by animals even more efficiently than free amino acids (Matthews and Adibi 1976; Wenzel et al. 2001). The simultaneous production of CGP and CGPase in plants could be a source of β-Asp-Arg dipeptides if CGP degradation can be prevented in planta or if dipeptides are stable in the plants. We have shown for the first time that it is possible to co-express CGP and CGPase in the same plant without substrate degradation in planta by transient expression of the cyanobacterial CGPase CPHB (either in the plastid or cytosol), and the non-cyanobacterial CGPase CPHE (cytosol) in CGP-producing Nicotiana tabacum plants. We compared their ability to degrade CGP in planta and in crude plant extracts. No CGP degradation appeared prior to cell homogenization independent of the CGPase produced. In crude plant extracts, only cytosolic CPHE led to a fast degradation of CGP. CPHE also showed higher stability and in vitro activity compared to both CPHB variants. This work is the next step to increase Arg in forage plants using a stable, Arg-rich storage protein.
Collapse
Affiliation(s)
- Daniel Ponndorf
- Department of Agrobiotechnology and Risk Assessment for Bio- and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, Germany
| | - Inge Broer
- Department of Agrobiotechnology and Risk Assessment for Bio- and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, Germany.
| | - Henrik Nausch
- Department of Agrobiotechnology and Risk Assessment for Bio- and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, Germany
| |
Collapse
|
9
|
Marin Viegas VS, Ocampo CG, Petruccelli S. Vacuolar deposition of recombinant proteins in plant vegetative organs as a strategy to increase yields. Bioengineered 2017; 8:203-211. [PMID: 27644793 PMCID: PMC5470515 DOI: 10.1080/21655979.2016.1222994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/30/2016] [Accepted: 08/07/2016] [Indexed: 02/08/2023] Open
Abstract
Delivery of recombinant proteins to vegetative tissue vacuoles was considered inconvenient since this compartment was expected to be hydrolytic; nevertheless there is growing evidence that certain foreign proteins accumulate at high yields in vacuoles. For example avidin, cellulolytic enzymes, endolysin, and transglutaminases were produced at high yields when were sorted to leaf central vacuole avoiding the detrimental effect of these proteins on plant growth. Also, several secretory mammalian proteins such as collagen, α1-proteinase inhibitor, complement-5a, interleukin-6 and immunoglobulins accumulated at higher yields in leaf vacuoles than in the apoplast or cytosol. To reach this final destination, fusions to sequence specific vacuolar sorting signals (ssVSS) typical of proteases or proteinase inhibitors and/or Ct-VSS representative of storage proteins or plant lectins were used and both types of motifs were capable to increase accumulation. Importantly, the type of VSSs or position, either the N or C-terminus, did not alter protein stability, levels or pos-translational modifications. Vacuolar sorted glycoproteins had different type of oligosaccharides indicating that foreign proteins reached the vacuole by 2 different pathways: direct transport from the ER, bypassing the Golgi (high mannose oligosaccharides decorated proteins) or trafficking through the Golgi (Complex oligosaccharide containing proteins). In addition, some glycoproteins lacked of paucimannosidic oligosaccharides suggesting that vacuolar trimming of glycans did not occur. Enhanced accumulation of foreign proteins fused to VSS occurred in several plant species such as tobacco, Nicotiana benthamiana, sugarcane, tomato and in carrot and the obtained results were influenced by plant physiological state. Ten different foreign proteins fused to vacuolar sorting accumulated at higher levels than their apoplastic or cytosolic counterparts. For proteins with cytotoxic effects vacuolar sorted forms yields were superior than ER retained variants, but for other proteins the results were the opposite an there were also examples of similar levels for ER and vacuolar variants. In conclusion vacuolar sorting in vegetative tissues is a satisfactory strategy to enhance protein yields that can be used in several plant species.
Collapse
Affiliation(s)
- Vanesa Soledad Marin Viegas
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Gabriela Ocampo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
10
|
Ponndorf D, Ehmke S, Walliser B, Thoss K, Unger C, Görs S, Daş G, Metges CC, Broer I, Nausch H. Stable production of cyanophycinase in Nicotiana benthamiana and its functionality to hydrolyse cyanophycin in the murine intestine. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:605-613. [PMID: 27808470 PMCID: PMC5399006 DOI: 10.1111/pbi.12658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/05/2016] [Accepted: 10/30/2016] [Indexed: 05/09/2023]
Abstract
Food supplementation with the conditionally essential amino acid arginine (Arg) has been shown to have nutritional benefits. Degradation of cyanophycin (CGP), a peptide polymer used for nitrogen storage by cyanobacteria, requires cyanophycinase (CGPase) and results in the release of β-aspartic acid (Asp)-Arg dipeptides. The simultaneous production of CGP and CGPase in plants could be a convenient source of Arg dipeptides. Different variants of the cphB coding region from Thermosynechococcus elongatus BP-1 were transiently expressed in Nicotiana benthamiana plants. Translation and enzyme stability were optimized to produce high amounts of active CGPase. Protein stability was increased by the translational fusion of CGPase to the green fluorescent protein (GFP) or to the transit peptide of the small subunit of RuBisCO for peptide production in the chloroplasts. Studies in mice showed that plant-expressed CGP fed in combination with plant-made CGPase was hydrolysed in the intestine, and high levels of ß-Asp-Arg dipeptides were found in plasma, demonstrating dipeptide absorption. However, the lack of an increase in Asp and Arg or its metabolite ornithine in plasma suggests that Arg from CGP was not bioavailable in this mouse group. Intestinal degradation of CGP by CGPase led to low intestinal CGP content 4 h after consumption, but after ingestion of CGP alone, high CGP concentrations remained in the large intestine; this indicated that intact CGP was transported from the small to the large intestine and that CGP was resistant to colonic microbes.
Collapse
Affiliation(s)
- Daniel Ponndorf
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
| | - Sven Ehmke
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
- Present address: Paraxel International GmbHKlinikum am Westend, Haus 18, SpandauerDamm 130, 14050BerlinGermany
| | - Benjamin Walliser
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
| | - Kerstin Thoss
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
| | - Christoph Unger
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
| | - Solvig Görs
- Leibniz Institute for Farm Animal Biology (FBN)Institute of Nutritional Physiology ‘Oskar Kellner’DummerstorfGermany
| | - Gürbüz Daş
- Leibniz Institute for Farm Animal Biology (FBN)Institute of Nutritional Physiology ‘Oskar Kellner’DummerstorfGermany
| | - Cornelia C. Metges
- Leibniz Institute for Farm Animal Biology (FBN)Institute of Nutritional Physiology ‘Oskar Kellner’DummerstorfGermany
| | - Inge Broer
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
| | - Henrik Nausch
- Faculty of Agricultural and Environmental SciencesDepartment of Agrobiotechnology and Risk Assessment for Bio‐ and Gene TechnologyUniversity of RostockRostockGermany
| |
Collapse
|
11
|
Nausch H, Broer I. Cyanophycinase CphE from P. alcaligenes produced in different compartments of N. benthamiana degrades high amounts of cyanophycin in plant extracts. Appl Microbiol Biotechnol 2017; 101:2397-2413. [PMID: 27942753 DOI: 10.1007/s00253-016-8020-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
One of the major constraints in pig and poultry farming is the supply of protein-rich forage, containing sufficient amounts of key amino acids such as arginine (Ufaz and Galili 2008). Since these are underrepresented in plant proteins, the usage of plants as feed is limited. The heterologous production of the cyanobacterial storage polymer cyanophycin granule polypeptide (CGP) in plastids increases the amount of arginine substantially (Huhns et al. 2008; Huhns et al. 2009; Nausch et al. 2016a). CGP degradation releases arginine-aspartate dipeptides. CGP is stable in plants because its degradation is exclusively restricted to bacterial cyanophycinases (CGPases; Law et al. 2009). Since animals are also unable to digest CGP, CGPases need to be co-delivered with CGP-containing plant feed in order to release the dipeptides in the gastrointestinal tract of animals during digestion. Therefore, an extracellular CGPase, CphE from Pseudomonas alcaligenes DIP-1, was targeted to the cytosol, ER, and apoplasm of Nicotiana benthamiana. Translocation to the chloroplast was not successful. Although CphE accumulated in high amounts in the cytosol, only moderate levels were present in the ER, while the enzyme was nearly undetectable in the apoplasm. This correlates with the higher instability of post-translationally modified CphE in crude plant extracts. In addition, the production in the ER led to an increased number and size of necroses compared with cytosolic expression and might therefore interfere with the endogenous metabolism in the ER. Due to the high and robust enzyme activity, even moderate CphE concentrations were sufficient to degrade CGP in plant extracts.
Collapse
Affiliation(s)
- Henrik Nausch
- Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, VM, Germany.
| | - Inge Broer
- Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, University of Rostock, Justus-von-Liebig Weg 8, 18059, Rostock, VM, Germany
| |
Collapse
|
12
|
Ocampo CG, Lareu JF, Marin Viegas VS, Mangano S, Loos A, Steinkellner H, Petruccelli S. Vacuolar targeting of recombinant antibodies in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2265-2275. [PMID: 27159528 PMCID: PMC5103231 DOI: 10.1111/pbi.12580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 05/31/2023]
Abstract
Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C-terminal fused to the heavy chain of 14D9 (vac-Abs) and compared with secreted and ER-retained variants (sec-Ab, ER-Ab, respectively). Accumulation of ER- and vac-Abs was 10- to 15-fold higher than sec-Ab. N-glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec-Ab while vac-Abs carried mainly oligomannosidic (Man 7-9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec-Ab-RFP localized in the apoplast while vac-Abs-RFP were exclusively detected in the central vacuole. The data suggest that vac-Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N-glycans). Importantly, vac-Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post-translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.
Collapse
Affiliation(s)
- Carolina Gabriela Ocampo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - Jorge Fabricio Lareu
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - Vanesa Soledad Marin Viegas
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - Silvina Mangano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
- Present address: Fundación Instituto LeloirAv. Patricias Argentinas 435Buenos AiresArgentina
| | - Andreas Loos
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
- Present address: Aridis Pharmaceuticals Inc.5941 Optical CourtSan JoseCA95138USA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| |
Collapse
|
13
|
Nguyen QA, Lee DS, Jung J, Bae HJ. Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Vacuole-Targeted Thermotoga maritima BglB Related to Elevated Levels of Liberated Hormones. Front Bioeng Biotechnol 2015; 3:181. [PMID: 26618153 PMCID: PMC4642495 DOI: 10.3389/fbioe.2015.00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea
| | - Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National University , Gwangju , South Korea
| | - Jakyun Jung
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea ; Bio-Energy Research Center, Chonnam National University , Gwangju , South Korea
| |
Collapse
|
14
|
Ullrich KK, Hiss M, Rensing SA. Means to optimize protein expression in transgenic plants. Curr Opin Biotechnol 2015; 32:61-67. [DOI: 10.1016/j.copbio.2014.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
|
15
|
Marín Viegas VS, Acevedo GR, Bayardo MP, Chirdo FG, Petruccelli S. Production of the Main Celiac Disease Autoantigen by Transient Expression in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2015; 6:1067. [PMID: 26648956 PMCID: PMC4664624 DOI: 10.3389/fpls.2015.01067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 05/09/2023]
Abstract
Celiac Disease (CD) is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2), is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion) and vacuolar (C-terminal KISIA fusion) TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9- to 16-fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP) construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB) were induced by the ELP, with a consequent two-fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant-produced TG2 to develop screening assays. In conclusion, the combination of subcellular sorting strategy with co-expression with a PB inducing construct was sufficient to increase TG2 protein yields. This type of approach could be extended to other problematic proteins, highlighting the advantages of plant based production platforms.
Collapse
Affiliation(s)
- Vanesa S. Marín Viegas
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)La Plata, Argentina
| | - Gonzalo R. Acevedo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Mariela P. Bayardo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Consejo Nacional de Investigaciones Científicas y Técnicas – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La PlataLa Plata, Argentina
| | - Fernando G. Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Consejo Nacional de Investigaciones Científicas y Técnicas – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La PlataLa Plata, Argentina
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)La Plata, Argentina
- *Correspondence: Silvana Petruccelli,
| |
Collapse
|
16
|
Updates in inducible transgene expression using viral vectors: from transient to stable expression. Curr Opin Biotechnol 2014; 32:85-92. [PMID: 25437638 DOI: 10.1016/j.copbio.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023]
Abstract
The prospect of economically producing useful biologics in plants has greatly increased with the advent of viral vectors. The ability of viral vectors to amplify transgene expression has seen them develop into robust transient platforms for the high-level, rapid production of recombinant proteins. To adapt these systems to stably transformed plants, new ways of deconstructing the virus machinery and linking its expression and replication to chemically controlled promoters have been developed. The more advanced of these stable, inducible hyper-expression vectors provide both activated and amplified heterologous transgene expression. Such systems could be deployed in broad acre crops and provide a pathway to fully exploit the advantages of plants as a platform for the manufacture of a wide spectrum of products.
Collapse
|
17
|
Tang Y, Ou Z, Qiu J, Mi Z. Putative signal peptides of two BURP proteins can direct proteins to their destinations in tobacco cell system. Biotechnol Lett 2014; 36:2343-9. [PMID: 25048229 DOI: 10.1007/s10529-014-1603-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Plant-specific BURP family proteins have a diverse subcellular localization with different functions. However, only limited studies have investigated the functions of their different domains. In the present study, the role of the N-terminal putative signal peptide in protein subcellular localization was investigated using a tobacco cell system. The results showed that SALI3-2 was present in vacuoles, whereas AtRD22 was directed to the apoplast. The N-terminal putative signal peptides of both proteins were confirmed to be the essential and critical domains for targeting the proteins to their destinations. We also demonstrate that the expression and accumulation of mGFP in tobacco cells was increased when mGFP was fused to the putative signal peptide of SALI3-2. The findings offer the potential application of this short peptide in protein production in plants.
Collapse
Affiliation(s)
- Yulin Tang
- College of Life Science, Shenzhen University, Shenzhen, 518060, China,
| | | | | | | |
Collapse
|
18
|
Avesani L, Merlin M, Gecchele E, Capaldi S, Brozzetti A, Falorni A, Pezzotti M. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Res 2014; 23:281-91. [PMID: 24142387 PMCID: PMC3951962 DOI: 10.1007/s11248-013-9749-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/31/2013] [Indexed: 01/13/2023]
Abstract
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major diabetes autoantigen that can be used for the diagnosis and (more recently) the treatment of autoimmune diabetes. We previously reported that a catalytically-inactive version (hGAD65mut) accumulated to tenfold higher levels than its active counterpart in transgenic tobacco plants, providing a safe and less expensive source of the protein compared to mammalian production platforms. Here we show that hGAD65mut is also produced at higher levels than hGAD65 by transient expression in Nicotiana benthamiana (using either the pK7WG2 or MagnICON vectors), in insect cells using baculovirus vectors, and in bacterial cells using an inducible-expression system, although the latter system is unsuitable because hGAD65mut accumulates within inclusion bodies. The most productive of these platforms was the MagnICON system, which achieved yields of 78.8 μg/g fresh leaf weight (FLW) but this was substantially less than the best-performing elite transgenic tobacco plants, which reached 114.3 μg/g FLW after six generations of self-crossing. The transgenic system was found to be the most productive and cost-effective although the breeding process took 3 years to complete. The MagnICON system was less productive overall, but generated large amounts of protein in a few days. Both plant-based systems were therefore advantageous over the baculovirus-based production platform in our hands.
Collapse
Affiliation(s)
- Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alberto Falorni
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Hefferon K. Plant virus expression vector development: new perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:785382. [PMID: 24745025 PMCID: PMC3972958 DOI: 10.1155/2014/785382] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/11/2014] [Indexed: 12/22/2022]
Abstract
Plant made biologics have elicited much attention over recent years for their potential in assisting those in developing countries who have poor access to modern medicine. Additional applications such as the stockpiling of vaccines against pandemic infectious diseases or potential biological warfare agents are also under investigation. Plant virus expression vectors represent a technology that enables high levels of pharmaceutical proteins to be produced in a very short period of time. Recent advances in research and development have brought about the generation of superior virus expression systems which can be readily delivered to the host plant in a manner that is both efficient and cost effective. This review presents recent innovations in plant virus expression systems and their uses for producing biologics from plants.
Collapse
|