1
|
Phadwal K, Haggarty J, Kurian D, Martí JA, Sun J, Houston RD, Betancor MB, MacRae VE, Whitfield PD, Macqueen DJ. Rapamycin induced autophagy enhances lipid breakdown and ameliorates lipotoxicity in Atlantic salmon cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159636. [PMID: 40389074 DOI: 10.1016/j.bbalip.2025.159636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/22/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
Autophagy is a highly conserved cellular recycling process essential for homeostasis in all eukaryotic cells. Lipid accumulation and its regulation by autophagy are key areas of research for understanding metabolic disorders in human and model mammals. However, the role of autophagy in lipid regulation remains poorly characterized in non-model fish species of importance to food production, which could be important for managing health and welfare in aquaculture. Addressing this knowledge gap, we investigate the role of autophagy in lipid regulation using a macrophage-like cell line (SHK-1) from Atlantic salmon (Salmo salar L.), the world's most commercially valuable farmed finfish. Multiple lines of experimental evidence reveal that the autophagic pathway responsible for lipid droplet breakdown is conserved in Atlantic salmon cells. We employed global lipidomics and proteomics analyses on SHK-1 cells subjected to lipid overload, followed by treatment with rapamycin to induce autophagy. This revealed that activating autophagy via rapamycin enhances storage of unsaturated triacylglycerols and suppresses key lipogenic proteins, including fatty acid elongase 6, fatty acid binding protein 2 and acid sphingomyelinase. Moreover, fatty acid elongase 6 and fatty acid binding protein 2 were identified as possible cargo for autophagosomes, suggesting a critical role for autophagy in lipid metabolism in fish. Together, this study establishes a novel model of lipotoxicity and advances understanding of lipid autophagy in fish cells, with significant implications for addressing fish health issues in aquaculture.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Jennifer Haggarty
- Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Judit Aguilar Martí
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | | | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Phillip D Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
2
|
Jiang Y, Cao Y, Li Y, Bi L, Wang L, Chen Q, Lin Y, Jin H, Xu X, Peng R, Chen Z. SNP alleviates mitochondrial homeostasis dysregulation-mediated developmental toxicity in diabetic zebrafish larvae. Biomed Pharmacother 2024; 177:117117. [PMID: 38996709 DOI: 10.1016/j.biopha.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The incidence of diabetes is increasing annually, and the disease is uncurable due to its complex pathogenesis. Therefore, understanding diabetes pathogenesis and developing new treatments are crucial. This study showed that the NO donor SNP (8 µM) significantly alleviated high glucose-induced developmental toxicity in zebrafish larvae. High glucose levels caused hyperglycemia, leading to oxidative stress and mitochondrial damage from excessive ROS accumulation. This promoted mitochondrial-dependent apoptosis and lipid peroxidation (LPO)-induced ferroptosis, along with immune inflammatory reactions that decreased mitochondrial function and altered intracellular grid morphology, causing imbalanced kinetics and autophagy. After SNP treatment, zebrafish larvae showed improved developmental toxicity and glucose utilization, reduced ROS accumulation, and increased antioxidant activity. The NO-sGC-cGMP signaling pathway, inhibited by high glucose, was significantly activated by SNP, improving mitochondrial homeostasis, increasing mitochondrial count, and enhancing mitochondrial function. It's worth noting that apoptosis, ferroptosis and immune inflammation were effectively alleviated. In summary, SNP improved high glucose-induced developmental toxicity by activating the NO-sGC-cGMP signaling pathway to reduce toxic effects such as apoptosis, ferroptosis and inflammation resulting from mitochondrial homeostasis imbalance.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lv Wang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Xiaoming Xu
- Scientific Research Center, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China.
| |
Collapse
|
3
|
Mercola J, D'Adamo CR. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023; 15:3129. [PMID: 37513547 PMCID: PMC10386285 DOI: 10.3390/nu15143129] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The intake of linoleic acid (LA) has increased dramatically in the standard American diet. LA is generally promoted as supporting human health, but there exists controversy regarding whether the amount of LA currently consumed in the standard American diet supports human health. The goal of this narrative review is to explore the mechanisms that underlie the hypothesis that excessive LA intake may harm human health. While LA is considered to be an essential fatty acid and support health when consumed in modest amounts, an excessive intake of LA leads to the formation of oxidized linoleic acid metabolites (OXLAMs), impairments in mitochondrial function through suboptimal cardiolipin composition, and likely contributes to many chronic diseases that became an epidemic in the 20th century, and whose prevalence continues to increase. The standard American diet comprises 14 to 25 times more omega-6 fatty acids than omega-3 fatty acids, with the majority of omega-6 intake coming from LA. As LA consumption increases, the potential for OXLAM formation also increases. OXLAMs have been associated with various illnesses, including cardiovascular disease, cancer, and Alzheimer's disease, among others. Lowering dietary LA intake can help reduce the production and accumulation of OXLAMs implicated in chronic diseases. While there are other problematic components in the standard American diet, the half-life of LA is approximately two years, which means the damage can be far more persistent than other dietary factors, and the impact of reducing excessive LA intake takes time. Therefore, additional research-evaluating approaches to reduce OXLAM formation and cardiolipin derangements following LA consumption are warranted.
Collapse
Affiliation(s)
- Joseph Mercola
- Natural Health Partners, LLC, 125 SW 3rd Place, Cape Coral, FL 33991, USA
| | - Christopher R D'Adamo
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Azad AM, Bernhard A, Shen A, Myrmel LS, Lundebye AK, Lecaudey LA, Fjære E, Tri Ho Q, Sveier H, Kristiansen K, Limborg MT, Madsen L. Metabolic effects of diet containing blue mussel (Mytilus edulis) and blue mussel-fed salmon in a mouse model of obesity. Food Res Int 2023; 169:112927. [PMID: 37254353 DOI: 10.1016/j.foodres.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.
Collapse
Affiliation(s)
| | | | - Anne Shen
- Institute of Marine Research, Norway
| | | | | | - Laurène Alicia Lecaudey
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; SINTEF Ocean, Aquaculture Department, Trondheim, Norway; Department of Natural History, NTNU University Museum, Trondheim, Norway
| | | | | | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Norway; Department of Clinical Medicine, University of Bergen, Norway
| |
Collapse
|
5
|
Veras ACC, Santos TD, Martins IDCA, de Souza CM, Amaral CL, Franco BDS, Holanda ASDS, Esteves AM, Milanski M, Torsoni AS, Ignacio-Souza LM, Torsoni MA. Low-Dose Coconut Oil Supplementation Induces Hypothalamic Inflammation, Behavioral Dysfunction, and Metabolic Damage in Healthy Mice. Mol Nutr Food Res 2021; 65:e2000943. [PMID: 33650755 DOI: 10.1002/mnfr.202000943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/18/2021] [Indexed: 12/13/2022]
Abstract
SCOPE Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. METHODS AND RESULTS Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-α and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-α and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-α, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). CONCLUSIONS These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.
Collapse
Affiliation(s)
| | - Tamires Dos Santos
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Camilla Mendes de Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Camila Libardi Amaral
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz da Silva Franco
- Laboratory of Sleep and Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Andrea Maculano Esteves
- Laboratory of Sleep and Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Leticia Martins Ignacio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Different Ratios of Corn and Coconut Oil Blends in High‐Fat Diets Influence Fat Deposition without Altering Metabolic Biomarkers in Male Rats. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Fjære E, Myrmel LS, Dybing K, Kuda O, Holbech Jensen BA, Rossmeisl M, Frøyland L, Kristiansen K, Madsen L. The Anti-Obesogenic Effect of Lean Fish Species is Influenced by the Fatty Acid Composition in Fish Fillets. Nutrients 2020; 12:E3038. [PMID: 33022997 PMCID: PMC7600456 DOI: 10.3390/nu12103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Fillets from marine fish species contain n-3 polyunsaturated fatty acids (PUFAs) in the form of phospholipids (PLs). To investigate the importance of PL-bound n-3 PUFAs in mediating the anti-obesogenic effect of lean seafood, we compared the anti-obesogenic properties of fillets from cod with fillets from pangasius, a fresh water fish with a very low content of PL-bound n-3 PUFAs. We prepared high-fat/high-protein diets using chicken, cod and pangasius as the protein sources, and fed male C57BL/6J mice these diets for 12 weeks. Mice fed the diet containing cod gained less adipose tissue mass and had smaller white adipocytes than mice fed the chicken-containing diet, whereas mice fed the pangasius-containing diet were in between mice fed the chicken-containing diet and mice fed the cod-containing diet. Of note, mice fed the pangasius-containing diet exhibited reduced glucose tolerance compared to mice fed the cod-containing diet. Although the sum of marine n-3 PUFAs comprised less than 2% of the total fatty acids in the cod-containing diet, this was sufficient to significantly increase the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) in mouse tissues and enhance production of n-3 PUFA-derived lipid mediators as compared with mice fed pangasius or chicken.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Lene Secher Myrmel
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Karianne Dybing
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (O.K.); (M.R.)
| | - Benjamin Anderschou Holbech Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (O.K.); (M.R.)
| | - Livar Frøyland
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Lise Madsen
- Institute of Marine Research, NO-5817 Bergen, Norway; (E.F.); (L.S.M.); (K.D.); (L.F.)
| |
Collapse
|
8
|
Deol P, Kozlova E, Valdez M, Ho C, Yang EW, Richardson H, Gonzalez G, Truong E, Reid J, Valdez J, Deans JR, Martinez-Lomeli J, Evans JR, Jiang T, Sladek FM, Curras-Collazo MC. Dysregulation of Hypothalamic Gene Expression and the Oxytocinergic System by Soybean Oil Diets in Male Mice. Endocrinology 2020; 161:5698148. [PMID: 31912136 PMCID: PMC7041656 DOI: 10.1210/endocr/bqz044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/04/2020] [Indexed: 01/04/2023]
Abstract
Soybean oil consumption has increased greatly in the past half-century and is linked to obesity and diabetes. To test the hypothesis that soybean oil diet alters hypothalamic gene expression in conjunction with metabolic phenotype, we performed RNA sequencing analysis using male mice fed isocaloric, high-fat diets based on conventional soybean oil (high in linoleic acid, LA), a genetically modified, low-LA soybean oil (Plenish), and coconut oil (high in saturated fat, containing no LA). The 2 soybean oil diets had similar but nonidentical effects on the hypothalamic transcriptome, whereas the coconut oil diet had a negligible effect compared to a low-fat control diet. Dysregulated genes were associated with inflammation, neuroendocrine, neurochemical, and insulin signaling. Oxt was the only gene with metabolic, inflammation, and neurological relevance upregulated by both soybean oil diets compared to both control diets. Oxytocin immunoreactivity in the supraoptic and paraventricular nuclei of the hypothalamus was reduced, whereas plasma oxytocin and hypothalamic Oxt were increased. These central and peripheral effects of soybean oil diets were correlated with glucose intolerance but not body weight. Alterations in hypothalamic Oxt and plasma oxytocin were not observed in the coconut oil diet enriched in stigmasterol, a phytosterol found in soybean oil. We postulate that neither stigmasterol nor LA is responsible for effects of soybean oil diets on oxytocin and that Oxt messenger RNA levels could be associated with the diabetic state. Given the ubiquitous presence of soybean oil in the American diet, its observed effects on hypothalamic gene expression could have important public health ramifications.
Collapse
Affiliation(s)
- Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Elena Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
- Neuroscience Graduate Program, University of California, Riverside, California
| | - Matthew Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
- Neuroscience Graduate Program, University of California, Riverside, California
| | - Catherine Ho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Ei-Wen Yang
- Department of Computer Science and Engineering, University of California Riverside, California
| | - Holly Richardson
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Gwendolyn Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Edward Truong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jack Reid
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Joseph Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jonathan R Deans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Jane R Evans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California Riverside, California
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
| | - Margarita C Curras-Collazo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California
- Neuroscience Graduate Program, University of California, Riverside, California
- Correspondence: Margarita C. Curras-Collazo, PhD, FAPS, Department of Molecular, Cell and Systems Biology, University of California, 2110 Biological Sciences Building, Riverside, California 92521. E-mail:
| |
Collapse
|
9
|
Dietary fatty acid quality affects systemic parameters and promotes prostatitis and pre-neoplastic lesions. Sci Rep 2019; 9:19233. [PMID: 31848441 PMCID: PMC6917739 DOI: 10.1038/s41598-019-55882-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Environmental and nutritional factors, including fatty acids (FA), are associated with prostatitis, benign prostate hyperplasia and prostate cancer. We hypothesized that different FA in normolipidic diets (7%) affect prostate physiology, increasing the susceptibility to prostate disorders. Thus, we fed male C57/BL6 mice with normolipidic diets based on linseed oil, soybean oil or lard (varying saturated and unsaturated FA contents and ω-3/ω-6 ratios) for 12 or 32 weeks after weaning and examined structural and functional parameters of the ventral prostate (VP) in the systemic metabolic context. Mongolian gerbils were included because they present a metabolic detour for low water consumption (i.e., oxidize FA to produce metabolic water). A linseed oil-based diet (LO, 67.4% PUFAs, ω-3/ω-6 = 3.70) resulted in a thermogenic profile, while a soybean oil-based diet (SO, 52.7% PUFAs, ω-3/ω-6 = 0.11) increased body growth and adiposity. Mice fed lard (PF, 13.1% PUFA, ω-3/ω-6 = 0.07) depicted a biphasic growth, resulting in decreased adiposity in adulthood. SO and PF resulted in hepatic steatosis and steatohepatitis, respectively. PF and SO increased prostate epithelial volume, and lard resulted in epithelial hyperplasia. Animals in the LO group had smaller prostates with predominant atrophic epithelia and inflammatory loci. Inflammatory cells were frequent in the VP of PF mice (predominantly stromal) and LO mice (predominantly luminal). RNAseq after 12 weeks revealed good predictors of a later-onset inflammation. The transcriptome unveiled ontologies related to ER stress after 32 weeks on PF diets. In conclusion, different FA qualities result in different metabolic phenotypes and differentially impact prostate size, epithelial volume, inflammation and gene expression.
Collapse
|
10
|
Abstract
We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4–9 %, sufficient to prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some, but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake of seafood.
Collapse
|
11
|
Fjære E, Myrmel LS, Lützhøft DO, Andersen H, Holm JB, Kiilerich P, Hannisdal R, Liaset B, Kristiansen K, Madsen L. Effects of exercise and dietary protein sources on adiposity and insulin sensitivity in obese mice. J Nutr Biochem 2019; 66:98-109. [PMID: 30776610 DOI: 10.1016/j.jnutbio.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/06/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Abstract
Low-fat diets and exercise are generally assumed to ameliorate obesity-related metabolic dysfunctions, but the importance of exercise vs. dietary changes is debated. Male C57BL/6J mice were fed a high-fat/high-sucrose (HF/HS) diet to induce obesity and then either maintained on the HF/HS or shifted to low-fat (LF) diets containing either salmon or entrecote. For each diet, half of the animals exercised voluntarily for 8 weeks. We determined body composition, glucose tolerance, insulin sensitivity and hepatic triacylglycerol levels. The microbiota composition in cecal and fecal samples was analyzed using 16S ribosomal RNA gene amplicon sequencing. Voluntary exercise improved insulin sensitivity but did not improve glucose tolerance. Voluntary exercise did not reduce adiposity in mice maintained on an HF/HS diet but enhanced LF-induced reduction in adiposity. Hepatic triacylglycerol levels were reduced by voluntary exercise in LF- but not HF/HS-fed mice. Voluntary exercise induced shifts in the cecal and fecal microbiota composition and functional potential in mice fed LF or HF/HS diets. Whereas voluntary exercise improved insulin sensitivity, a switch to an LF diet was the most important factor related to body weight and fat mass reduction.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, Bergen, Norway.
| | | | - Ditte Olsen Lützhøft
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jacob Bak Holm
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pia Kiilerich
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Fauske KR, Bernhard A, Fjære E, Myrmel LS, Frøyland L, Kristiansen K, Liaset B, Madsen L. Effects of Frozen Storage on Phospholipid Content in Atlantic Cod Fillets and the Influence on Diet-Induced Obesity in Mice. Nutrients 2018; 10:nu10060695. [PMID: 29848963 PMCID: PMC6024676 DOI: 10.3390/nu10060695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
A large fraction of the n-3 polyunsaturated fatty acids (PUFAs) in cod fillet is present in the form of phospholipids (PLs). Freezing initiates hydrolysis of the PLs present in the fillet. Here, we compared the effects of Western diets based on frozen cod, fresh cod or pork with a diet based on casein in male C57BL/6J mice fed for 12 weeks at thermoneutrality. Diets based on fresh cod contained more PL-bound n-3 PUFAs (3.12 mg/g diet) than diets based on frozen cod (1.9 mg/g diet). Mice fed diets containing pork and fresh cod, but not frozen cod, gained more body and fat mass than casein-fed mice. Additionally, the bioavailability of n-3 PUFAs present in the cod fillets was not influenced by storage conditions. In a second experiment, diets with pork as the protein source were supplemented with n-3 PUFAs in the form of PL or triacylglycerol (TAG) to match the levels of the diet containing fresh cod. Adding PL-bound, but not TAG-bound, n-3 PUFAs, to the pork-based diet increased body and fat mass gain. Thus, supplementation with PL-bound n-3 PUFAs did not protect against, but rather promoted, obesity development in mice fed a pork-based diet.
Collapse
Affiliation(s)
- Kristin Røen Fauske
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Annette Bernhard
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | - Even Fjære
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | | | - Livar Frøyland
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | | | - Bjørn Liaset
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | - Lise Madsen
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Sissener NH. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. ACTA ACUST UNITED AC 2018. [PMID: 29514891 DOI: 10.1242/jeb.161521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
'Are we what we eat?' Yes and no. Although dietary fat affects body fat, there are many modifying mechanisms. In Atlantic salmon, there is a high level of retention of the n-3 fatty acid (FA) docosahexaenoic acid (DHA, 22:6n-3) relative to the dietary content, whereas saturated FAs never seem to increase above a specified level, which is probably an adaptation to low and fluctuating body temperature. Net production of eicosapentaenoic acid (EPA, 20:5n-3) and especially DHA occurs in salmon when dietary levels are low; however, this synthesis is not sufficient to maintain EPA and DHA at similar tissue levels to those of a traditional fish oil-fed farmed salmon. The commercial diets of farmed salmon have changed over the past 15 years towards a more plant-based diet owing to the limited availability of the marine ingredients fish meal and fish oil, resulting in decreased EPA and DHA and increased n-6 FAs. Salmon is part of the human diet, leading to the question 'Are we what the salmon eats?' Dietary intervention studies using salmon have shown positive effects on FA profiles and health biomarkers in humans; however, most of these studies used salmon that were fed high levels of marine ingredients. Only a few human intervention studies and mouse trials have explored the effects of the changing feed composition of farmed salmon. In conclusion, when evaluating feed ingredients for farmed fish, effects throughout the food chain on fish health, fillet composition and human health need to be considered.
Collapse
Affiliation(s)
- Nini H Sissener
- Fish Nutrition, Requirements and Welfare, Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
14
|
Mennigen JA, Thompson LM, Bell M, Tellez Santos M, Gore AC. Transgenerational effects of polychlorinated biphenyls: 1. Development and physiology across 3 generations of rats. Environ Health 2018; 17:18. [PMID: 29458364 PMCID: PMC5819226 DOI: 10.1186/s12940-018-0362-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/08/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are persistent organic environmental contaminants and known endocrine-disrupting chemicals (EDCs). Previous studies demonstrated that developmental exposure to the weakly estrogenic PCB mixture Aroclor 1221 (A1221) in Sprague-Dawley rats altered sexual development, adult reproductive physiology and body weight. The current study tested the hypothesis that prenatal A1221 exposure not only disrupts these endpoints within an exposed individual's (F1 generation) lifespan, but may also affect subsequent generations (F2-F3). METHODS We treated pregnant female rats on embryonic days (E) 16 and E18 with A1221 (1 mg/kg), estradiol benzoate (50 μg/kg, positive estrogenic control), or vehicle (3% DMSO in sesame oil, negative control). Endpoints related to sexually dimorphic developmental trajectories of reproductive and developmental physiology were measured, and as adults, reproductive endocrine status was assessed, in the F1, F2, and F3 generations. RESULTS Significant effects of transgenerational EDCs were found for body weight and serum hormones. The A1221 descendants had significantly higher body weight in the F2-maternal lineage throughout postnatal development, and in F3-maternal lineage animals after weaning. In females, generation- and lineage-specific effects of exposure were found for serum progesterone and estradiol. Specifically, serum progesterone concentrations were lower in F2-A1221 females, and higher in F3-A1221 females, compared to their respective F2- and F3-vehicle counterparts. Serum estradiol concentrations were higher in F3-A1221 than F3-vehicle females. Reproductive and adrenal organ weights, birth outcomes, sex ratio, and estrous cycles, were unaffected. It is notable that effects of A1221 were only sometimes mirrored by the estrogenic control, EB, indicating that the mechanism of action of A1221 was likely via non-estrogenic pathways. CONCLUSIONS PCBs caused body weight and hormonal effects in rats that were not observed in the directly exposed F1 offspring, but emerged in F2 and F3 generations. Furthermore, most effects were in the maternal lineage; this may relate to the timing of exposure of the F1 fetuses at E16 and 18, when germline (the future F2 generation) epigenetic changes diverge in the sexes. These results showing transgenerational effects of EDCs have implications for humans, as we are now in the 3rd generation since the Chemical Revolution of the mid-twentieth century, and even banned chemicals such as PCBs have a persistent imprint on the health of our descendants.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Lindsay M. Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Mandee Bell
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Marlen Tellez Santos
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 107 W Dean Keeton, C0875, Austin, TX 78712 USA
| |
Collapse
|
15
|
Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol 2017; 8:1047. [PMID: 29311977 PMCID: PMC5742165 DOI: 10.3389/fphys.2017.01047] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.
Collapse
Affiliation(s)
- Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - Lene S Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
16
|
Omega-6 and omega-3 oxylipins are implicated in soybean oil-induced obesity in mice. Sci Rep 2017; 7:12488. [PMID: 28970503 PMCID: PMC5624939 DOI: 10.1038/s41598-017-12624-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity–C18 epoxide and diol oxylipins.
Collapse
|
17
|
Henkel J, Coleman CD, Schraplau A, Jöhrens K, Weber D, Castro JP, Hugo M, Schulz TJ, Krämer S, Schürmann A, Püschel GP. Induction of steatohepatitis (NASH) with insulin resistance in wildtype B6 mice by a western-type diet containing soybean oil and cholesterol. Mol Med 2017; 23:70-82. [PMID: 28332698 PMCID: PMC5429885 DOI: 10.2119/molmed.2016.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g. high-fat diets) or overweight and insulin resistance (e.g. methionine-choline-deficient diets) or they are based on monogenetic defects (e.g. ob/ob mice). In the current study, a western-type diet containing soybean oil with high n 6-PUFA and 0.75% cholesterol (SOD+Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast a soybean oil-containing western-type diet without cholesterol (SOD) induced only mild steatosis but neither hepatic inflammation nor fibrosis, weight gain or insulin resistance. Another high-fat diet mainly consisting of lard and supplemented with fructose in drinking water (LAD+Fru) resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD+Cho but livers were devoid of inflammation and fibrosis. Although both LAD+Fru- and SOD+Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD+Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. Summarizing, dietary cholesterol in SOD+Cho diet may trigger hepatic inflammation and fibrosis. SOD+Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.
Collapse
Affiliation(s)
- Janin Henkel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Charles Dominic Coleman
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Anne Schraplau
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Charité University Hospital Berlin, Berlin, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- NutriAct – Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - José Pedro Castro
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- Faculty of Medicine, Department of Biomedicine, University of Porto, Porto, Portugal
- Aging and Stress Group, Institute for Innovation and Health Research, Porto, Portugal
| | - Martin Hugo
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tim Julius Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Stephanie Krämer
- Animal Facility, German Institute of Human Nutrition, Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Gerhard Paul Püschel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
18
|
Lundebye AK, Lock EJ, Rasinger JD, Nøstbakken OJ, Hannisdal R, Karlsbakk E, Wennevik V, Madhun AS, Madsen L, Graff IE, Ørnsrud R. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). ENVIRONMENTAL RESEARCH 2017; 155:49-59. [PMID: 28189073 DOI: 10.1016/j.envres.2017.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 05/19/2023]
Abstract
Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week).
Collapse
Affiliation(s)
- Anne-Katrine Lundebye
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway.
| | - Erik-Jan Lock
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Josef D Rasinger
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Ole Jakob Nøstbakken
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Rita Hannisdal
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Egil Karlsbakk
- Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Vidar Wennevik
- Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Abdullah S Madhun
- Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Ingvild Eide Graff
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| | - Robin Ørnsrud
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen, Norway
| |
Collapse
|
19
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat 2016; 125:90-9. [PMID: 27350414 DOI: 10.1016/j.prostaglandins.2016.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The modern Western diet has been consumed in developed English speaking countries for the last 50 years, and is now gradually being adopted in Eastern and developing countries. These nutrition transitions are typified by an increased intake of high linoleic acid (LA) plant oils, due to their abundance and low price, resulting in an increase in the PUFA n-6:n-3 ratio. This increase in LA above what is estimated to be required is hypothesised to be implicated in the increased rates of obesity and other associated non-communicable diseases which occur following a transition to a modern Westernised diet. LA can be converted to the metabolically active arachidonic acid, which has roles in inducing inflammation and adipogenesis, and endocannabinoid system regulation. This review aims to address the possible implications of excessive LA and its metabolites in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Shaan S Naughton
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Michael L Mathai
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia; Florey Neuroscience Institutes, The University of Melbourne, Melbourne, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
20
|
Holm JB, Rønnevik A, Tastesen HS, Fjære E, Fauske KR, Liisberg U, Madsen L, Kristiansen K, Liaset B. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures. J Nutr Biochem 2016; 31:127-36. [DOI: 10.1016/j.jnutbio.2015.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
|
21
|
Liisberg U, Fauske KR, Kuda O, Fjære E, Myrmel LS, Norberg N, Frøyland L, Graff IE, Liaset B, Kristiansen K, Kopecky J, Madsen L. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice. J Nutr Biochem 2016; 33:119-27. [PMID: 27155918 DOI: 10.1016/j.jnutbio.2016.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/03/2023]
Abstract
The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects.
Collapse
Affiliation(s)
- Ulrike Liisberg
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Denmark
| | - Kristin Røen Fauske
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Even Fjære
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Lene Secher Myrmel
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Nina Norberg
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Ingvild Eide Graff
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Denmark
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
22
|
Myrmel LS, Fjære E, Midtbø LK, Bernhard A, Petersen RK, Sonne SB, Mortensen A, Hao Q, Brattelid T, Liaset B, Kristiansen K, Madsen L. Macronutrient composition determines accumulation of persistent organic pollutants from dietary exposure in adipose tissue of mice. J Nutr Biochem 2015; 27:307-16. [PMID: 26507541 DOI: 10.1016/j.jnutbio.2015.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 01/27/2023]
Abstract
Accumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined in mice fed fish-oil-based high fat diets during a long-term feeding trial and accumulation of POPs was measured after 3, 6 and 18months of feeding. Further, we performed dose-response experiments using four abundant POPs found in marine sources, PCB-153, PCB-138, PCB-118 and pp'-DDE as single congeners or as mixtures in combination with different diets: one low fat diet and two high fat diets with different protein:sucrose ratios. We measured accumulation of POPs in adipose tissue and liver and determined obesity development, glucose tolerance, insulin sensitivity and hepatic expression of genes involved in metabolism of xenobiotics. Compared with mice fed diets with a low protein:sucrose ratio, mice fed diets with a high protein:sucrose ratio had significantly lower total burden of POPs in adipose tissue, were protected from obesity development and exhibited enhanced hepatic expression of genes involved in metabolism and elimination of xenobiotics. Exposure to POPs, either as single compounds or mixtures, had no effect on obesity development, glucose tolerance or insulin sensitivity. In conclusion, this study demonstrates that the dietary composition of macronutrients profoundly modulates POP accumulation in adipose tissues adding an additional parameter to be included in future studies. Our results indicate that alterations in macronutrient composition might be an additional route for reducing total body burden of POPs.
Collapse
Affiliation(s)
- Lene Secher Myrmel
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Even Fjære
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Lisa Kolden Midtbø
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Annette Bernhard
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Rasmus Koefoed Petersen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Si Brask Sonne
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alicja Mortensen
- Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, 2800 Copenhagen, Denmark
| | - Qin Hao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Trond Brattelid
- National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, 5817 Bergen, Norway.
| |
Collapse
|
23
|
Deol P, Evans JR, Dhahbi J, Chellappa K, Han DS, Spindler S, Sladek FM. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver. PLoS One 2015. [PMID: 26200659 PMCID: PMC4511588 DOI: 10.1371/journal.pone.0132672] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.
Collapse
Affiliation(s)
- Poonamjot Deol
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Jane R. Evans
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Joseph Dhahbi
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Karthikeyani Chellappa
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Diana S. Han
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Stephen Spindler
- Department of Biochemistry, University of California, Riverside, Riverside, California, United States of America
| | - Frances M. Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Midtbø LK, Borkowska AG, Bernhard A, Rønnevik AK, Lock EJ, Fitzgerald ML, Torstensen BE, Liaset B, Brattelid T, Pedersen TL, Newman JW, Kristiansen K, Madsen L. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice. J Nutr Biochem 2015; 26:585-95. [PMID: 25776459 DOI: 10.1016/j.jnutbio.2014.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/18/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023]
Abstract
Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming.
Collapse
MESH Headings
- Alanine Transaminase/blood
- Animal Feed
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Arachidonic Acid/metabolism
- Arachidonic Acids/metabolism
- Calcium-Binding Proteins
- Ceramides/metabolism
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Diet, Western
- Docosahexaenoic Acids/metabolism
- Eicosapentaenoic Acid/metabolism
- Endocannabinoids/metabolism
- Fatty Acids/blood
- Fish Oils/administration & dosage
- Glycerides/metabolism
- Insulin/blood
- Liver/metabolism
- Male
- Metabolomics
- Mice
- Mice, Inbred C57BL
- Oxylipins/metabolism
- Polyunsaturated Alkamides
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Salmo salar
- Seafood
- Soybean Oil/administration & dosage
- Tumor Necrosis Factors/genetics
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Lisa Kolden Midtbø
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Alison G Borkowska
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Massachusetts General Hospital, Center for Computational and Integrative Biology, Boston, MA, USA; Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service, Western Human Nutrition Research Center, CA, USA
| | - Annette Bernhard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Alexander Krokedal Rønnevik
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Erik-Jan Lock
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Michael L Fitzgerald
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Boston, MA, USA
| | | | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Trond Brattelid
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Theresa L Pedersen
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service, Western Human Nutrition Research Center, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service, Western Human Nutrition Research Center, CA, USA; Department of Nutrition, University of California, Davis, USA; West Coast Metabolomics Center, University of California, Davis, USA
| | | | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway.
| |
Collapse
|
25
|
Scherr C, Gagliardi ACM, Miname MH, Santos RD. Fatty acid and cholesterol concentrations in usually consumed fish in Brazil. Arq Bras Cardiol 2014; 104:152-8. [PMID: 25424160 PMCID: PMC4375659 DOI: 10.5935/abc.20140176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 08/25/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Several studies have demonstrated clinical benefits of fish consumption for the cardiovascular system. These effects are attributed to the increased amounts of polyunsaturated fatty acids in these foods. However, the concentrations of fatty acids may vary according to region. OBJECTIVE The goal of this study was to determine the amount of,cholesterol and fatty acids in 10 Brazilian fishes and in a non-native farmed salmon usually consumed in Brazil. METHODS The concentrations of cholesterol and fatty acids, especially omega-3, were determined in grilled fishes. Each fish sample was divided in 3 sub-samples (chops) and each one was extracted from the fish to minimize possible differences in muscle and fat contents. RESULTS The largest cholesterol amount was found in white grouper (107.6 mg/100 g of fish) and the smallest in badejo (70 mg/100 g). Omega-3 amount varied from 0.01 g/100 g in badejo to 0.900 g/100 g in weakfish. Saturated fat varied from 0.687 g/100 g in seabass to 4.530 g/100 g in filhote. The salmon had the greatest concentration of polyunsaturated fats (3.29 g/100 g) and the highest content of monounsaturated was found in pescadinha (5.98 g/100 g). Whiting and boyfriend had the best omega-6/omega 3 ratios respectively 2.22 and 1.19, however these species showed very little amounts of omega-3. CONCLUSION All studied Brazilian fishes and imported salmon have low amounts of saturated fat and most of them also have low amounts of omega-3.
Collapse
Affiliation(s)
- Carlos Scherr
- Instituto do Coração e do Diabetes, Rio de Janeiro, RJ, Brazil
| | | | - Marcio Hiroshi Miname
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raul Dias Santos
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Hixson SM, Parrish CC, Anderson DM. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem 2014; 157:51-61. [PMID: 24679751 DOI: 10.1016/j.foodchem.2014.02.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
Camelina oil (CO) and meal (CM) are potential replacements of fish meal (FM) and oil (FO) in aquaculture feeds. CO is high in α-linolenic acid (18:3ω3, ALA) (30%), with an ω3/ω6 ratio >1. This study tested diets with 100% CO, solvent extracted FM (SEFM) and partially substituted FM with 10% CM, in a 16 week feeding trial with Atlantic salmon (initial weight 240 g fish(-1)). Final weight (529-691 g fish(-1)) was not affected by using 100% CO; however it was lower in groups fed SEFM and 10% CM diets. Total lipid in salmon flesh fed a diet with CO, SEFM and CM (22% ww(-1)) was significantly higher than FO flesh (14% ww(-1)). There was no difference in the sensory quality of salmon fillets that were fed either FO or 100% CO diets. This was the first study to use CO as a complete FO replacement in diets for farmed Atlantic salmon.
Collapse
Affiliation(s)
- Stefanie M Hixson
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Derek M Anderson
- Department of Plant and Animal Science, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
27
|
Dankel SN, Degerud EM, Borkowski K, Fjære E, Midtbø LK, Haugen C, Solsvik MH, Lavigne AM, Liaset B, Sagen JV, Kristiansen K, Mellgren G, Madsen L. Weight cycling promotes fat gain and altered clock gene expression in adipose tissue in C57BL/6J mice. Am J Physiol Endocrinol Metab 2014; 306:E210-24. [PMID: 24302006 DOI: 10.1152/ajpendo.00188.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Repeated attempts to lose weight by temporary dieting may result in weight cycling, eventually further gain of body fat, and possible metabolic adaptation. We tested this with a controlled experiment in C57BL/6J mice subjected to four weight cycles (WC), continuous hypercaloric feeding (HF), or low-fat feeding (LF). To search for genes involved in an adaptive mechanism to former weight cycling and avoid acute effects of the last cycle, the last hypercaloric feeding period was prolonged by an additional 2 wk before euthanization. Total energy intake was identical in WC and HF. However, compared with HF, the WC mice gained significantly more total body mass and fat mass and showed increased levels of circulating leptin and lipids in liver. Both the HF and WC groups showed increased adipocyte size and insulin resistance. Despite these effects, we also observed an interesting maintenance of circulating adiponectin and free fatty acid levels after WC, whereas changes in these parameters were observed in HF mice. Global gene expression was analyzed by microarrays. Weight-cycled mice were characterized by a downregulation of several clock genes (Dbp, Tef, Per1, Per2, Per3, and Nr1d2) in adipose tissues, which was confirmed by quantitative PCR. In 3T3-L1 cells, we found reduced expression of Dbp and Tef early in adipogenic differentiation, which was mediated via cAMP-dependent signaling. Our data suggest that clock genes in adipose tissue may play a role in metabolic adaptation to weight cycling.
Collapse
Affiliation(s)
- S N Dankel
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sun H, Jiang T, Wang S, He B, Zhang Y, Piao D, Yu C, Wu N, Han P. The effect of LXRα, ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance. Diabetes Res Clin Pract 2013; 102:183-92. [PMID: 24262945 DOI: 10.1016/j.diabres.2013.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/03/2013] [Accepted: 10/02/2013] [Indexed: 12/31/2022]
Abstract
AIMS We aimed to investigate the effects of LXRα, ChREBP and Elovl6 in the development of insulin resistance-induced by medium- and long-chain fatty acids. METHODS Sprague Dawley rats were fed a standard chow diet (Control group) or a high-fat, high sucrose diet with different fat sources (coconut oil, lard, sunflower and fish oil) for 8 weeks. These oils were rich in medium-chain saturated fatty acids (MCFA group), long-chain saturated fatty acids (LCFA group), n-6 and n-3 long-chain polyunsaturated fatty acids (n-6 PUFA and n-3 PUFA groups), respectively, which had different chain lengths and degrees of unsaturation. Hyperinsulinemic-euglycemic clamp with [6-(3)H] glucose infusion was performed in conscious rats to assess hepatic insulin sensitivity. RESULTS LCFA and n-6 PUFA groups induced hepatic insulin resistance and increased liver X receptor α (LXRα), carbohydrate response element binding protein (ChREBP) and long-chain fatty acid elongase 6 (Elovl6) expression in liver and white adipose tissue (WAT). Furthermore, LCFA and n-6 PUFA groups suppressed Akt serine 473 phosphorylation in liver and WAT. By contrast, in liver and WAT, MCFA and n-3 PUFA groups decreased LXRα, ChREBP and Elovl6 expression and improved insulin signaling and insulin resistance, but Akt serine 473 phosphorylation was not restored by MCFA group in WAT. CONCLUSIONS This study demonstrated that the mechanism of the different effects of medium- and long-chain fatty acids on hepatic insulin resistance involves LXRα, ChREBP and Elovl6 alternations in liver and WAT. It points to a new strategy for ameliorating insulin resistance and diabetes through intervention on Elovl6 or its control genes.
Collapse
Affiliation(s)
- He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ye Q, Danzer CF, Fuchs A, Vats D, Wolfrum C, Rudin M. Longitudinal evaluation of hepatic lipid deposition and composition in ob/ob and ob/+ control mice. NMR IN BIOMEDICINE 2013; 26:1079-1088. [PMID: 23355481 DOI: 10.1002/nbm.2921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/05/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Obesity is associated with insulin resistance (IR) and hepatosteatosis. Understanding the link between IR and hepatosteatosis could be relevant to chronic clinical outcomes. The objective of this study was to quantitatively assess lipid deposition (fractional lipid mass, fLM) and composition (fraction of polyunsaturated lipids, fPUL and mean chain length, MCL) in livers of ob/ob mice, a genetic model of obesity and mild diabetes, and ob/+ heterozygous control animals in a noninvasive manner using (1) H-MRS at 9.4T. For accurate quantification, intensity values were corrected for differences in T2 values while T1 effects were considered minimal due to the long TR values used. Values of fLM, fPUL and MCL were derived from T2 -corrected signal intensities of lipids and water resonance. Hepatic lipid signals were compared with fasted plasma insulin, glucose and lipid levels. Statistically significant correlations between fPUL and fasting plasma insulin/glucose levels were found in adolescent ob/ob mice. A similar correlation was found between fLM and fasting plasma insulin levels; however, the correlation between fLM and fasting plasma glucose levels was less obvious in adolescent ob/ob mice. These correlations were lost in adult ob/ob mice. The study showed that in adolescent ob/ob mice, there was an obvious link between lipid deposition/composition in the liver and plasma insulin/glucose levels. This correlation was lost in adult animals, probably due to the limited lipid storage capacity of the liver.
Collapse
Affiliation(s)
- Qiong Ye
- Institute for Biomedical Engineering, ETH Zürich and University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|