1
|
Zhou F, Culjkovic-Kraljacic B, Bach C, Feng L, Mishima Y, Borden KLB, Tenen DG. Posttranscriptional activity of the eukaryotic translation initiation factor eIF4E contributes to HoxA9-driven leukemogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637540. [PMID: 39990322 PMCID: PMC11844429 DOI: 10.1101/2025.02.10.637540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
HoxA9, a homeodomain-containing transcription factor, is mis-expressed in over half of acute myeloid leukemia (AML) cases, and is associated with poor prognosis. Previous studies indicated that HoxA9 binds to the eukaryotic translation initiation factor eIF4E in primary specimens and that HoxA9 stimulated the RNA export and translation efficiency of selected RNAs via eIF4E. However, the relevance of this to its leukemogenic transformation capacity was unknown. Here, we used a double point mutation (HoxA9AA) to disrupt the physical and functional interaction between eIF4E and HoxA9 while retaining the HoxA9 transcriptional signature. Surprisingly, the mutation dramatically increased AML latency from a median of 90 to 280 days and resulted in incomplete penetrance. Re-transplantation of bone marrow cells from leukemic animals demonstrated even more pronounced differences in disease kinetics and penetrance with all animals succumbing to disease by day 60 in the wildtype group, while some HoxA9AA mice never developed leukemia. Collectively, these findings uncover a novel, transcription-independent mechanism of HoxA9-driven leukemogenesis through eIF4E and positions eIF4E as a potential therapeutic target AML patients expressing high levels of HoxA9.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
- Department of Pharmacology and Robert H. Lurie Cancer Centre, Northwestern University, Chicago, Illinois, USA
| | - Christian Bach
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Feng
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuta Mishima
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
- Department of Pharmacology and Robert H. Lurie Cancer Centre, Northwestern University, Chicago, Illinois, USA
| | - Daniel G Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
4
|
Zeng J, Yi D, Sun W, Liu Y, Chang J, Zhu L, Zhang Y, Pan X, Dong Y, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. Overexpression of HOXA9 upregulates NF-κB signaling to promote human hematopoiesis and alter the hematopoietic differentiation potentials. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:9. [PMID: 33426581 PMCID: PMC7797385 DOI: 10.1186/s13619-020-00066-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Background The HOX genes are master regulators of embryogenesis that are also involved in hematopoiesis. HOXA9 belongs to a cluster of HOX genes that play extensively studied roles in hematopoiesis and leukemogenesis. Methods We established HOXA9-inducible human embryonic stem cells (HOXA9/hESCs) with normal pluripotency and potential for hematopoiesis, which could be used to analyze gene function with high accuracy. HOXA9/hESCs co-cultured with aorta–gonad–mesonephros-derived stromal cells (AGM-S3) were induced to overexpress HOXA9 with doxycycline (DOX) at various times after hematopoiesis started and then subjected to flow cytometry. Results Induction of HOXA9 from Day 4 (D4) or later notably promoted hematopoiesis and also increased the production of CD34+ cells and derived populations. The potential for myelogenesis was significantly elevated while the potential for erythrogenesis was significantly reduced. At D14, a significant promotion of S phase was observed in green fluorescent protein positive (GFP+) cells overexpressing HOXA9. NF-κB signaling was also up-regulated at D14 following induction of HOXA9 on D4. All of these effects could be counteracted by addition of an NF-κB inhibitor or siRNA against NFKB1 along with DOX. Conclusions Overexpression of HOXA9 starting at D4 or later during hematopoiesis significantly promoted hematopoiesis and the production of myeloid progenitors while reduced the production of erythroid progenitors, indicating that HOXA9 plays a key role in hematopoiesis and differentiation of hematopoietic lineages. Supplementary Information The online version contains supplementary material available at 10.1186/s13619-020-00066-0.
Collapse
Affiliation(s)
- Jiahui Zeng
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Danying Yi
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Wencui Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yuanlin Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Jing Chang
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Lijiao Zhu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yonggang Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Xu Pan
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yong Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Ya Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Mowen Lai
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Guohui Bian
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Qiongxiu Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Jiaxin Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Bo Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China.
| | - Feng Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610065, China. .,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
5
|
Liang SY, Zhou YL, Shu MQ, Lin S. Regulation of geminin by neuropeptide Y in vascular smooth muscle cell proliferation : A current review. Herz 2018; 44:712-716. [PMID: 30151710 DOI: 10.1007/s00059-018-4721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/30/2022]
Abstract
Geminin, a key regulator of DNA replication licensing in the cell cycle, plays an essential role in determining the fate of cells via suppression of cell proliferation and cellular differentiation. Neuropeptide Y (NPY) intensifies the proliferation of vascular smooth muscle cells (VSMCs) directly by binding with Y1 receptors. In vitro experiments have shown that stimulation of NPY on VSMCs via regulation of geminin is a double-edged sword. Given that the proliferation and the phenotypic transformation of VSMCs increase the risk for progression of atherosclerosis, we focus on the role of geminin interference in determining the fate of VSMCs. Furthermore, we discuss the therapeutic potential of peripheral neurotransmitter interference, thus pointing toward future research directions in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- S-Y Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, 400038, Chongqing, China
| | - Y-L Zhou
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, 400038, Chongqing, China
| | - M-Q Shu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, 400038, Chongqing, China.
| | - S Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan, Shapingba, 400038, Chongqing, China.
- School of Health Science, IIIawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Wollongong City, Australia.
| |
Collapse
|
6
|
Kushwaha PP, Rapalli KC, Kumar S. Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review. Biochimie 2016; 131:115-127. [PMID: 27702582 DOI: 10.1016/j.biochi.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Krishna Chaitanya Rapalli
- School of Basic and Applied Sciences, Centre for Animal Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
7
|
Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs). Int J Hematol 2016; 104:324-9. [PMID: 27422432 DOI: 10.1007/s12185-016-2060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023]
Abstract
Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs).
Collapse
|
8
|
Ohno Y, Suzuki-Takedachi K, Yasunaga S, Kurogi T, Santo M, Masuhiro Y, Hanazawa S, Ohtsubo M, Naka K, Takihara Y. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin. PLoS One 2016; 11:e0155558. [PMID: 27195810 PMCID: PMC4873132 DOI: 10.1371/journal.pone.0155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin) was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kyoko Suzuki-Takedachi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shin’ichiro Yasunaga
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Toshiaki Kurogi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mimoko Santo
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Motoaki Ohtsubo
- Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Kita-ishigaki 82, Beppu-city, Oita, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
9
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
10
|
Thorne RMW, Milne TA. Dangerous liaisons: cooperation between Pbx3, Meis1 and Hoxa9 in leukemia. Haematologica 2016; 100:850-3. [PMID: 26130510 DOI: 10.3324/haematol.2015.129932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ross M W Thorne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| |
Collapse
|
11
|
Gao L, Sun J, Liu F, Zhang H, Ma Y. Higher expression levels of the HOXA9 gene, closely associated with MLL-PTD and EZH2 mutations, predict inferior outcome in acute myeloid leukemia. Onco Targets Ther 2016; 9:711-22. [PMID: 26929642 PMCID: PMC4755436 DOI: 10.2147/ott.s95279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although the biological insight of acute myeloid leukemia (AML) has increased in the past few years, the discovery of novel discriminative biomarkers remains of utmost value for improving outcome predictions. Systematical studies concerning the clinical implications and genetic correlations of HOXA9 aberrations in patients with AML are relatively promising. MATERIALS AND METHODS Here, we investigated mutational status and the mRNA levels of the HOXA9 gene in 258 patients with AML. Furthermore, hematological characteristics, chromosome abnormalities, and genetic mutations associated with AML were analyzed, followed by the assessment of clinical survival. Besides, the expression level and mutational status of MEIS1, a cofactor of HOXA9, were also detected in patients with AML with the aim of a deeper understanding about the homeodomain-containing transcription factors associated with hematological characteristics. RESULTS HOXA9 and MEIS1 mutations were detected in 4.26% and 3.49% AML cases, respectively. No correlations were detected between mutation status and clinical characteristics, cytogenetic and genetic aberrations, and clinical survival. Higher HOXA9 expression levels were correlated with white blood cell count and closely associated with unfavorable karyotype as well as MLL-PTD and EZH2 mutations, whereas, there was an inverse correlation with the French-American-British M3 subtype. Compared with patients with lower HOXA9 expression levels, those with higher HOXA9 expression levels had a lower complete remission rate and inferior survivals in both AML and cytogenetically normal AML. CONCLUSION HOXA9 expression may serve as a promising biomarker to ameliorate a prognostic model for predicting clinical outcome and consummating individualized treatment in patients with AML.
Collapse
Affiliation(s)
- Li Gao
- Department of Hematology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Junzhong Sun
- Department of Hematology and Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Fang Liu
- Department of Hematology and Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China; Department of Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hui Zhang
- Department of Hematology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yigai Ma
- Department of Hematology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
12
|
Bridoux L, Deneyer N, Bergiers I, Rezsohazy R. Molecular Analysis of the HOXA2-Dependent Degradation of RCHY1. PLoS One 2015; 10:e0141347. [PMID: 26496426 PMCID: PMC4619689 DOI: 10.1371/journal.pone.0141347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023] Open
Abstract
The homeodomain transcription factor Hoxa2 interacts with the RING-finger type E3 ubiquitin ligase RCHY1 and induces its proteasomal degradation. In this work, we dissected this non-transcriptional activity of Hoxa2 at the molecular level. The Hoxa2-mediated decay of RCHY1 involves both the 19S and 20S proteasome complexes. It relies on both the Hoxa2 homeodomain and C-terminal moiety although no single deletion in the Hoxa2 sequence could disrupt the RCHY1 interaction. That the Hoxa2 homeodomain alone could mediate RCHY1 binding is consistent with the shared ability all the Hox proteins we tested to interact with RCHY1. Nonetheless, the ability to induce RCHY1 degradation although critically relying on the homeodomain is not common to all Hox proteins. This identifies the homeodomain as necessary but not sufficient for what appears to be an almost generic Hox protein activity. Finally we provide evidence that the Hoxa2-induced degradation of RCHY1 is evolutionarily conserved among vertebrates. These data therefore support the hypothesis that the molecular and functional interaction between Hox proteins and RCHY1 is an ancestral Hox property.
Collapse
Affiliation(s)
- Laure Bridoux
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabelle Bergiers
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
13
|
Huan J, Hornick NI, Goloviznina NA, Kamimae-Lanning AN, David LL, Wilmarth PA, Mori T, Chevillet JR, Narla A, Roberts CT, Loriaux MM, Chang BH, Kurre P. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia 2015; 29:2285-95. [PMID: 26108689 DOI: 10.1038/leu.2015.163] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/19/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
We recently demonstrated that acute myeloid leukemia (AML) cell lines and patient-derived blasts release exosomes that carry RNA and protein; following an in vitro transfer, AML exosomes produce proangiogenic changes in bystander cells. We reasoned that paracrine exosome trafficking may have a broader role in shaping the leukemic niche. In a series of in vitro studies and murine xenografts, we demonstrate that AML exosomes downregulate critical retention factors (Scf, Cxcl12) in stromal cells, leading to hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow. Exosome trafficking also regulates HSPC directly, and we demonstrate declining clonogenicity, loss of CXCR4 and c-Kit expression, and the consistent repression of several hematopoietic transcription factors, including c-Myb, Cebp-β and Hoxa-9. Additional experiments using a model of extramedullary AML or direct intrafemoral injection of purified exosomes reveal that the erosion of HSPC function can occur independent of direct cell-cell contact with leukemia cells. Finally, using a novel multiplex proteomics technique, we identified candidate pathways involved in the direct exosome-mediated modulation of HSPC function. In aggregate, this work suggests that AML exosomes participate in the suppression of residual hematopoietic function that precedes widespread leukemic invasion of the bone marrow directly and indirectly via stromal components.
Collapse
Affiliation(s)
- J Huan
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - N I Hornick
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - N A Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - A N Kamimae-Lanning
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - L L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - P A Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - T Mori
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - J R Chevillet
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A Narla
- Division of Hematology/Oncology, Stanford University, Palo Alto, CA, USA
| | - C T Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Department of Medicine, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Beaverton, OR, USA
| | - M M Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - B H Chang
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - P Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|
15
|
Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98–HOXA9-induced myeloid disease. Leukemia 2015; 29:2086-97. [DOI: 10.1038/leu.2015.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 12/26/2022]
|
16
|
Ohno Y, Saeki K, Yasunaga S, Kurogi T, Suzuki-Takedachi K, Shirai M, Mihara K, Yoshida K, Voncken JW, Ohtsubo M, Takihara Y. Transcription of the Geminin gene is regulated by a negative-feedback loop. Mol Biol Cell 2014; 25:1374-83. [PMID: 24554762 PMCID: PMC3983001 DOI: 10.1091/mbc.e13-09-0534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Geminin transcription, regulated by E2Fs, is negatively regulated by Geminin through the inhibition of chromatin remodeling. Geminin transcription is thus regulated by a negative-feedback loop through the chromatin configuration. Homeostatically regulated Geminin may help couple regulation of DNA replication and transcription. Geminin performs a central function in regulating cellular proliferation and differentiation in development and also in stem cells. Of interest, down-regulation of Geminin induces gene transcription regulated by E2F, indicating that Geminin is involved in regulation of E2F-mediated transcriptional activity. Because transcription of the Geminin gene is reportedly regulated via an E2F-responsive region (E2F-R) located in the first intron, we first used a reporter vector to examine the effect of Geminin on E2F-mediated transcriptional regulation. We found that Geminin transfection suppressed E2F1- and E2F2-mediated transcriptional activation and also mildly suppressed such activity in synergy with E2F5, 6, and 7, suggesting that Geminin constitutes a negative-feedback loop for the Geminin promoter. Of interest, Geminin also suppressed nuclease accessibility, acetylation of histone H3, and trimethylation of histone H3 at lysine 4, which were induced by E2F1 overexpression, and enhanced trimethylation of histone H3 at lysine 27 and monoubiquitination of histone H2A at lysine 119 in E2F-R. However, Geminin5EQ, which does not interact with Brahma or Brg1, did not suppress accessibility to nuclease digestion or transcription but had an overall dominant-negative effect. These findings suggest that E2F-mediated activation of Geminin transcription is negatively regulated by Geminin through the inhibition of chromatin remodeling.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 562-0025, Japan Department of Life Sciences, Meiji University School of Agriculture, Kawasaki 214-8571, Japan Department of Molecular Genetics, Maastricht University Medical Centre, 6229ER Maastricht, Netherlands Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Beppu 874-0915, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li N, Abe S, Kurata M, Abe-Suzuki S, Onishi I, Kirimura S, Murayama T, Hidaka M, Kawano F, Kitagawa M. Over-expression of cancerous inhibitor of PP2A (CIP2A) in bone marrow cells from patients with a group of high-risk myelodysplastic syndromes. Pathol Oncol Res 2013; 20:399-407. [PMID: 24163288 DOI: 10.1007/s12253-013-9709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/02/2013] [Indexed: 12/25/2022]
Abstract
Cancerous inhibitor of PP2A (protein phosphatase 2A) (CIP2A) is an inhibitor of PP2A, a phosphatase and tumor suppressor that regulates cell proliferation, differentiation, and survival. The aim of this study was to investigate whether CIP2A plays a role in the progression of myelodysplastic syndromes (MDS). Immunohistochemical analysis revealed that a fraction patients having refractory anemia with excess blasts (RAEB)-1 (4 out of 12) and RAEB-2 (10 out of 14) exhibited significant expression of CIP2A in bone marrow hematopoietic cells, while all patients with refractory cytopenia with unilineage or multilineage dysplasia (RCUD/RCMD) (0 out of 18) and the control group (0 out of 17) were negative. CIP2A was mainly expressed by the MPO-positive myeloid series of cells and partly by the CD34-positive cells in association with the expression of phosphorylated c-MYC (p-c-MYC) protein and the cell cycle-related proteins Ki-67, MCM2, and geminin. The percentage of p-c-MYC-positive cells in the bone marrow of CIP2A-positive MDS cases was significantly higher than that in CIP2A-negative MDS cases (P < 0.01). The expression levels of mRNA for CIP2A and PP2A exhibited positive correlation in MDS/control bone marrow. These results suggest that up-regulated expression of CIP2A might play a role in the proliferation of blasts in the MDS bone marrow and in disease progression in at least some cases.
Collapse
Affiliation(s)
- Na Li
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Báez A, Martín-Antonio B, Piruat JI, Prats C, Álvarez-Laderas I, Barbado MV, Carmona M, Urbano-Ispizua Á, Pérez-Simón JA. Granulocyte colony-stimulating factor produces long-term changes in gene and microRNA expression profiles in CD34+ cells from healthy donors. Haematologica 2013; 99:243-51. [PMID: 24056818 DOI: 10.3324/haematol.2013.086959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported.
Collapse
|
19
|
Scmh1 has E3 ubiquitin ligase activity for geminin and histone H2A and regulates geminin stability directly or indirectly via transcriptional repression of Hoxa9 and Hoxb4. Mol Cell Biol 2012. [PMID: 23207902 DOI: 10.1128/mcb.00974-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polycomb-group (PcG) complex 1 acts as an E3 ubiquitin ligase both for histone H2A to silence transcription and for geminin to regulate its stability. Scmh1 is a substoichiometric component of PcG complex 1 that provides the complex with an interaction domain for geminin. Scmh1 is unstable and regulated through the ubiquitin-proteasome system, but its molecular roles are unknown, so we generated Scmh1-deficient mice to elucidate its function. Loss of Scmh1 caused derepression of Hoxb4 and Hoxa9, direct targets of PcG complex 1-mediated transcriptional silencing in hematopoietic cells. Double knockdown of Hoxb4 and Hoxa9 or transduction of a dominant-negative Hoxb4N→A mutant caused geminin accumulation. Age-related transcriptional downregulation of derepressed Hoxa9 also leads to geminin accumulation. Transduction of Scmh1 lacking a geminin-binding domain restored derepressed expression of Hoxb4 and Hoxa9 but did not downregulate geminin like full-length Scmh1. Each of Hoxb4 and Hoxa9 can form a complex with Roc1-Ddb1-Cul4a to act as an E3 ubiquitin ligase for geminin. We suggest that geminin dysregulation may be restored by derepressed Hoxb4 and Hoxa9 in Scmh1-deficient mice. These findings suggest that PcG and a subset of Hox genes compose a homeostatic regulatory system for determining expression level of geminin.
Collapse
|
20
|
Kusser W, Zimmer K, Fiedler F. Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions. Dev Dyn 1985; 243:117-31. [PMID: 2411558 DOI: 10.1002/dvdy.24060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022] Open
Abstract
The binding of the aminoglycoside antibiotic dihydrostreptomycin to defined cell-wall teichoic acids and to lipoteichoic acid isolated from various gram-positive eubacteria was followed by equilibrium dialysis. Dihydrostreptomycin was used at a wide range of concentration under different conditions of ionic strength, concentration of teichoic acid, presence of cationic molecules like Mg2+, spermidine, other aminoglycoside antibiotics (gentamicin, neomycin, paromomycin). Interaction of dihydrostreptomycin with teichoic acid was found to be a cooperative binding process. The binding characteristics seem to be dependent on structural features of teichoic acid and are influenced by cationic molecules. Mg2+, spermidine and other aminoglycosides antibiotics inhibit the binding of dihydrostreptomycin to teichoic acid competitively. The binding of aminoglycosides to teichoic acids is considered as a model system for the interaction of aminoglycoside antibiotics with cellular polyanions. Conclusions of physiological significance are drawn.
Collapse
|