1
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
2
|
Bruns S, Cakić N, Mitschke N, Kopke BJ, Rabus R, Wilkes H. A Novel Coenzyme A Analogue in the Anaerobic, Sulfate-Reducing, Marine Bacterium Desulfobacula toluolica Tol2 T. Chembiochem 2023; 24:e202200584. [PMID: 36331165 PMCID: PMC10107677 DOI: 10.1002/cbic.202200584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Coenzyme A (CoA) thioesters are formed during anabolic and catabolic reactions in every organism. Degradation pathways of growth-supporting substrates in bacteria can be predicted by differential proteogenomic studies. Direct detection of proposed metabolites such as CoA thioesters by high-performance liquid chromatography coupled with high-resolution mass spectrometry can confirm the reaction sequence and demonstrate the activity of these degradation pathways. In the metabolomes of the anaerobic sulfate-reducing bacterium Desulfobacula toluolica Tol2T grown with different substrates various CoA thioesters, derived from amino acid, fatty acid or alcohol metabolism, have been detected. Additionally, the cell extracts of this bacterium revealed a number of CoA analogues with molecular masses increased by 1 dalton. By comparing the chromatographic and mass spectrometric properties of synthetic reference standards with those of compounds detected in cell extracts of D. toluolica Tol2T and by performing co-injection experiments, these analogues were identified as inosino-CoAs. These CoA thioesters contain inosine instead of adenosine as the nucleoside. To the best of our knowledge, this finding represents the first detection of naturally occurring inosino-CoA analogues.
Collapse
Affiliation(s)
- Stefan Bruns
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Nevenka Cakić
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Nico Mitschke
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Marine Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Bernd Johann Kopke
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), General and Molecular Microbiology, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the, Marine Environment (ICBM), Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
3
|
Angeletti C, Amici A, Gilley J, Loreto A, Trapanotto AG, Antoniou C, Merlini E, Coleman MP, Orsomando G. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience 2022; 25:103812. [PMID: 35198877 PMCID: PMC8844822 DOI: 10.1016/j.isci.2022.103812] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
SARM1 is an NAD(P) glycohydrolase and TLR adapter with an essential, prodegenerative role in programmed axon death (Wallerian degeneration). Like other NAD(P)ases, it catalyzes multiple reactions that need to be fully investigated. Here, we compare these multiple activities for recombinant human SARM1, human CD38, and Aplysia californica ADP ribosyl cyclase. SARM1 has the highest transglycosidation (base exchange) activity at neutral pH and with some bases this dominates NAD(P) hydrolysis and cyclization. All SARM1 activities, including base exchange at neutral pH, are activated by an increased NMN:NAD ratio, at physiological levels of both metabolites. SARM1 base exchange occurs also in DRG neurons and is thus a very likely physiological source of calcium-mobilizing agent NaADP. Finally, we identify regulation by free pyridines, NADP, and nicotinic acid riboside (NaR) on SARM1, all of therapeutic interest. Understanding which specific SARM1 function(s) is responsible for axon degeneration is essential for its targeting in disease. Base exchange is a prominent, and sometimes completely dominant, SARM1 activity Physiologically relevant NMN:NAD ratios may regulate all of SARM1's multiple activities Physiological NADP may inhibit SARM1 more potently than NAD and via a distinct site NaR and VR both selectively inhibit SARM1 and are thus possible effectors or drug leads
Collapse
|
4
|
Loreto A, Angeletti C, Gu W, Osborne A, Nieuwenhuis B, Gilley J, Merlini E, Arthur-Farraj P, Amici A, Luo Z, Hartley-Tassell L, Ve T, Desrochers LM, Wang Q, Kobe B, Orsomando G, Coleman MP. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. eLife 2021; 10:72823. [PMID: 34870595 PMCID: PMC8758145 DOI: 10.7554/elife.72823] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 11/13/2022] Open
Abstract
Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Arthur-Farraj
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adolfo Amici
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Laura M Desrochers
- Neuroscience, BioPharmaceuticals R and D, AstraZeneca, Waltham, United States
| | - Qi Wang
- Neuroscience, BioPharmaceuticals R and D, AstraZeneca, Waltham, United States
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 2021; 74:562-572. [PMID: 34866305 PMCID: PMC9299865 DOI: 10.1002/iub.2584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment‐specific manner. Each isoform supplies NAD to specific NAD‐dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.
Collapse
Affiliation(s)
- Carlo Fortunato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Challa S, Khulpateea BR, Nandu T, Camacho CV, Ryu KW, Chen H, Peng Y, Lea JS, Kraus WL. Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell 2021; 184:4531-4546.e26. [PMID: 34314702 PMCID: PMC8380725 DOI: 10.1016/j.cell.2021.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Defects in translation lead to changes in the expression of proteins that can serve as drivers of cancer formation. Here, we show that cytosolic NAD+ synthesis plays an essential role in ovarian cancer by regulating translation and maintaining protein homeostasis. Expression of NMNAT-2, a cytosolic NAD+ synthase, is highly upregulated in ovarian cancers. NMNAT-2 supports the catalytic activity of the mono(ADP-ribosyl) transferase (MART) PARP-16, which mono(ADP-ribosyl)ates (MARylates) ribosomal proteins. Depletion of NMNAT-2 or PARP-16 leads to inhibition of MARylation, increased polysome association and enhanced translation of specific mRNAs, aggregation of their translated protein products, and reduced growth of ovarian cancer cells. Furthermore, MARylation of the ribosomal proteins, such as RPL24 and RPS6, inhibits polysome assembly by stabilizing eIF6 binding to ribosomes. Collectively, our results demonstrate that ribosome MARylation promotes protein homeostasis in cancers by fine-tuning the levels of protein synthesis and preventing toxic protein aggregation.
Collapse
Affiliation(s)
- Sridevi Challa
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beman R Khulpateea
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V Camacho
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keun W Ryu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jayanthi S Lea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Cambronne XA, Kraus WL. Location, Location, Location: Compartmentalization of NAD + Synthesis and Functions in Mammalian Cells. Trends Biochem Sci 2020; 45:858-873. [PMID: 32595066 DOI: 10.1016/j.tibs.2020.05.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
The numerous biological roles of NAD+ are organized and coordinated via its compartmentalization within cells. The spatial and temporal partitioning of this intermediary metabolite is intrinsic to understanding the impact of NAD+ on cellular signaling and metabolism. We review evidence supporting the compartmentalization of steady-state NAD+ levels in cells, as well as how the modulation of NAD+ synthesis dynamically regulates signaling by controlling subcellular NAD+ concentrations. We further discuss potential benefits to the cell of compartmentalizing NAD+, and methods for measuring subcellular NAD+ levels.
Collapse
Affiliation(s)
- Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD). Sci Rep 2019; 9:13102. [PMID: 31511627 PMCID: PMC6739475 DOI: 10.1038/s41598-019-49547-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that regulates various metabolic pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Additionally, NAD serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD glycohydrolase, and it regulates DNA repair, gene expression, energy metabolism, and stress responses. Many studies have demonstrated that NAD metabolism is deeply involved in aging and aging-related diseases. Previously, we demonstrated that nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD), which are analogs of NAD, are significantly increased in Nmnat3-overexpressing mice. However, there is insufficient knowledge about NGD and NHD in vivo. In the present study, we aimed to investigate the metabolism and biochemical properties of these NAD analogs. We demonstrated that endogenous NGD and NHD were found in various murine tissues, and their synthesis and degradation partially rely on Nmnat3 and CD38. We have also shown that NGD and NHD serve as coenzymes for alcohol dehydrogenase (ADH) in vitro, although their affinity is much lower than that of NAD. On the other hand, NGD and NHD cannot be used as substrates for SIRT1, SIRT3, and PARP1. These results reveal the basic metabolism of NGD and NHD and also highlight their biological function as coenzymes.
Collapse
|
9
|
Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 2019; 320:112961. [PMID: 31136762 DOI: 10.1016/j.expneurol.2019.112961] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Xiuna Yang
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| |
Collapse
|
10
|
Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JPH, Stadelmann C, Barrantes-Freer A, Brück W, Thiele H, Nürnberg P, Gärtner J, Orsomando G, Coleman MP. Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp Neurol 2019; 320:112958. [PMID: 31132363 DOI: 10.1016/j.expneurol.2019.112958] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
We identified a homozygous missense mutation in the gene encoding NAD synthesizing enzyme NMNAT2 in two siblings with childhood onset polyneuropathy with erythromelalgia. No additional homozygotes for this rare allele, which leads to amino acid substitution T94M, were present among the unaffected relatives tested or in the 60,000 exomes of the ExAC database. For axons to survive, axonal NMNAT2 activity has to be maintained above a threshold level but the T94M mutation confers a partial loss of function both in the ability of NMNAT2 to support axon survival and in its enzymatic properties. Electrophysiological tests and histological analysis of sural nerve biopsies in the patients were consistent with loss of distal sensory and motor axons. Thus, it is likely that NMNAT2 mutation causes this pain and axon loss phenotype making this the first disorder associated with mutation of a key regulator of Wallerian-like axon degeneration in humans. This supports indications from numerous animal studies that the Wallerian degeneration pathway is important in human disease and raises important questions about which other human phenotypes could be linked to this gene.
Collapse
Affiliation(s)
- Peter Huppke
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Germany.
| | - Eike Wegener
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Germany.
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy.
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH, 52074 Aachen, Germany.
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud UMC, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Germany.
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Germany; Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany.
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Germany.
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Germany.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy.
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK.
| |
Collapse
|
11
|
Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev 2018; 47:1-17. [PMID: 29883761 DOI: 10.1016/j.arr.2018.05.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important co-factor involved in numerous physiological processes, including metabolism, post-translational protein modification, and DNA repair. In living organisms, a careful balance between NAD production and degradation serves to regulate NAD levels. Recently, a number of studies have demonstrated that NAD levels decrease with age, and the deterioration of NAD metabolism promotes several aging-associated diseases, including metabolic and neurodegenerative diseases and various cancers. Conversely, the upregulation of NAD metabolism, including dietary supplementation with NAD precursors, has been shown to prevent the decline of NAD and exhibits beneficial effects against aging and aging-associated diseases. In addition, many studies have demonstrated that genetic and/or nutritional activation of NAD metabolism can extend the lifespan of diverse organisms. Collectively, it is clear that NAD metabolism plays important roles in aging and longevity. In this review, we summarize the basic functions of the enzymes involved in NAD synthesis and degradation, as well as the outcomes of their dysregulation in various aging processes. In addition, a particular focus is given on the role of NAD metabolism in the longevity of various organisms, with a discussion of the remaining obstacles in this research field.
Collapse
|
12
|
Interplay between NAD + and acetyl‑CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2060-2067. [PMID: 30261291 DOI: 10.1016/j.bbadis.2018.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a complex stress response followed by overstimulation of downstream enzymatic pathways due to massive activation of post-translational modifications (PTM). Mitochondria are one of the most sensitive organelle to ischemic conditions. They become dysfunctional due to extensive fragmentation, inhibition of acetyl‑CoA production, and increased activity of NAD+ consuming enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation and mitochondrial ATP production. Both acetyl‑CoA and NAD+ are essential intermediates in cellular bioenergetics metabolism and also serve as substrates for post-translational modifications such as acetylation and ADP‑ribosylation. In this review we discuss ischemia/reperfusion-induced changes in NAD+ and acetyl‑CoA metabolism, how these affect relevant PTMs, and therapeutic approaches that restore the physiological levels of these metabolites leading to promising neuroprotection.
Collapse
|
13
|
Synthesis and Degradation of Adenosine 5'-Tetraphosphate by Nicotinamide and Nicotinate Phosphoribosyltransferases. Cell Chem Biol 2017; 24:553-564.e4. [PMID: 28416276 DOI: 10.1016/j.chembiol.2017.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/03/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
Abstract
Adenosine 5'-tetraphosphate (Ap4) is a ubiquitous metabolite involved in cell signaling in mammals. Its full physiological significance remains unknown. Here we show that two enzymes committed to NAD biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPT), can both catalyze the synthesis and degradation of Ap4 through their facultative ATPase activity. We propose a mechanism for this unforeseen additional reaction, and demonstrate its evolutionary conservation in bacterial orthologs of mammalian NAMPT and NAPT. Furthermore, evolutionary distant forms of NAMPT were inhibited in vitro by the FK866 drug but, remarkably, it does not block synthesis of Ap4. In fact, FK866-treated murine cells showed decreased NAD but increased Ap4 levels. Finally, murine cells and plasma with engineered or naturally fluctuating NAMPT levels showed matching Ap4 fluctuations. These results suggest a role of Ap4 in the actions of NAMPT, and prompt to evaluate the role of Ap4 production in the actions of NAMPT inhibitors.
Collapse
|
14
|
Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 2017; 7:43846. [PMID: 28266613 PMCID: PMC5358788 DOI: 10.1038/srep43846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Collapse
Affiliation(s)
- Yousuf O Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gillian Bradley
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
15
|
Esteves AR, Arduíno DM, Silva DF, Viana SD, Pereira FC, Cardoso SM. Mitochondrial Metabolism Regulates Microtubule Acetylome and Autophagy Trough Sirtuin-2: Impact for Parkinson’s Disease. Mol Neurobiol 2017; 55:1440-1462. [DOI: 10.1007/s12035-017-0420-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
16
|
Dey P, Baddour J, Muller F, Wu CC, Wang H, Liao WT, Lan Z, Chen A, Gutschner T, Kang Y, Fleming J, Satani N, Zhao D, Achreja A, Yang L, Lee J, Chang E, Genovese G, Viale A, Ying H, Draetta G, Maitra A, Wang YA, Nagrath D, DePinho RA. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 2017; 542:119-123. [PMID: 28099419 DOI: 10.1038/nature21052] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joelle Baddour
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chia Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Huamin Wang
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wen-Ting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zangdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alina Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tony Gutschner
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yaan Kang
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jason Fleming
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Abhinav Achreja
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lifeng Yang
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Jiyoon Lee
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Edward Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Vitali LA, Beghelli D, Biapa Nya PC, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D, Petrelli R, Quassinti L, Sorci L, Zadeh MM, Bramucci M. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2015.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Ummarino S, Mozzon M, Zamporlini F, Amici A, Mazzola F, Orsomando G, Ruggieri S, Raffaelli N. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay. Food Chem 2016; 221:161-168. [PMID: 27979136 DOI: 10.1016/j.foodchem.2016.10.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time.
Collapse
Affiliation(s)
- Simone Ummarino
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Massimo Mozzon
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Adolfo Amici
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Francesca Mazzola
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy.
| |
Collapse
|
19
|
Petrelli R, Orsomando G, Sorci L, Maggi F, Ranjbarian F, Biapa Nya PC, Petrelli D, Vitali LA, Lupidi G, Quassinti L, Bramucci M, Hofer A, Cappellacci L. Biological Activities of the Essential Oil from Erigeron floribundus. Molecules 2016; 21:molecules21081065. [PMID: 27529211 PMCID: PMC6274054 DOI: 10.3390/molecules21081065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).
Collapse
Affiliation(s)
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Leonardo Sorci
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden.
| | - Prosper C Biapa Nya
- Laboratory of Medicinal Plant Biochemistry, Food Science and Nutrition, Department of Biochemistry, Faculty of Sciences, University of Dschang, PO Box 67, Dschang, Cameroon.
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden.
| | | |
Collapse
|
20
|
Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016; 14:e1002472. [PMID: 27254664 PMCID: PMC4890852 DOI: 10.1371/journal.pbio.1002472] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health. This study reveals NMNAT2 to be a dual-function neuronal maintenance factor that not only generates NAD to protect neurons from excitotoxicity but also moonlights as a chaperone to combat protein toxicity. Pathological protein aggregates are found in many neurodegenerative diseases, and it has been hypothesized that these protein aggregates are toxic and cause neuronal death. Little is known about how neurons protect against pathological protein aggregates to maintain their health. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a newly identified neuronal maintenance factor. We found that in humans, levels of NMNAT2 transcript are positively correlated with cognitive function and are negatively correlated with pathological features of neurodegenerative disease like plaques and tangles. In this study, we demonstrate that NMNAT2 can act as a chaperone to reduce protein aggregates, and this function is independent from its known function in the enzymatic synthesis of nicotinamide adenine dinucleotide (NAD). We find that NMNAT2 interacts with heat shock protein 90 (HSP90) to refold protein aggregates, and that deleting NMNAT2 in cortical neurons renders them vulnerable to protein stress or excitotoxicity. Interestingly, the chaperone function of NMNAT2 protects neurons from protein toxicity, while its enzymatic function is required to defend against excitotoxicity. Our work here suggests that NMNAT2 uses either its chaperone or enzymatic function to combat neuronal insults in a context-dependent manner. In Alzheimer disease brains, NMNAT2 levels are less than 50% of control levels, and we propose that enhancing NMNAT2 function may provide an effective therapeutic intervention to reserve cognitive function.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hunter M. Allen
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dena Bakhshizadehmahmoudi
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Asante Hatcher
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristin McCabe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jishu Xu
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Bjorklund
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Nmnat3 Is Dispensable in Mitochondrial NAD Level Maintenance In Vivo. PLoS One 2016; 11:e0147037. [PMID: 26756334 PMCID: PMC4710499 DOI: 10.1371/journal.pone.0147037] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential co-enzyme mediating various enzymatic reactions. Mitochondrial NAD particularly occupies a considerable amount of total NAD in cells, and serves as a co-enzyme in tricarboxylic acid cycle (TCA cycle), β-oxidation, and oxidative phosphorylation. Despite the importance of mitochondrial NAD, its synthesis pathway remains unknown. It has been proposed that NAD synthesis enzyme, Nmnat3, was localized in mitochondria, but its physiological relevance to the metabolism in mitochondria was not fully elucidated. Previously, we have reported that murine Nmnat3 protein was strongly expressed in the cytoplasm of mature erythrocytes, in which mitochondria were absent, and Nmnat3-deficient mice (Nmnat3-KO mice) exhibited splenomegaly and hemolytic anemia due to reduced NAD levels in mature erythrocytes. These results challenged the role of Nmnat3 in mitochondrial NAD synthesis. In this study, we demonstrated that mitochondrial NAD levels in various tissues, except for red blood cells, were unchanged in Nmnat3-KO mice. We also analyzed the metabolites in glycolysis and TCA cycle and found that there were no differences between Nmnat3-KO and WT mice. In addition, the aged Nmnat3-KO mice had comparable NAD levels to that observed in WT mice. Our results indicated that Nmnat3 is dispensable in the maintenance of mitochondrial NAD levels, and that other NAD regulatory pathways may exist in mitochondria.
Collapse
|
22
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
23
|
Giancaspero TA, Colella M, Brizio C, Difonzo G, Fiorino GM, Leone P, Brandsch R, Bonomi F, Iametti S, Barile M. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis. Front Chem 2015; 3:30. [PMID: 25954742 PMCID: PMC4406087 DOI: 10.3389/fchem.2015.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/05/2015] [Indexed: 12/27/2022] Open
Abstract
The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.
Collapse
Affiliation(s)
- Teresa A Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Carmen Brizio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Graziana Difonzo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Giuseppina M Fiorino
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy
| | - Roderich Brandsch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg Freiburg, Germany
| | - Francesco Bonomi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Stefania Iametti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro Bari, Italy ; Dipartimento di Scienze della Vita, Istituto di Biomembrane e Bioenergetica, CNR Bari, Italy
| |
Collapse
|
24
|
Mori V, Amici A, Mazzola F, Di Stefano M, Conforti L, Magni G, Ruggieri S, Raffaelli N, Orsomando G. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS One 2014; 9:e113939. [PMID: 25423279 PMCID: PMC4244216 DOI: 10.1371/journal.pone.0113939] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023] Open
Abstract
NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.
Collapse
Affiliation(s)
- Valerio Mori
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Adolfo Amici
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Michele Di Stefano
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Laura Conforti
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Giulio Magni
- School of Biosciences and Biotechnology, University of Camerino, Camerino, Italy
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
25
|
Zamporlini F, Ruggieri S, Mazzola F, Amici A, Orsomando G, Raffaelli N. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells. FEBS J 2014; 281:5104-19. [PMID: 25223558 DOI: 10.1111/febs.13050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/27/2022]
Abstract
The redox coenzyme NAD(+) is also a rate-limiting co-substrate for several enzymes that consume the molecule, thus rendering its continuous re-synthesis indispensable. NAD(+) biosynthesis has emerged as a therapeutic target due to the relevance of NAD(+) -consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD(+) biosynthesis with tissue/cell-specific efficiencies, probably reflecting differential expression of the corresponding rate-limiting enzymes, i.e. nicotinamide phosphoribosyltransferase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase and nicotinamide riboside kinase. Understanding the contribution of these enzymes to NAD(+) levels depending on the tissue/cell type and metabolic status is necessary for the rational design of therapeutic strategies aimed at modulating NAD(+) availability. Here we report a simple, fast and sensitive coupled fluorometric assay that enables simultaneous determination of the four activities in whole-cell extracts and biological fluids. Its application to extracts from various mouse tissues, human cell lines and plasma yielded for the first time an overall picture of the tissue/cell-specific distribution of the activities of the various enzymes. The screening enabled us to gather novel findings, including (a) the presence of quinolinate phosphoribosyltransferase and nicotinamide riboside kinase in all examined tissues/cell lines, indicating that quinolinate and nicotinamide riboside are relevant NAD(+) precursors, and (b) the unexpected occurrence of nicotinate phosphoribosyltransferase in human plasma.
Collapse
Affiliation(s)
- Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014; 15:394-409. [DOI: 10.1038/nrn3680] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Hikosaka K, Ikutani M, Shito M, Kazuma K, Gulshan M, Nagai Y, Takatsu K, Konno K, Tobe K, Kanno H, Nakagawa T. Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. J Biol Chem 2014; 289:14796-811. [PMID: 24739386 DOI: 10.1074/jbc.m114.554378] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
NAD biosynthesis is of substantial interest because of its important roles in regulating various biological processes. Nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3) is considered a mitochondria-localized NAD synthesis enzyme involved in de novo and salvage pathways. Although the biochemical properties of Nmnat3 are well documented, its physiological function in vivo remains unclear. In this study, we demonstrated that Nmnat3 was localized in the cytoplasm of mature erythrocytes and critically regulated their NAD pool. Deficiency of Nmnat3 in mice caused splenomegaly and hemolytic anemia, which was associated with the findings that Nmnat3-deficient erythrocytes had markedly lower ATP levels and shortened lifespans. However, the NAD level in other tissues were not apparently affected by the deficiency of Nmnat3. LC-MS/MS-based metabolomics revealed that the glycolysis pathway in Nmnat3-deficient erythrocytes was blocked at a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step because of the shortage of the coenzyme NAD. Stable isotope tracer analysis further demonstrated that deficiency of Nmnat3 resulted in glycolysis stall and a shift to the pentose phosphate pathway. Our findings indicate the critical roles of Nmnat3 in maintenance of the NAD pool in mature erythrocytes and the physiological impacts at its absence in mice.
Collapse
Affiliation(s)
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research
| | - Masayuki Shito
- the Departments of Transfusion Medicine and Cell Processing and
| | - Kohei Kazuma
- the Institute of Natural Medicine, University of Toyama, Toyama 930-0194
| | - Maryam Gulshan
- From the Frontier Research Core for Life Sciences, The First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, and
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, the JST, PRESTO, Saitama 332-0012, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, the Toyama Prefectural Institute for Pharmaceutical Research, Toyama 939-0363, and
| | - Katsuhiro Konno
- the Institute of Natural Medicine, University of Toyama, Toyama 930-0194
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, and
| | - Hitoshi Kanno
- the Departments of Transfusion Medicine and Cell Processing and Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666
| | | |
Collapse
|
28
|
Abstract
NMNAT2 is an NAD(+)-synthesizing enzyme with an essential axon maintenance role in primary culture neurons. We have generated an Nmnat2 gene trap mouse to examine the role of NMNAT2 in vivo. Homozygotes die perinatally with a severe peripheral nerve/axon defect and truncated axons in the optic nerve and other CNS regions. The cause appears to be limited axon extension, rather than dying-back degeneration of existing axons, which was previously proposed for the NMNAT2-deficient Blad mutant mouse. Neurite outgrowth in both PNS and CNS neuronal cultures consistently stalls at 1-2 mm, similar to the length of truncated axons in the embryos. Crucially, this suggests an essential role for NMNAT2 during axon growth. In addition, we show that the Wallerian degeneration slow protein (Wld(S)), a more stable, aberrant NMNAT that can substitute the axon maintenance function of NMNAT2 in primary cultures, can also correct developmental defects associated with NMNAT2 deficiency. This is dose-dependent, with extension of life span to at least 3 months by homozygous levels of Wld(S) the most obvious manifestation. Finally, we propose that endogenous mechanisms also compensate for otherwise limiting levels of NMNAT2. This could explain our finding that conditional silencing of a single Nmnat2 allele triggers substantial degeneration of established neurites, whereas similar, or greater, reduction of NMNAT2 in constitutively depleted neurons is compatible with normal axon growth and survival. A requirement for NMNAT2 for both axon growth and maintenance suggests that reduced levels could impair axon regeneration as well as axon survival in aging and disease.
Collapse
|