1
|
Valencia-Sanchez S, Davis M, Martensen J, Hoeffer C, Link C, Opp MR. Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice. Brain Behav Immun 2024; 121:74-86. [PMID: 39043346 PMCID: PMC11563030 DOI: 10.1016/j.bbi.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Protein Kinase RNA-activated (PKR) is an enzyme that plays a role in many systemic processes, including modulation of inflammation, and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). PKR phosphorylation results in the production of several cytokines involved in the regulation / modulation of sleep, including interleukin-1β, tumor necrosis factor-α and interferon-γ. We hypothesized targeting PKR would alter spontaneous sleep of mice, attenuate responses to sleep deprivation, and inhibit responses to immune challenge. To test these hypotheses, we determined the sleep-wake phenotype of mice lacking PKR (knockout; PKR-/-) during undisturbed baseline conditions; in responses to six hours of sleep deprivation; and after immune challenge with lipopolysaccharide (LPS). Adult male mice (C57BL/6J, n = 7; PKR-/-, n = 7) were surgically instrumented with EEG recording electrodes and an intraperitoneal microchip to record core body temperature. During undisturbed baseline conditions, PKR -/- mice spent more time in non-rapid eye movement sleep (NREMS) and rapid-eye movement sleep (REMS), and less time awake at the beginning of the dark period of the light:dark cycle. Delta power during NREMS, a measure of sleep depth, was less in PKR-/- mice during the dark period, and core body temperatures were lower during the light period. Both mouse strains responded to sleep deprivation with increased NREMS and REMS, although these changes did not differ substantively between strains. The initial increase in delta power during NREMS after sleep deprivation was greater in PKR-/- mice, suggesting a faster buildup of sleep pressure with prolonged waking. Immune challenge with LPS increased NREMS and inhibited REMS to the same extent in both mouse strains, whereas the initial LPS-induced suppression of delta power during NREMS was greater in PKR-/- mice. Because sleep regulatory and immune responsive systems in brain are redundant and overlapping, other mediators and signaling pathways in addition to PKR are involved in the responses to acute sleep deprivation and LPS immune challenge.
Collapse
Affiliation(s)
- S Valencia-Sanchez
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M Davis
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - J Martensen
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - C Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - C Link
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M R Opp
- Department of Integrative Physiology, University of Colorado Boulder, USA.
| |
Collapse
|
2
|
Eskandari-Sedighi G, Crichton M, Zia S, Gomez-Cardona E, Cortez LM, Patel ZH, Takahashi-Yamashiro K, St Laurent CD, Sidhu G, Sarkar S, Aghanya V, Sim VL, Tan Q, Julien O, Plemel JR, Macauley MS. Alzheimer's disease associated isoforms of human CD33 distinctively modulate microglial cell responses in 5XFAD mice. Mol Neurodegener 2024; 19:42. [PMID: 38802940 PMCID: PMC11129479 DOI: 10.1186/s13024-024-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Microglia play diverse pathophysiological roles in Alzheimer's disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell function in vivo has been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-β (Aβ) deposition. Mice expressing CD33M have increased Aβ levels, more diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to 5XFAD control mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m+ microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.
Collapse
Affiliation(s)
| | | | - Sameera Zia
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Zain H Patel
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | - Gaurav Sidhu
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Vivian Aghanya
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Valerie L Sim
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
3
|
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer's disease. Eur J Neurosci 2022; 56:5428-5441. [PMID: 35377966 DOI: 10.1111/ejn.15662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Necroptosis, or programmed necrosis, involves the kinase activity of receptor interacting kinases 1 and 3, the activation of the pseudokinase mixed lineage kinase domain-like and formation of a complex called the necrosome. It is one of the non-apoptotic cell death pathways that has gained interest in the recent years, especially as a neuronal cell death pathway occurring in Alzheimer's disease. In this review, we focus our discussion on the various molecular mechanisms that could trigger neuronal death through necroptosis and have been shown to play a role in Alzheimer's disease pathogenesis and neuroinflammation. We describe how each of these pathways, such as tumour necrosis factor signalling, reactive oxygen species, endosomal sorting complex, post-translational modifications and certain individual molecules, is dysregulated or activated in Alzheimer's disease, and how this dysregulation/activation could trigger necroptosis. At the cellular level, many of these molecular mechanisms and pathways may act in parallel to synergize with each other or inhibit one another, and changes in the balance between them may determine different cellular vulnerabilities at different disease stages. However, from a therapeutic standpoint, it remains unclear how best to target one or more of these pathways, given that such diverse pathways could all contribute to necroptotic cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard Reynolds
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
4
|
Kim S, Lee K, Choi YS, Ku J, Kim H, Kharbash R, Yoon J, Lee YS, Kim JH, Lee YJ, Kim Y. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep 2022; 40:111178. [PMID: 35947956 DOI: 10.1016/j.celrep.2022.111178] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/13/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Protein kinase R (PKR) is an immune response protein that becomes activated by double-stranded RNAs (dsRNAs). PKR overactivation is associated with degenerative diseases with inflammation, including osteoarthritis (OA), but the dsRNA activator remains largely unknown. Here, we find that mitochondrial dsRNA (mt-dsRNA) expression and its cytosolic efflux are facilitated in chondrocytes under OA-eliciting conditions, leading to innate immune activation. Moreover, mt-dsRNAs are released to the extracellular space and activate Toll-like receptor 3 at the plasma membrane. Elevated levels of mt-dsRNAs in the synovial fluids and damaged cartilage of OA patients and in the cartilage of surgery-induced OA mice further support our data. Importantly, autophagy prevents PKR activation and protects chondrocytes from mitochondrial stress partly by removing cytosolic mtRNAs. Our study provides a comprehensive understanding of innate immune activation by mt-dsRNAs during stress responses that underlie the development of OA and suggests mt-dsRNAs as a potential target for chondroprotective intervention.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13605, South Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyeonkyeong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Raisa Kharbash
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yong Seuk Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13605, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13605, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, South Korea; KAIST Institute for BioCentury, KAIST, Daejeon 34141, South Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
5
|
Lopez-Grancha M, Bernardelli P, Moindrot N, Genet E, Vincent C, Roudieres V, Krick AI, Sabuco JF, Machnik D, Ibghi D, Pradier L, Taupin V. A Novel Selective PKR Inhibitor Restores Cognitive Deficits and Neurodegeneration in Alzheimer Disease Experimental Models. J Pharmacol Exp Ther 2021; 378:262-275. [PMID: 34531308 DOI: 10.1124/jpet.121.000590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
In Alzheimer disease (AD), the double-strand RNA-dependent kinase protein kinase R (PKR )/EIF2AK2 is activated in brain with increased phosphorylation of its substrate eukaryotic initiation factor 2α (eIF2α). AD risk-promoting factors, such as ApoE4 allele or the accumulation of neurotoxic amyloid-β oligomers (AβOs), have been associated with activation of PKR-dependent signaling. Here, we report the discovery of a novel potent and selective PKR inhibitor (SAR439883) and demonstrate its neuroprotective pharmacological activity in AD experimental models. In ApoE4 human replacement male mice, 1-week oral treatment with SAR439883 rescued short-term memory impairment in the spatial object recognition test and dose-dependently reduced learning and memory deficits in the Barnes maze test. Moreover, in AβO-injected male mice, a 2-week administration of SAR439883 in diet dose-dependently ameliorated the AβO-induced cognitive impairment in both Y-maze and Morris Water Maze, prevented loss of synaptic proteins, and reduced levels of the proinflammatory cytokine interleukin-1β In both mouse models, these effects were associated with a dose-dependent inhibition of brain PKR activity as measured by both PKR occupancy and partial lowering of peIF2α levels. Our results provide evidence that selective pharmacological inhibition of PKR by a small selective molecule can rescue memory deficits and prevent neurodegeneration in animal models of AD-like pathology, suggesting that inhibition of PKR is a potential therapeutic approach for AD. SIGNIFICANCE STATEMENT: This study reports the identification of a new small molecule potent and selective protein kinase R (PKR) inhibitor that can prevent cognitive deficits and neurodegeneration in Alzheimer disease (AD) experimental models, including a mouse model expressing the most prevalent AD genetic risk factor ApoE4. With high potency and selectivity, this PKR inhibitor represents a unique tool for investigating the physiological role of PKR and a starting point for developing new drug candidates for AD.
Collapse
Affiliation(s)
- Matilde Lopez-Grancha
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Patrick Bernardelli
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Nicolas Moindrot
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Elisabeth Genet
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Carine Vincent
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Valerie Roudieres
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - AIain Krick
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Jean-François Sabuco
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - David Machnik
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Delphine Ibghi
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Laurent Pradier
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Veronique Taupin
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| |
Collapse
|
6
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
7
|
Monllor P, Giraldo E, Badia MC, de la Asuncion JG, Alonso MD, Lloret A, Vina J. Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer's Disease. J Alzheimers Dis 2021; 80:1067-1077. [PMID: 33646167 DOI: 10.3233/jad-201443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia and biomarkers are essential to help in the diagnosis of this disease. Image techniques and cerebrospinal fluid (CSF) biomarkers are limited in their use because they are expensive or invasive. Thus, the search for blood-borne biomarkers is becoming central to the medical community. OBJECTIVE The main objective of this study is the evaluation of three serum proteins as potential biomarkers in AD patients. METHODS We recruited 27 healthy controls, 19 mild cognitive impairment patients, and 17 AD patients. Using the recent A/T/N classification we split our population into two groups (AD and control). We used ELISA kits to determine Aβ42, tau, and p-tau in CSF and clusterin, PKR, and RAGE in serum. RESULTS The levels of serum clusterin, PKR, and RAGE were statistically different in the AD group compared to controls. These proteins showed a statistically significant correlation with CSF Aβ42. So, they were selected to generate an AD detection model showing an AUC-ROC of 0.971 (CI 95%, 0.931-0.998). CONCLUSION The developed model based on serum biomarkers and other co-variates could reflect the AD core pathology. So far, not one single blood-biomarker has been described, with effectiveness offering high sensitivity and specificity. We propose that the complexity of AD pathology could be reflected in a set of biomarkers also including clinical features of the patients.
Collapse
Affiliation(s)
- Paloma Monllor
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Esther Giraldo
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.,Principe Felipe Research Center, Valencia, Spain
| | | | | | | | - Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Jose Vina
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
8
|
Hugon J, Paquet C. The PKR/P38/RIPK1 Signaling Pathway as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22063136. [PMID: 33808629 PMCID: PMC8003462 DOI: 10.3390/ijms22063136] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway.
Collapse
Affiliation(s)
- Jacques Hugon
- Correspondence: ; Tel.: +33-140-054-313; Fax: +33-140-054-339
| | | |
Collapse
|
9
|
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases. Metab Brain Dis 2020; 35:1241-1250. [PMID: 32681467 DOI: 10.1007/s11011-020-00600-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2α) pathway is overactivated in Alzheimer disease and is probably associated with synaptic and memory deficiencies. EIF2α protein is principally in charge of the regulation of protein synthesis in eukaryotic cells. Four kinases responsible for eIF2α phosphorylation at ser-51 are: General control non-derepressible-2 kinase (GCN2), double-stranded RNA-activated protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and heme-regulated inhibitor kinase (HRI) are the four kinases. They lead to reduced levels of general translation and paradoxical increase of stress-responsive mRNAs expression including the B-secretase (BACE1) and the transcriptional modulator activating transcription factor 4 (ATF4), which in turn accelerates the beta-amyloidogenesis, tau phosphorylation, proapoptotic pathway induction and autophagy elements formation leading to the main pathological hallmarks of AD. Findings suggest that genetic or pharmacological inhibition of correspondent kinases can restore memory and prevent neurodegeneration. This implies that inhibition of eIF2α phosphorylation through respondent kinases is indeed a feasible prospect of clinical application. This review discusses recent therapeutic approaches targeting eIF2α pathway and provides an overview of the links between correspondent kinases overactivation with neurodegeneration in AD.
Collapse
Affiliation(s)
- Reza Moradi Majd
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahsa Mayeli
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Farzaneh Rahmani
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
10
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Mouton-Liger F, Dumurgier J, Cognat E, Hourregue C, Zetterberg H, Vanderstichele H, Vanmechelen E, Bouaziz-Amar E, Blennow K, Hugon J, Paquet C. CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:88. [PMID: 32690068 PMCID: PMC7372801 DOI: 10.1186/s13195-020-00655-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
Background The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation. In Alzheimer’s disease (AD) brains, NRG1 accumulates in neuritic plaques. It is difficult to determine if NRG1 has beneficial and/or detrimental effects in AD. BACE1 levels are increased in AD brains and cerebrospinal fluid (CSF) and may lead to enhanced NRG1 secretion, but no study has assessed CSF NRG1 levels in AD and mild cognitive impairment (MCI) patients. Methods This retrospective study included 162 patients suffering from AD dementia (54), MCI with progression to AD dementia (MCI-AD) (27), non-AD MCI (30), non-AD dementias (30), and neurological controls (27). All patients had neurological examinations, brain MRI, and neuropsychological evaluations. After written informed consent and using enzyme-linked immunosorbent assays (ELISAs), CSF samples were evaluated for Aβ1–42, Aβ1–40, total tau (T-tau), phosphorylated tau on threonine 181 (P-tau), BACE1, growth-associated protein 43 (GAP 43), neurogranin (Ng), and NRG1. Results Levels of NRG1 were significantly increased in the CSF of AD (+ 36%) and MCI-AD (+ 28%) patients compared to neurological controls and also non-AD MCI and non-AD dementias. In addition, in AD and MCI-AD patients, NRG1 levels positively correlated with Aβ1–42 but not with T-tau, P-tau, and BACE1 levels and negatively correlated with MMSE scores. A longitudinal follow-up study of AD patients revealed a trend (p = 0.08) between CSF NRG1 levels and cognitive decline. In the overall population, NRG1 correlated with MMSE and the synaptic biomarkers GAP 43 and neurogranin. Conclusions Our results showed that CSF NRG1 levels are increased in AD and MCI-AD as compared to controls and other dementias. CSF NRG1 levels are associated with cognitive evolution, and a major outcome of our findings is that synaptic NRG1 could be involved in the pathophysiology of AD. Modulating brain NRG1 activity may represent a new therapeutic target in AD.
Collapse
Affiliation(s)
- François Mouton-Liger
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France
| | - Julien Dumurgier
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| | - Emmanuel Cognat
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| | - Claire Hourregue
- Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | - Elodie Bouaziz-Amar
- Inserm U 1144, University de Paris, Paris, France.,Department of Biochemistry, Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jacques Hugon
- Inserm U 1144, University de Paris, Paris, France. .,Université de Paris, Paris, France. .,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| | - Claire Paquet
- Inserm U 1144, University de Paris, Paris, France.,Université de Paris, Paris, France.,Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint Denis, 75010, Paris, France
| |
Collapse
|
12
|
TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiol Dis 2019; 132:104514. [PMID: 31229690 DOI: 10.1016/j.nbd.2019.104514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA binding protein 43 (TDP-43) is a multifunctional RNA binding protein directly implicated in the etiology of amyotrophic lateral sclerosis (ALS). Previous studies have demonstrated that loss of TDP-43 function leads to intracellular accumulation of non-coding repetitive element transcripts and double-stranded RNA (dsRNA). These events could cause immune activation and contribute to the neuroinflammation observed in ALS, but this possibility has not been investigated. Here, we knock down TDP-43 in primary rat astrocytes via siRNA, and we use RNA-seq, immunofluorescence, and immunoblotting to show that this results in: 1) accumulation of repetitive element transcripts and dsRNA; and 2) pro-inflammatory gene and protein expression consistent with innate immune signaling and astrocyte activation. We also show that both chemical inhibition and siRNA knockdown of protein kinase R (PKR), a dsRNA-activated kinase implicated in the innate immune response, block the expression of all activation markers assayed. Based on these findings, we suggest that intracellular accumulation of endogenous dsRNA may be a novel and important mechanism underlying the pathogenesis of ALS (and perhaps other neurodegenerative diseases), and that PKR inhibitors may have the potential to prevent reactive astrocytosis in ALS.
Collapse
|
13
|
Tible M, Mouton Liger F, Schmitt J, Giralt A, Farid K, Thomasseau S, Gourmaud S, Paquet C, Rondi Reig L, Meurs E, Girault J, Hugon J. PKR knockout in the 5xFAD model of Alzheimer's disease reveals beneficial effects on spatial memory and brain lesions. Aging Cell 2019; 18:e12887. [PMID: 30821420 PMCID: PMC6516179 DOI: 10.1111/acel.12887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023] Open
Abstract
Brain lesions in Alzheimer's disease (AD) include amyloid plaques made of Aβ peptides and neurofibrillary tangles composed of hyperphosphorylated tau protein with synaptic and neuronal loss and neuroinflammation. Aβ oligomers can trigger tau phosphorylation and neuronal alterations through activation of neuronal kinases leading to progressive cognitive decline. PKR is a ubiquitous pro-apoptotic serine/threonine kinase, and levels of activated PKR are increased in AD brains and AD CSF. In addition, PKR regulates negatively memory formation in mice. To assess the role of PKR in an AD in vivo model, we crossed 5xFAD transgenic mice with PKR knockout (PKRKO) mice and we explored the contribution of PKR on cognition and brain lesions in the 5xFAD mouse model of AD as well as in neuron-microglia co-cultures exposed to the innate immunity activator lipopolysaccharide (LPS). Nine-month-old double-mutant mice revealed significantly improved memory consolidation with the new object location test, starmaze test, and elevated plus maze test as compared to 5xFAD mice. Brain amyloid accumulation and BACE1 levels were statistically decreased in double-mutant mice. Apoptosis, neurodegeneration markers, and synaptic alterations were significantly reduced in double-mutant mice as well as neuroinflammation markers such as microglial load and brain cytokine levels. Using cocultures, we found that PKR in neurons was essential for LPS microglia-induced neuronal death. Our results demonstrate the clear involvement of PKR in abnormal spatial memory and brain lesions in the 5xFAD model and underline its interest as a target for neuroprotection in AD.
Collapse
Affiliation(s)
| | | | - Julien Schmitt
- Institut de Biologie Paris Seine CNRS, UMR 8246 Paris France
- Inserm U1130 Paris France
- Sorbonne Université Paris France
| | - Albert Giralt
- Sorbonne Université Paris France
- Inserm U839 Paris France
- Institut du Fer à Moulin Paris France
| | - Karim Farid
- Department of Nuclear Medicine CHU Fort de France Martinique France
- Center of Cognitive Neurology, Lariboisière Fernand Widal Hospital APHP Paris France
| | | | - Sarah Gourmaud
- Inserm U1144 Paris France
- Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Claire Paquet
- Inserm U1144 Paris France
- Center of Cognitive Neurology, Lariboisière Fernand Widal Hospital APHP Paris France
- Paris Diderot University Paris France
| | - Laure Rondi Reig
- Institut de Biologie Paris Seine CNRS, UMR 8246 Paris France
- Inserm U1130 Paris France
- Sorbonne Université Paris France
| | - Eliane Meurs
- Hepacivirus and Innate Immunity Unit Institut Pasteur Paris France
- CNRS, UMR 3569 Paris France
| | - Jean‐Antoine Girault
- Sorbonne Université Paris France
- Inserm U839 Paris France
- Institut du Fer à Moulin Paris France
| | - Jacques Hugon
- Inserm U1144 Paris France
- Center of Cognitive Neurology, Lariboisière Fernand Widal Hospital APHP Paris France
- Paris Diderot University Paris France
| |
Collapse
|
14
|
Lyra E Silva NDM, Gonçalves RA, Boehnke SE, Forny-Germano L, Munoz DP, De Felice FG. Understanding the link between insulin resistance and Alzheimer's disease: Insights from animal models. Exp Neurol 2019; 316:1-11. [PMID: 30930096 DOI: 10.1016/j.expneurol.2019.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting millions of people worldwide. AD is characterized by a profound impairment of higher cognitive functions and still lacks any effective disease-modifying treatment. Defective insulin signaling has been implicated in AD pathophysiology, but the mechanisms underlying this process are not fully understood. Here, we review the molecular mechanisms underlying defective brain insulin signaling in rodent models of AD, and in a non-human primate (NHP) model of the disease that recapitulates features observed in AD brains. We further highlight similarities between the NHP and human brains and discuss why NHP models of AD are important to understand disease mechanisms and to improve the translation of effective therapies to humans. We discuss how studies using different animal models have contributed to elucidate the link between insulin resistance and AD.
Collapse
Affiliation(s)
| | | | - Susan E Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Brazil
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada; Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: A Kinase to Remember. Front Mol Neurosci 2019; 11:480. [PMID: 30686999 PMCID: PMC6333748 DOI: 10.3389/fnmol.2018.00480] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Marcelo Ehrlich
- Laboratory of Intracellular Trafficking and Signaling, School of Molecular Cell Biology & Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kobi Rosenblum
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Hugon J, Mouton-Liger F, Cognat E, Dumurgier J, Paquet C. Blood-Based Kinase Assessments in Alzheimer's Disease. Front Aging Neurosci 2018; 10:338. [PMID: 30487744 PMCID: PMC6246745 DOI: 10.3389/fnagi.2018.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is marked by memory disturbances followed by aphasia, apraxia and agnosia. Brain lesions include the accumulation of the amyloid peptide in extracellular plaques, neurofibrillary tangles with abnormally phosphorylated tau protein and synaptic and neuronal loss. New findings have suggested that brain lesions could occur one or two decades before the first clinical signs. This asymptomatic preclinical phase could be an opportunity to put in place a secondary prevention but the detection of these brain lesions can only be achieved so far by cerebrospinal fluid (CSF) evaluation or molecular amyloid and tau PET imaging. There is an urgent need to find out simple and easily accessible new biomarkers to set up an efficient screening in adult and aging population. Neuropathological and biochemical studies have revealed that abnormal accumulations of potentially toxic kinases are present in the brains of AD patients. Kinase activation leads to abnormal tau phosphorylation, amyloid production, apoptosis and neuroinflammation. Increased levels of these kinases are present in the CSF of mild cognitive impairment (MCI) and AD patients. Over the last years the search for abnormal kinase levels was performed in the blood of patients. Glycogen synthase kinase 3 (GSK 3), protein kinase R (PKR), mamalian target of rapamycin (mTOR), dual specificity tyrosine-phosphorylation-regulated kinase 1A (DIRK1A), c-Jun N-terminal kinase (JNK), protein 70 kD ribosomal protein S6 kinase (P70S6K), ERK2 and other kinase concentrations were evaluated and abnormal levels were found in many studies. For example, GSK3 levels are increased in MCI and AD patients. PKR levels are also augmented in peripheral blood mononuclear cells (PBMC) of AD patients. In the future, the assessment of several blood kinase levels in large cohorts of patients will be needed to confirm the usefulness of this test at an early phase of the disease.
Collapse
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - François Mouton-Liger
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Emmanuel Cognat
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Julien Dumurgier
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| | - Claire Paquet
- Center of Cognitive Neurology, Lariboisiere Fernand-Widal Hospital, APHP, University Paris Diderot, Paris, France.,INSERM U 942, Paris, France
| |
Collapse
|
17
|
Martínez G, Khatiwada S, Costa-Mattioli M, Hetz C. ER Proteostasis Control of Neuronal Physiology and Synaptic Function. Trends Neurosci 2018; 41:610-624. [PMID: 29945734 PMCID: PMC7268632 DOI: 10.1016/j.tins.2018.05.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Neuronal proteostasis is maintained by the dynamic integration of different processes that regulate the synthesis, folding, quality control, and localization of proteins. The endoplasmic reticulum (ER) serves as a fundamental pillar of the proteostasis network, and is emerging as a key compartment to sustain normal brain function. The unfolded protein response (UPR), the main mechanism that copes with ER stress, plays a central role in the quality control of many ion channels and receptors, in addition to crosstalk with signaling pathways that regulate connectivity, synapse formation, and neuronal plasticity. We provide here an overview of recent advances in the involvement of the UPR in maintaining neuronal proteostasis, and discuss its emerging role in brain development, neuronal physiology, and behavior, as well as the implications for neurodegenerative diseases involving cognitive decline.
Collapse
Affiliation(s)
- Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Sanjeev Khatiwada
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Paquet C, Nicoll JAR, Love S, Mouton‐Liger F, Holmes C, Hugon J, Boche D. Downregulated apoptosis and autophagy after anti-Aβ immunotherapy in Alzheimer's disease. Brain Pathol 2018; 28:603-610. [PMID: 29027727 PMCID: PMC8028546 DOI: 10.1111/bpa.12567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/13/2023] Open
Abstract
Aβ immunization of Alzheimer's disease (AD) patients in the AN1792 (Elan Pharmaceuticals) trial caused Aβ removal and a decreased density of neurons in the cerebral cortex. As preservation of neurons may be a critical determinant of outcome after Aβ immunization, we have assessed the impact of previous Aβ immunization on the expression of a range of apoptotic proteins in post-mortem human brain tissue. Cortex from 13 AD patients immunized with AN1792 (iAD) and from 27 nonimmunized AD (cAD) cases was immunolabeled for proapoptotic proteins implicated in AD pathophysiology: phosphorylated c-Jun N-terminal kinase (pJNK), activated caspase3 (a-casp3), phosphorylated GSK3β on tyrosine 216 (GSK3βtyr216 ), p53 and Cdk5/p35. Expression of these proteins was analyzed in relation to immunization status and other clinical data. The antigen load of all of these proapoptotic proteins was significantly lower in iAD than cAD (P < 0.0001). In cAD, significant correlations (P < 0.001) were observed between: Cdk5/p35 and GSK3βtyr216 ; a-casp3 and Aβ42 ; p53 and age at death. In iAD, significant correlations were found between GSK3βtyr216 and a-casp3; both spongiosis and neuritic curvature ratio and Aβ42 ; and Cdk5/p35 and Aβ-antibody level. Although neuronal loss was increased by immunization with AN1792, our present findings suggest downregulation of apoptosis in residual neurons and other cells.
Collapse
Affiliation(s)
- Claire Paquet
- UMRS, INSERM, U942, F‐75010ParisFrance
- University of Paris Diderot, Sorbonne Paris CitéParisFrance
- Centre de Neurologie Cognitive/Centre Memoire de Ressources et de Recherches Paris Nord Ile de France AP‐HP, Hôpital Lariboisière, F‐75010ParisFrance
| | - James AR Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
- Department of Cellular PathologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - François Mouton‐Liger
- University of Paris Diderot, Sorbonne Paris CitéParisFrance
- Inserm, U1127, Institut du Cerveau et de la Moelle épinière, ICM, F‐75013ParisFrance
| | - Clive Holmes
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
- Memory Assessments and Research Centre, Moorgreen Hospital, Southern Health Foundation TrustSouthampton United Kingdom
| | - Jacques Hugon
- UMRS, INSERM, U942, F‐75010ParisFrance
- University of Paris Diderot, Sorbonne Paris CitéParisFrance
- Centre de Neurologie Cognitive/Centre Memoire de Ressources et de Recherches Paris Nord Ile de France AP‐HP, Hôpital Lariboisière, F‐75010ParisFrance
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
19
|
Taga M, Mouton-Liger F, Sadoune M, Gourmaud S, Norman J, Tible M, Thomasseau S, Paquet C, Nicoll JAR, Boche D, Hugon J. PKR modulates abnormal brain signaling in experimental obesity. PLoS One 2018; 13:e0196983. [PMID: 29795582 PMCID: PMC5968403 DOI: 10.1371/journal.pone.0196983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Metabolic disorders including obesity and type 2 diabetes are known to be associated with chronic inflammation and are obvious risk factors for Alzheimer's disease. Recent evidences concerning obesity and diabetes suggest that the metabolic inflammasome ("metaflammasome") mediates chronic inflammation. The double-stranded RNA-dependent protein kinase (PKR) is a central component of the metaflammasome. In wild type (WT) and PKR-/- mice, blood glucose, insulin and lipid levels and the brain expression of the phosphorylated components of the metaflammasome-PKR, JNK, IRS1 and IKKbeta-were studied after the induction of obesity by a high fat diet (HFD). The results showed significant increased levels of activated brain metaflammasome proteins in exposed WT mice but the changes were not significant in PKR-/- mice. In addition, gain weight was observed in WT mice and also in PKR-/- mice exposed to HFD. Increased blood insulin level was more accentuated in PKR -/- mice. The modulation of PKR activity could be an appropriate therapeutic approach, aimed at reducing abnormal brain metabolism and inflammation linked to metabolic disorders in order to reduce the risk of neurodegeneration.
Collapse
Affiliation(s)
- Mariko Taga
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- INSERM Units U942, Paris, France
| | | | | | | | - Jenny Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Claire Paquet
- INSERM Units U942, Paris, France
- Center of Cognitive Neurology Lariboisière Hospital, APHP, University Paris Diderot, Paris, France
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, Southampton, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jacques Hugon
- INSERM Units U942, Paris, France
- Center of Cognitive Neurology Lariboisière Hospital, APHP, University Paris Diderot, Paris, France
| |
Collapse
|
20
|
Taccola C, Cartot-Cotton S, Valente D, Barneoud P, Aubert C, Boutet V, Gallen F, Lochus M, Nicolic S, Dodacki A, Smirnova M, Cisternino S, Declèves X, Bourasset F. High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier. Eur J Pharm Sci 2018; 117:68-79. [DOI: 10.1016/j.ejps.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
|
21
|
Hugon J, Paquet C. Could ryanodine receptor dysfunction be linked to PKR brain accumulations in Alzheimer's disease? Med Hypotheses 2018. [PMID: 29523292 DOI: 10.1016/j.mehy.2018.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology and Inserm U942, Lariboisiere FW Hospital AP-HP, University Paris Diderot, 75010 Paris, France.
| | - Claire Paquet
- Center of Cognitive Neurology and Inserm U942, Lariboisiere FW Hospital AP-HP, University Paris Diderot, 75010 Paris, France
| |
Collapse
|
22
|
Gourmaud S, Mouton-Liger F, Abadie C, Meurs EF, Paquet C, Hugon J. Dual Kinase Inhibition Affords Extended in vitro Neuroprotection in Amyloid-β Toxicity. J Alzheimers Dis 2018; 54:1659-1670. [PMID: 27636848 DOI: 10.3233/jad-160509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Alzheimer's disease (AD), the amyloid cascade hypothesis proposes that amyloid-beta (Aβ) neurotoxicity leads to neuroinflammation, synaptic loss, and neuronal degeneration. In AD patients, anti-amyloid immunotherapies did not succeed because they were possibly administered late in AD progression. Modulating new targets associated with Aβ toxicity, such as PKR (double-stranded RNA dependent kinase), and JNK (c-Jun N-terminal kinase) is a major goal for neuroprotection. These two pro-apoptotic kinases are activated in AD brains and involved in Aβ production, tau phosphorylation, neuroinflammation, and neuronal death. In HEK cells transfected with siRNA directed against PKR, and in PKR knockout (PKR-/-) mice neurons, we showed that PKR triggers JNK activation. Aβ-induced neuronal apoptosis, measured by cleaved PARP (Poly ADP-ribose polymerase) and cleaved caspase 3 levels, was reduced in PKR-/- neurons. Two selective JNK inhibitory peptides also produced a striking reduction of Aβ toxicity. Finally, the dual inhibition of PKR and JNK nearly abolished Aβ toxicity in primary cultured neurons. These results reveal that dual kinase inhibition can afford neuroprotection and this approach is worth being tested in in vivo AD and oxidative stress models.
Collapse
Affiliation(s)
| | | | | | - Eliane F Meurs
- Institut Pasteur, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Claire Paquet
- Inserm UMR-S 942, Paris, France.,Research Memory Centre, Paris Nord Ile de France Saint Louis Lariboisière Fernand Widal Hospital, Paris, France
| | - Jacques Hugon
- Inserm UMR-S 942, Paris, France.,Research Memory Centre, Paris Nord Ile de France Saint Louis Lariboisière Fernand Widal Hospital, Paris, France
| |
Collapse
|
23
|
Hwang KD, Bak MS, Kim SJ, Rhee S, Lee YS. Restoring synaptic plasticity and memory in mouse models of Alzheimer's disease by PKR inhibition. Mol Brain 2017; 10:57. [PMID: 29233183 PMCID: PMC5727890 DOI: 10.1186/s13041-017-0338-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/19/2017] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with deficits in cognition and synaptic plasticity. While accumulation of amyloid β (Aβ) and hyper-phosphorylation of tau are parts of the etiology, AD can be caused by a large number of different genetic mutations and other unknown factors. Considering such a heterogeneous nature of AD, it would be desirable to develop treatment strategies that can improve memory irrespective of the individual causes. Reducing the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) was shown to enhance long-term memory and synaptic plasticity in naïve mice. Moreover, hyper-phosphorylation of eIF2α is observed in the brains of postmortem AD patients. Therefore, regulating eIF2α phosphorylation can be a plausible candidate for restoring memory in AD by targeting memory-enhancing mechanism. In this study, we examined whether PKR inhibition can rescue synaptic and learning deficits in two different AD mouse models; 5XFAD transgenic and Aβ1–42-injected mice. We found that the acute treatment of PKR inhibitor (PKRi) can restore the deficits in long-term memory and long-term potentiation (LTP) in both mouse models without affecting the Aβ load in the hippocampus. Our results prove the principle that targeting memory enhancing mechanisms can be a valid candidate for developing AD treatment.
Collapse
Affiliation(s)
- Kyoung-Doo Hwang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
24
|
Hugon J, Mouton-Liger F, Dumurgier J, Paquet C. PKR involvement in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:83. [PMID: 28982375 PMCID: PMC5629792 DOI: 10.1186/s13195-017-0308-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Brain lesions in Alzheimer's disease (AD) are characterized by Aβ accumulation, neurofibrillary tangles, and synaptic and neuronal vanishing. According to the amyloid cascade hypothesis, Aβ1-42 oligomers could trigger a neurotoxic cascade with kinase activation that leads to tau phosphorylation and neurodegeneration. Detrimental pathways that are associated with kinase activation could also be linked to the triggering of direct neuronal death, the production of free radicals, and neuroinflammation. RESULTS Among these kinases, PKR (eukaryotic initiation factor 2α kinase 2) is a pro-apoptotic enzyme that inhibits translation and that has been implicated in several molecular pathways that lead to AD brain lesions and disturbed memory formation. PKR accumulates in degenerating neurons and is activated by Aβ1-42 neurotoxicity. It might modulate Aβ synthesis through BACE 1 induction. PKR is increased in cerebrospinal fluid from patients with AD and mild cognitive impairment and can induce the activation of pro-inflammatory pathways leading to TNFα and IL1-β production. In addition, experimentally, PKR seems to down-regulate the molecular processes of memory consolidation. This review highlights the major findings linking PKR and abnormal brain metabolism associated with AD lesions. CONCLUSIONS Studying the detrimental role of PKR signaling in AD could pave the way for a neuroprotective strategy in which PKR inhibition could reduce neuronal demise and alleviate cognitive decline as well as the cumbersome burden of AD for patients.
Collapse
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France. .,Center of Cognitive Neurology, Lariboisière FW Hospital, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| | | | - Julien Dumurgier
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France
| | - Claire Paquet
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France
| |
Collapse
|
25
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
26
|
Lista S, O'Bryant SE, Blennow K, Dubois B, Hugon J, Zetterberg H, Hampel H. Biomarkers in Sporadic and Familial Alzheimer's Disease. J Alzheimers Dis 2016; 47:291-317. [PMID: 26401553 DOI: 10.3233/jad-143006] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most forms of Alzheimer's disease (AD) are sporadic (sAD) or inherited in a non-Mendelian fashion, and less than 1% of cases are autosomal-dominant. Forms of sAD do not exhibit familial aggregation and are characterized by complex genetic and environmental interactions. Recently, the expansion of genomic methodologies, in association with substantially larger combined cohorts, has resulted in various genome-wide association studies that have identified several novel genetic associations of AD. Currently, the most effective methods for establishing the diagnosis of AD are defined by multi-modal pathways, starting with clinical and neuropsychological assessment, cerebrospinal fluid (CSF) analysis, and brain-imaging procedures, all of which have significant cost- and access-to-care barriers. Consequently, research efforts have focused on the development and validation of non-invasive and generalizable blood-based biomarkers. Among the modalities conceptualized by the systems biology paradigm and utilized in the "exploratory biomarker discovery arena", proteome analysis has received the most attention. However, metabolomics, lipidomics, transcriptomics, and epigenomics have recently become key modalities in the search for AD biomarkers. Interestingly, biomarker changes for familial AD (fAD), in many but not all cases, seem similar to those for sAD. The integration of neurogenetics with systems biology/physiology-based strategies and high-throughput technologies for molecular profiling is expected to help identify the causes, mechanisms, and biomarkers associated with the various forms of AD. Moreover, in order to hypothesize the dynamic trajectories of biomarkers through disease stages and elucidate the mechanisms of biomarker alterations, updated and more sophisticated theoretical models have been proposed for both sAD and fAD.
Collapse
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Sid E O'Bryant
- Institute for Aging and Alzheimer's Disease Research & Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Jacques Hugon
- Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile-de-France, Groupe Hospitalier Saint Louis Lariboisière - Fernand Widal, Université Paris Diderot, Paris 07, Paris, France.,Institut du Fer à Moulin (IFM), Inserm UMR_S 839, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,University College London Institute of Neurology, Queen Square, London, UK
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| |
Collapse
|
27
|
Taga M, Minett T, Classey J, Matthews FE, Brayne C, Ince PG, Nicoll JA, Hugon J, Boche D. Metaflammasome components in the human brain: a role in dementia with Alzheimer's pathology? Brain Pathol 2016; 27:266-275. [PMID: 27106634 PMCID: PMC5412675 DOI: 10.1111/bpa.12388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Epidemiological and genetic studies have identified metabolic disorders and inflammation as risk factors for Alzheimer's disease (AD). Evidence in obesity and type-2 diabetes suggests a role for a metabolic inflammasome ("metaflammasome") in mediating chronic inflammation in peripheral organs implicating IKKβ (inhibitor of nuclear factor kappa-B kinase subunit beta), IRS1 (insulin receptor substrate 1), JNK (c-jun N-terminal kinase), and PKR (double-stranded RNA protein kinase). We hypothesized that these proteins are expressed in the brain in response to metabolic risk factors in AD. Neocortex from 299 participants from the MRC Cognitive Function and Ageing Studies was analysed by immunohistochemistry for the expression of the phosphorylated (active) form of IKKβ [pSer176/180 ], IRS1 [pS312 ], JNK [pThr183 /Tyr185 ] and PKR [pT451 ]. The data were analyzed to investigate whether the proteins were expressed together and in relation with metabolic disorders, dementia, Alzheimer's pathology and APOE genotype. We observed a change from a positive to a negative association between the proteins and hypertension according to the dementia status. Type-2 diabetes was negatively related with the proteins among participants without dementia; whereas participants with dementia and AD pathology showed a positive association with JNK. A significant association between IKKβ and JNK in participants with dementia and AD pathology was observed, but not in those without dementia. Otherwise, weak to moderate associations were observed among the protein loads. The presence of dementia was significantly associated with JNK and negatively associated with IKKβ and IRS1. Cognitive scores showed a significant positive relationship with IKKβ and a negative with IRS1, JNK and PKR. The proteins were significantly associated with pathology in Alzheimer's participants with the relationship being inverse or not significant in participants without dementia. Expression of the proteins was not related to APOE genotype. These findings highlight a role for these proteins in AD pathophysiology but not necessarily as a complex.
Collapse
Affiliation(s)
- Mariko Taga
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.,INSERM U942, Paris, France
| | - Thais Minett
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - John Classey
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Fiona E Matthews
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Paul G Ince
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, Sheffield University, Sheffield, UK
| | - James Ar Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jacques Hugon
- INSERM U942, Paris, France.,University of Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre Memoire de Ressources et de Recherche Paris Nord Ile de France AP-HP, Hôpital Lariboisière, Paris, France
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
28
|
Amin J, Paquet C, Baker A, Asuni AA, Love S, Holmes C, Hugon J, Nicoll JAR, Boche D. Effect of amyloid-β (Aβ) immunization on hyperphosphorylated tau: a potential role for glycogen synthase kinase (GSK)-3β. Neuropathol Appl Neurobiol 2016; 41:445-57. [PMID: 25486988 DOI: 10.1111/nan.12205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/03/2014] [Indexed: 11/29/2022]
Abstract
AIMS Active amyloid-β (Aβ) immunotherapy in Alzheimer's disease (AD) induces removal of Aβ and phosphorylated tau (ptau). Glycogen synthase kinase (GSK)-3β is a kinase, responsible for phosphorylation of tau, activation of which can be induced by phosphorylated double-stranded RNA-dependent protein kinase (pPKR). Using a post-mortem cohort of immunized AD cases, we investigated the effect of Aβ immunization on GSK-3β expression and pPKR. METHODS We immunostained 11 immunized AD cases and 28 unimmunized AD cases for active, inactive and total GSK-3β, and for pPKR. Quantification of protein load was performed in the hippocampal region including CA1, subiculum and entorhinal cortex. RESULTS All three areas showed a significant decrease in the three forms of GSK-3β (P < 0.05) and a nonsignificant trend towards lower pPKR load in the immunized AD cases compared with the unimmunized AD cases. CONCLUSION The lower GSK-3β expression generated by Aβ immunotherapy shows evidence of a modification of the signalling pathway induced by GSK-3β leading to the overall reduction of tau, supporting the contention that in humans, GSK-3β unifies Aβ and tau-related neuropathology.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK.,Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Claire Paquet
- INSERM, U942, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMRS 942, Paris, France.,Centre Mémoire de Ressources et de Recherche Paris Nord Ile de France, AP-HP, Hopital Lariboisière, Paris, France
| | - Alex Baker
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ayodeji A Asuni
- Centre for Biological Sciences, Faculty of Natural and Environmental Science, University of Southampton, UK
| | - Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Clive Holmes
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK.,Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Jacques Hugon
- INSERM, U942, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMRS 942, Paris, France.,Centre Mémoire de Ressources et de Recherche Paris Nord Ile de France, AP-HP, Hopital Lariboisière, Paris, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
29
|
Dziedzic T, Pera J, Klimkowicz-Mrowiec A, Mroczko B, Slowik A. Biochemical and Radiological Markers of Alzheimer's Disease Progression. J Alzheimers Dis 2016; 50:623-44. [PMID: 26757184 DOI: 10.3233/ifs-150578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative, inevitably progressive disease with a rate of cognitive, functional, and behavioral decline that varies highly from patient to patient. Although several clinical predictors of AD progression have been identified, to our mind in clinical practice there is a lack of a reliable biomarker that enables one to stratify the risk of deterioration. Identification of biomarkers that allow the monitoring of AD progression could change the way physicians and caregivers make treatment decisions. This review summarizes the results of studies on potential biochemical and radiological markers related to AD progression.
Collapse
Affiliation(s)
- Tomasz Dziedzic
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University, Krakow, Poland
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland.,Department of Biochemical Diagnostics, University Hospital, Białystok, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
30
|
PKR Inhibition Rescues Memory Deficit and ATF4 Overexpression in ApoE ε4 Human Replacement Mice. J Neurosci 2015; 35:12986-93. [PMID: 26400930 DOI: 10.1523/jneurosci.5241-14.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD. We have previously demonstrated that the most prevalent genetic risk factor for AD, the ApoE4 allele, is correlated with increased phosphorylation of the translation factor eIF2α. In the present study, we tested the possible involvement of additional members of the eIF2α pathway and identified increased mRNA expression of negative transcription factor ATF4 (aka CREB2) both in human and a mouse model expressing the human ApoE4 allele. Furthermore, injection of a PKR inhibitor rescued memory impairment and attenuated ATF4 mRNA increased expression in the ApoE4 mice. The results propose a new mechanism by which ApoE4 affects brain function and further suggest that inhibition of PKR is a way to restore ATF4 overexpression and memory impairment in early stages of sporadic AD. Significance statement: ATF4 mRNA relative quantities are elevated in ApoE4 allele carriers compared with noncarrier controls. This is true also for the ApoE ε4 human replacement mice. ApoE4 mice injected with PKR inhibitor (PKRi) demonstrate a significant reduction in ATF4 expression levels 3 h after one injection of PKRi. Treatment of ApoE4 human replacement mice with the PKRi before learning rescues the memory impairment of the ApoE4 AD model mice. We think that these results propose a new mechanism by which ApoE4 affects brain function and suggest that inhibition of PKR is a way to restore memory impairment in early stages of sporadic AD.
Collapse
|
31
|
Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm 2015; 2015:105828. [PMID: 26693205 PMCID: PMC4674598 DOI: 10.1155/2015/105828] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2DM and AD.
Collapse
|
32
|
Paquet C, Dumurgier J, Hugon J. Pro-Apoptotic Kinase Levels in Cerebrospinal Fluid as Potential Future Biomarkers in Alzheimer's Disease. Front Neurol 2015; 6:168. [PMID: 26300842 PMCID: PMC4523792 DOI: 10.3389/fneur.2015.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of Aβ peptides, hyperphosphorylated tau proteins, and neuronal loss in the brain of affected patients. The causes of neurodegeneration in AD are not clear, but apoptosis could be one of the cell death mechanisms. According to the amyloid hypothesis, abnormal aggregation of Aβ leads to altered kinase activities inducing tau phosphorylation and neuronal degeneration. Several studies have shown that pro-apoptotic kinases could be a link between Aβ and tau anomalies. Here, we present recent evidences from AD experimental models and human studies that three pro-apoptotic kinases (double-stranded RNA kinase (PKR), glycogen synthase kinase-3β, and C-Jun terminal kinase (JNK) could be implicated in AD physiopathology. These kinases are detectable in human fluids and the analysis of their levels could be used as potential surrogate markers to evaluate cell death and clinical prognosis. In addition to current biomarkers (Aβ1–42, tau, and phosphorylated tau), these new evaluations could bring about valuable information on potential innovative therapeutic targets to alter the clinical evolution.
Collapse
Affiliation(s)
- Claire Paquet
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Julien Dumurgier
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Jacques Hugon
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| |
Collapse
|
33
|
Benchmarking biomarker-based criteria for Alzheimer's disease: Data from the Swedish Dementia Registry, SveDem. Alzheimers Dement 2015; 11:1470-1479. [PMID: 26079415 DOI: 10.1016/j.jalz.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION New research guidelines for the diagnosis of Alzheimer's disease (AD) include biomarker evidence of amyloid-β (Aβ) and tau pathology. The aim of this study was to investigate what proportion of AD patients diagnosed in clinical routine in Sweden that had an AD-indicative cerebrospinal fluid (CSF) biomarker profile. METHODS By cross-referencing a laboratory database with the Swedish Dementia Registry (SveDem), 2357 patients with data on CSF Aβ and tau biomarkers and a clinical diagnosis of AD with dementia were acquired. RESULTS Altogether, 77.2% had pathologic Aβ42 and total tau or phosphorylated tau in CSF. These results were stable across age groups. Female sex and low mini-mental state examination score increased the likelihood of pathologic biomarkers. DISCUSSION About a quarter of clinically diagnosed AD patients did not have an AD-indicative CSF biomarker profile. This discrepancy may partly reflect incorrect (false positive) clinical diagnosis or a lack in sensitivity of the biomarker assays.
Collapse
|
34
|
Madeira C, Lourenco MV, Vargas-Lopes C, Suemoto CK, Brandão CO, Reis T, Leite REP, Laks J, Jacob-Filho W, Pasqualucci CA, Grinberg LT, Ferreira ST, Panizzutti R. d-serine levels in Alzheimer's disease: implications for novel biomarker development. Transl Psychiatry 2015; 5:e561. [PMID: 25942042 PMCID: PMC4471283 DOI: 10.1038/tp.2015.52] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder still in search of effective methods of diagnosis. Altered levels of the NMDA receptor co-agonist, d-serine, have been associated with neurological disorders, including schizophrenia and epilepsy. However, whether d-serine levels are deregulated in AD remains elusive. Here, we first measured D-serine levels in post-mortem hippocampal and cortical samples from nondemented subjects (n=8) and AD patients (n=14). We next determined d-serine levels in experimental models of AD, including wild-type rats and mice that received intracerebroventricular injections of amyloid-β oligomers, and APP/PS1 transgenic mice. Finally, we assessed d-serine levels in the cerebrospinal fluid (CSF) of 21 patients with a diagnosis of probable AD, as compared with patients with normal pressure hydrocephalus (n=9), major depression (n=9) and healthy controls (n=10), and results were contrasted with CSF amyloid-β/tau AD biomarkers. d-serine levels were higher in the hippocampus and parietal cortex of AD patients than in control subjects. Levels of both d-serine and serine racemase, the enzyme responsible for d-serine production, were elevated in experimental models of AD. Significantly, d-serine levels were higher in the CSF of probable AD patients than in non-cognitively impaired subject groups. Combining d-serine levels to the amyloid/tau index remarkably increased the sensitivity and specificity of diagnosis of probable AD in our cohort. Our results show that increased brain and CSF d-serine levels are associated with AD. CSF d-serine levels discriminated between nondemented and AD patients in our cohort and might constitute a novel candidate biomarker for early AD diagnosis.
Collapse
Affiliation(s)
- C Madeira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Vargas-Lopes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C K Suemoto
- Discipline of Geriatrics, University of São Paulo Medical School, Sao Paulo, Brazil
| | - C O Brandão
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T Reis
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R E P Leite
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
| | - J Laks
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - W Jacob-Filho
- Discipline of Geriatrics, University of São Paulo Medical School, Sao Paulo, Brazil
| | - C A Pasqualucci
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
| | - L T Grinberg
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - S T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Panizzutti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Gourmaud S, Paquet C, Dumurgier J, Pace C, Bouras C, Gray F, Laplanche JL, Meurs EF, Mouton-Liger F, Hugon J. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J Psychiatry Neurosci 2015; 40:151-61. [PMID: 25455349 PMCID: PMC4409432 DOI: 10.1503/jpn.140062] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Alzheimer disease is characterized by cognitive decline, senile plaques of β-amyloid (Aβ) peptides, neurofibrillary tangles composed of hyperphosphorylated τ proteins and neuronal loss. Aβ and τ are useful markers in the cerebrospinal fluid (CSF). C-Jun N-terminal kinases (JNKs) are serine-threonine protein kinases activated by phosphorylation and involved in neuronal death. METHODS In this study, Western blots, enzyme-linked immunosorbent assay and histological approaches were used to assess the concentrations of Aβ, τ and JNK isoforms in postmortem brain tissue samples (10 Alzheimer disease and 10 control) and in CSF samples from 30 living patients with Alzheimer disease and 27 controls with neurologic disease excluding Alzheimer disease. Patients with Alzheimer disease were followed for 1-3 years and assessed using Mini-Mental State Examination scores. RESULTS The biochemical and morphological results showed a significant increase of JNK3 and phosphorylated JNK levels in patients with Alzheimer disease, and JNK3 levels correlated with Aβ42 levels. Confocal microscopy revealed that JNK3 was associated with Aβ in senile plaques. The JNK3 levels in the CSF were significantly elevated in patients with Alzheimer disease and correlated statistically with the rate of cognitive decline in a mixed linear model. LIMITATIONS The study involved different samples grouped into 3 small cohorts. Evaluation of JNK3 in CSF was possible only with immunoblot analysis. CONCLUSION We found that JNK3 levels are increased in brain tissue and CSF from patients with Alzheimer disease. The finding that increased JNK3 levels in CSF could reflect the rate of cognitive decline is new and merits further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jacques Hugon
- Correspondence to: J. Hugon, Memory Clinical Centre Paris Nord Ile-de-France, 200 rue du Faubourg Saint-Denis, 75010 Paris, France;
| |
Collapse
|
36
|
Lourenco MV, Ferreira ST, De Felice FG. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol 2015; 129:37-57. [PMID: 25857551 DOI: 10.1016/j.pneurobio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Mounting evidence from clinical, epidemiological, neuropathology and preclinical studies indicates that mechanisms similar to those leading to peripheral metabolic deregulation in metabolic disorders, such as diabetes and obesity, take place in the brains of Alzheimer's disease (AD) patients. These include pro-inflammatory mechanisms, brain metabolic stress and neuronal insulin resistance. From a molecular and cellular perspective, recent progress has been made in unveiling novel pathways that act in an orchestrated way to cause neuronal damage and cognitive decline in AD. These pathways converge to the activation of neuronal stress-related protein kinases and excessive phosphorylation of eukaryotic translation initiation factor 2α (eIF2α-P), which plays a key role in control of protein translation, culminating in synapse dysfunction and memory loss. eIF2α-P signaling thus links multiple neuronal stress pathways to impaired neuronal function and neurodegeneration. Here, we present a critical analysis of recently discovered molecular mechanisms underlying impaired brain insulin signaling and metabolic stress, with emphasis on the role of stress kinase/eIF2α-P signaling as a hub that promotes brain and behavioral impairments in AD. Because very similar mechanisms appear to operate in peripheral metabolic deregulation in T2D and in brain defects in AD, we discuss the concept that targeting defective brain insulin signaling and neuronal stress mechanisms with anti-diabetes agents may be an attractive approach to fight memory decline in AD. We conclude by raising core questions that remain to be addressed toward the development of much needed therapeutic approaches for AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
37
|
Johnson S, Duncan J, Hussain SA, Chen G, Luo J, Mclaurin C, May W, Rajkowska G, Ou XM, Stockmeier CA, Wang JM. The IFNγ-PKR pathway in the prefrontal cortex reactions to chronic excessive alcohol use. Alcohol Clin Exp Res 2015; 39:476-84. [PMID: 25704249 DOI: 10.1111/acer.12650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Brain cell death is a major pathological consequence of alcohol neurotoxicity. However, the molecular cascades in alcohol-induced brain tissue injury are unclear. METHODS Using Western blot and double immunofluorescence, we examined the expression of interferon (IFN)-induced protein kinase R (PKR), phosphorylated-PKR (p-PKR), and IFN gamma (IFNγ) in the prefrontal cortex (PFC) of postmortem brains from subjects with alcohol use disorders (AUD). RESULTS The protein levels of PKR, p-PKR, and IFNγ were significantly increased in subjects with AUD compared with control subjects without AUD, and a younger age of onset of AUD was significantly correlated with higher protein levels of p-PKR. In addition, elevated PKR- and p-PKR-IR were observed in both neurons and astrocytes in the PFC of subjects with AUD compared to subjects without AUD. CONCLUSIONS The activation of the IFNγ-PKR pathway in PFC of humans is associated with chronic excessive ethanol use with an age of onset dependent manner, and activation of this pathway may play a pivotal role in AUD-related brain tissue injury. This study provides insight into neurodegenerative key factors related to AUD and identifies potential targets for the treatment of alcohol-induced neurotoxicity.
Collapse
Affiliation(s)
- Shakevia Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation. Sci Rep 2015; 5:8489. [PMID: 25687824 DOI: 10.1038/srep08489] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by senile plaques composed of amyloid-β (Aβ) peptide, neurofibrillary tangles, neuronal loss and neuroinflammation. Previous works have suggested that systemic inflammation could contribute to neuroinflammation and enhanced Aβ cerebral concentrations. The molecular pathways leading to these events are not fully understood. PKR is a pro-apoptotic kinase that can trigger inflammation and accumulates in the brain and cerebrospinal fluid of AD patients. The goal of the present study was to assess if LPS-induced neuroinflammation and Aβ production could be altered by genetic PKR down regulation. The results show that, in the hippocampus of LPS-injected wild type mice, neuroinflammation, cytokine release and Aβ production are significantly increased and not in LPS-treated PKR knock-out mice. In addition BACE1 and activated STAT3 levels, a putative transcriptional regulator of BACE1, were not found increased in the brain of PKR knock-out mice as observed in wild type mice. Using PET imaging, the decrease of hippocampal metabolism induced by systemic LPS was not observed in LPS-treated PKR knock-out mice. Altogether, these findings demonstrate that PKR plays a major role in brain changes induced by LPS and could be a valid target to modulate neuroinflammation and Aβ production.
Collapse
|
39
|
Mouton-Liger F, Rebillat AS, Gourmaud S, Paquet C, Leguen A, Dumurgier J, Bernadelli P, Taupin V, Pradier L, Rooney T, Hugon J. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model. Cell Death Dis 2015; 6:e1594. [PMID: 25590804 PMCID: PMC4669750 DOI: 10.1038/cddis.2014.552] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022]
Abstract
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice).
Collapse
Affiliation(s)
- F Mouton-Liger
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France
| | | | - S Gourmaud
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France
| | - C Paquet
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [3] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| | - A Leguen
- Inserm UMR-S942, Paris 75010, France
| | - J Dumurgier
- 1] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [2] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| | - P Bernadelli
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - V Taupin
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - L Pradier
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - T Rooney
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - J Hugon
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [3] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| |
Collapse
|
40
|
Paquet C, Amin J, Mouton-Liger F, Nasser M, Love S, Gray F, Pickering RM, Nicoll JAR, Holmes C, Hugon J, Boche D. Effect of active Aβ immunotherapy on neurons in human Alzheimer's disease. J Pathol 2015; 235:721-30. [PMID: 25430817 DOI: 10.1002/path.4491] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/29/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022]
Abstract
Amyloid β peptide (Aβ) immunization of Alzheimer's disease (AD) patients has been reported to induce amyloid plaque removal, but with little impact on cognitive decline. We have explored the consequences of Aβ immunotherapy on neurons in post mortem brain tissue. Eleven immunized (AN1792, Elan Pharmaceuticals) AD patients were compared to 28 non-immunized AD cases. Immunohistochemistry on sections of neocortex was performed for neuron-specific nuclear antigen (NeuN), neurofilament protein (NFP) and phosphorylated-(p)PKR (pro-apoptotic kinase detected in degenerating neurons). Quantification was performed for pPKR and status spongiosis (neuropil degeneration), NeuN-positive neurons/field, curvature of the neuronal processes and interneuronal distance. Data were corrected for age, gender, duration of dementia and APOE genotype and also assessed in relation to Aβ42 and tau pathology and key features of AD. In non-immunized patients, the degree of neuritic curvature correlated with spongiosis and pPKR, and overall the neurodegenerative markers correlated better with tau pathology than Aβ42 load. Following immunization, spongiosis increased, interneuronal distance increased, while the number of NeuN-positive neurons decreased, consistent with enhanced neuronal loss. However, neuritic curvature was reduced and pPKR was associated with Aβ removal in immunized patients. In AD, associations of spongiosis status, curvature ratio and pPKR load with microglial markers Iba1, CD68 and CD32 suggest a role for microglia in neurodegeneration. After immunization, correlations were detected between the number of NeuN-positive neurons and pPKR with Iba1, CD68 and CD64, suggesting that microglia are involved in the neuronal loss. Our findings suggest that in established AD this form of active Aβ immunization may predominantly accelerate loss of damaged degenerating neurons. This interpretation is consistent with in vivo imaging indicating an increased rate of cerebral atrophy in immunized AD patients.
Collapse
Affiliation(s)
- Claire Paquet
- Alzheimer Clinical Centre, Lariboisiere FW Saint-Louis Hospital, AP-HP University of Paris Diderot, France; Department of Histology and Biology of Ageing, Lariboisiere FW Saint-Louis Hospital, AP-HP University of Paris Diderot, France; INSERM U942, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marchal JA, Lopez GJ, Peran M, Comino A, Delgado JR, García-García JA, Conde V, Aranda FM, Rivas C, Esteban M, Garcia MA. The impact of PKR activation: from neurodegeneration to cancer. FASEB J 2014; 28:1965-74. [PMID: 24522206 DOI: 10.1096/fj.13-248294] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An inverse association between cancer and neurodegeneration is plausible because these biological processes share several genes and signaling pathways. Whereas uncontrolled cell proliferation and decreased apoptotic cell death governs cancer, excessive apoptosis contributes to neurodegeneration. Protein kinase R (PKR), an interferon-inducible double-stranded RNA protein kinase, is involved in both diseases. PKR activation blocks global protein synthesis through eIF2α phosphorylation, leading to cell death in response to a variety of cellular stresses. However, PKR also has the dual role of activating the nuclear factor κ-B pathway, promoting cell proliferation. Whereas PKR is recognized for its negative effects on neurodegenerative diseases, in part, inducing high level of apoptosis, the role of PKR activation in cancer remains controversial. In general, PKR is considered to have a tumor suppressor function, and some clinical data show a correlation between suppressed or inactivated PKR and a poor prognosis for several cancers. However, other studies show high PKR expression and activation levels in various cancers, suggesting that PKR might contribute to neoplastic progression. Understanding the cellular factors and signals involved in the regulation of PKR in these age-related diseases is relevant and may have important clinical implications. The present review highlights the current knowledge on the role of PKR in neurodegeneration and cancer, with special emphasis on its regulation and clinical implications.
Collapse
Affiliation(s)
- Juan A Marchal
- 1University Hospital Virgen de las Nieves, Azpitarte sn., Granada E-18012, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Endres K, Reinhardt S. ER-stress in Alzheimer's disease: turning the scale? AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:247-265. [PMID: 24319643 PMCID: PMC3852565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/05/2013] [Indexed: 06/03/2023]
Abstract
Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, Clinical Research Group, University Medical Centre Johannes Gutenberg-University Mainz Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | | |
Collapse
|
43
|
Trinh MA, Klann E. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem 2013; 105:93-9. [PMID: 23707798 DOI: 10.1016/j.nlm.2013.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Abstract
Although the requirement for new protein synthesis in synaptic plasticity and memory has been well established, recent genetic, molecular, electrophysiological, and pharmacological studies have broadened our understanding of the translational control mechanisms that are involved in these processes. One of the critical translational control points mediating general and gene-specific translation depends on the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) by four regulatory kinases. Here, we review the literature highlighting the important role for proper translational control via regulation of eIF2α phosphorylation by its kinases in long-lasting synaptic plasticity and long-term memory.
Collapse
Affiliation(s)
- Mimi A Trinh
- Pharmaceutical Research Division, CNS Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | | |
Collapse
|