1
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
3
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
4
|
Cassari L, Pavan A, Zoia G, Chinellato M, Zeni E, Grinzato A, Rothenberger S, Cendron L, Dettin M, Pasquato A. SARS-CoV-2 S Mutations: A Lesson from the Viral World to Understand How Human Furin Works. Int J Mol Sci 2023; 24:4791. [PMID: 36902222 PMCID: PMC10003014 DOI: 10.3390/ijms24054791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent responsible for the worldwide pandemic and has now claimed millions of lives. The virus combines several unusual characteristics and an extraordinary ability to spread among humans. In particular, the dependence of the maturation of the envelope glycoprotein S from Furin enables the invasion and replication of the virus virtually within the entire body, since this cellular protease is ubiquitously expressed. Here, we analyzed the naturally occurring variation of the amino acids sequence around the cleavage site of S. We found that the virus grossly mutates preferentially at P positions, resulting in single residue replacements that associate with gain-of-function phenotypes in specific conditions. Interestingly, some combinations of amino acids are absent, despite the evidence supporting some cleavability of the respective synthetic surrogates. In any case, the polybasic signature is maintained and, as a consequence, Furin dependence is preserved. Thus, no escape variants to Furin are observed in the population. Overall, the SARS-CoV-2 system per se represents an outstanding example of the evolution of substrate-enzyme interaction, demonstrating a fast-tracked optimization of a protein stretch towards the Furin catalytic pocket. Ultimately, these data disclose important information for the development of drugs targeting Furin and Furin-dependent pathogens.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Angela Pavan
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Giulia Zoia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Chinellato
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Elena Zeni
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
5
|
Henson SN, Elko EA, Swiderski PM, Liang Y, Engelbrektson AL, Piña A, Boyle AS, Fink Z, Facista SJ, Martinez V, Rahee F, Brown A, Kelley EJ, Nelson GA, Raspet I, Mead HL, Altin JA, Ladner JT. PepSeq: a fully in vitro platform for highly multiplexed serology using customizable DNA-barcoded peptide libraries. Nat Protoc 2023; 18:396-423. [PMID: 36385198 PMCID: PMC10339795 DOI: 10.1038/s41596-022-00766-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
PepSeq is an in vitro platform for building and conducting highly multiplexed proteomic assays against customizable targets by using DNA-barcoded peptides. Starting with a pool of DNA oligonucleotides encoding peptides of interest, this protocol outlines a fully in vitro and massively parallel procedure for synthesizing the encoded peptides and covalently linking each to a corresponding cDNA tag. The resulting libraries of peptide/DNA conjugates can be used for highly multiplexed assays that leverage high-throughput sequencing to profile the binding or enzymatic specificities of proteins of interest. Here, we describe the implementation of PepSeq for fast and cost-effective epitope-level analysis of antibody reactivity across hundreds of thousands of peptides from <1 µl of serum or plasma input. This protocol includes the design of the DNA oligonucleotide library, synthesis of DNA-barcoded peptide constructs, binding of constructs to sample, preparation for sequencing and data analysis. Implemented in this way, PepSeq can be used for a number of applications, including fine-scale mapping of antibody epitopes and determining a subject's pathogen exposure history. The protocol is divided into two main sections: (i) design and synthesis of DNA-barcoded peptide libraries and (ii) use of libraries for highly multiplexed serology. Once oligonucleotide templates are in hand, library synthesis takes 1-2 weeks and can provide enough material for hundreds to thousands of assays. Serological assays can be conducted in 96-well plates and generate sequencing data within a further ~4 d. A suite of software tools, including the PepSIRF package, are made available to facilitate the design of PepSeq libraries and analysis of assay data.
Collapse
Affiliation(s)
- Sierra N Henson
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Evan A Elko
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Piotr M Swiderski
- DNA/RNA Synthesis Laboratory, Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Yong Liang
- DNA/RNA Synthesis Laboratory, Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | - Alejandra Piña
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Annalee S Boyle
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Zane Fink
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Vidal Martinez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Fatima Rahee
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Annabelle Brown
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Erin J Kelley
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Georgia A Nelson
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Isaiah Raspet
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Heather L Mead
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA.
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
6
|
Van Lam van T, Ivanova T, Lindberg I, Böttcher-Friebertshäuser E, Steinmetzer T, Hardes K. Design, synthesis, and characterization of novel fluorogenic substrates of the proprotein convertases furin, PC1/3, PC2, PC5/6, and PC7. Anal Biochem 2022; 655:114836. [PMID: 35964735 DOI: 10.1016/j.ab.2022.114836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Proprotein convertases (PCs) are involved in the pathogenesis of various diseases, making them promising drug targets. Most assays for PCs have been performed with few standard substrates, regardless of differences in cleavage efficiencies. Derived from studies on substrate-analogue inhibitors, 11 novel substrates were synthesized and characterized with five PCs. H-Arg-Arg-Tle-Lys-Arg-AMC is the most efficiently cleaved furin substrate based on its kcat/KM value. Due to its higher kcat value, acetyl-Arg-Arg-Tle-Arg-Arg-AMC was selected for further measurements to demonstrate the benefit of this improved substrate. Compared to our standard conditions, its use allowed a 10-fold reduction of the furin concentration, which enabled Ki value determinations of previously described tight-binding inhibitors under classical conditions. Under these circumstances, a slow-binding behavior was observed for the first time with inhibitor MI-1148. In addition to furin, four additional PCs were used to characterize these substrates. The most efficiently cleaved PC1/3 substrate was Ac-Arg-Arg-Arg-Tle-Lys-Arg-AMC. The highest kcat/KM values for PC2 and PC7 were found for the N-terminally unprotected analogue of this substrate, although other substrates possess higher kcat values. The highest efficiency for PC5/6A was observed for the substrate Ac-Arg-Arg-Tle-Lys-Arg-AMC. In summary, we have identified new substrates for furin, PC1/3, PC2, and PC7 suitable for improved enzyme-kinetic measurements.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032, Marburg, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394, Giessen, Germany.
| |
Collapse
|
7
|
Increased Cleavage of Japanese Encephalitis Virus prM Protein Promotes Viral Replication but Attenuates Virulence. Microbiol Spectr 2022; 10:e0141722. [PMID: 35695552 PMCID: PMC9241796 DOI: 10.1128/spectrum.01417-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In flavivirus, the furin-mediated cleavage of prM is mandatory to produce infectious particles, and the immature particles containing uncleaved prM cannot undergo membrane fusion and release to the extracellular environment. However, the detailed relationship between viral replication or pathogenicity and furin in Japanese encephalitis virus (JEV) hasn't been clarified. Here, JEV with the mutations in furin cleavage sites and its nearby were constructed. Compared with WT virus, the mutant virus showed enhanced cleavage efficiency of prM protein and increased replication ability. Furthermore, we found that the mutations mainly promote genomic replication and assembly of JEV. However, the mutant formed smaller plaques than WT virus in plaque forming assay, indicating the lower cytopathogenicity of mutant virus. To assess the virulence of JEV mutant, an in vivo assay was performed using a mouse model. A higher survival rate and attenuated neuroinflammation were observed in JEV mutant-infected mice than those of WT-infected mice, suggesting the cleavage of prM by furin was closely related to viral virulence. These findings will provide new understanding on JEV pathogenesis and contribute to the development of novel JEV vaccines. IMPORTANCE Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis epidemics in Southeast Asia, affecting mostly children, with high morbidity and mortality. During the viral maturation process, prM is cleaved into M by the cellular endoprotease furin in the acidic secretory system. After cleavage of the prM protein, mature virions are exocytosed. Here, the mutant in furin cleavage sites and its nearby was constructed, and the results showed that the mutant virus with enhanced replication mainly occurred in the process of genomic replication and assembly. Meanwhile, the mutant showed an attenuated virulence than WT virus in vivo. Our study contributes to understanding the function of prM and M proteins and provides new clues for live vaccine designation for JEV.
Collapse
|
8
|
Shahhosseini N. Characterization of mutations modulating enhanced transmissibility of SARS-CoV-2 B.1.617+ (Delta) variant using In Silico tools. GENE REPORTS 2022; 27:101636. [PMID: 35721780 PMCID: PMC9195409 DOI: 10.1016/j.genrep.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/14/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Since the beginning of the of SARS-CoV-2 (Covid-19) pandemic, variants of concern (VOC) have emerged taxing health systems worldwide. In October 2020, a new variant of SARS-CoV-2 (B.1.617+/Delta variant) emerged in India, triggering a deadly wave of Covid-19. Epidemiological data strongly suggests that B.1.617+ is more transmissible and previous reports have revealed that B.1.617+ has numerous mutations compared to wild type (WT), including several changes in the spike protein (SP). The main goal of this study was to use In Silico (computer simulation) techniques to examine mutations in the SP, specifically L452R and E484Q (part of the receptor binding domain (RBD) for human angiotensin-converting enzyme 2 (hACE2)) and P681R (upstream of the Furin cleavage motif), for effects in modulating the transmissibility of the B.1.617+ variant. Using computational models, the binding free energy (BFE) and H-bond lengths were calculated for SP-hACE2 and SP-Furin complexes. Comparison of the SP-hACE2 complex in the WT and B.1.617+ revealed both complexes have identical receptor-binding modes but the total BFE of B.1.617+ binding was more favorable for complex formation than WT, suggesting L452R and E484Q have a moderate impact on binding affinity. In contrast, the SP-Furin complex of B.1.617+ substantially lowered the BFE and revealed changes in molecular interactions compared to the WT complex, implying stronger complex formation between the variant and Furin. This study provides an insight into mutations that modulate transmissibility of the B.1.617+ variant, specifically the P681R mutation which appears to enhance transmissibility of the B.1.617+ variant by rendering it more receptive to Furin.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Centre for Vector-Borne Diseases, National Center for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
| |
Collapse
|
9
|
Elbehairy MA, Samal SK, Belov GA. Encoding of a transgene in-frame with a Newcastle disease virus protein increases transgene expression and stability. J Gen Virol 2022; 103. [PMID: 35758932 PMCID: PMC10027024 DOI: 10.1099/jgv.0.001761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newcastle disease virus (NDV) has been extensively explored as a vector for vaccine and oncolytic therapeutic development. In conventional NDV-based vectors, the transgene is arranged as a separate transcription unit in the NDV genome. Here, we expressed haemagglutinin protein (HA) of an avian influenza virus using an NDV vector design in which the transgene ORF is encoded in-frame with the ORF of an NDV gene. This arrangement does not increase the number of transcription units in the NDV genome, and imposes a selection pressure against mutations interrupting the transgene ORF. We placed the HA ORF upstream or downstream of N, M, F and HN ORFs of NDV so that both proteins are encoded in-frame and are separated by either a self-cleaving 2A peptide, furin cleavage site or both. Only constructs in which HA was placed downstream of the NDV HN were viable. These constructs expressed the transgene at a higher level compared to the vector encoding the same transgene in the same position in the NDV genome but as a separate transcription unit. Furthermore, the transgene expressed in one ORF with the NDV protein proved to be more stable over multiple passages. Thus, this design may be useful for applications where the stability of the transgene expression is highly important for a recombinant NDV vector.
Collapse
Affiliation(s)
- Mohamed A Elbehairy
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - George A Belov
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
10
|
Li J, Jia H, Tian M, Wu N, Yang X, Qi J, Ren W, Li F, Bian H. SARS-CoV-2 and Emerging Variants: Unmasking Structure, Function, Infection, and Immune Escape Mechanisms. Front Cell Infect Microbiol 2022; 12:869832. [PMID: 35646741 PMCID: PMC9134119 DOI: 10.3389/fcimb.2022.869832] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
As of April 1, 2022, over 468 million COVID-19 cases and over 6 million deaths have been confirmed globally. Unlike the common coronavirus, SARS-CoV-2 has highly contagious and attracted a high level of concern worldwide. Through the analysis of SARS-CoV-2 structural, non-structural, and accessory proteins, we can gain a deeper understanding of structure-function relationships, viral infection mechanisms, and viable strategies for antiviral therapy. Angiotensin-converting enzyme 2 (ACE2) is the first widely acknowledged SARS-CoV-2 receptor, but researches have shown that there are additional co-receptors that can facilitate the entry of SARS-CoV-2 to infect humans. We have performed an in-depth review of published papers, searching for co-receptors or other auxiliary membrane proteins that enhance viral infection, and analyzing pertinent pathogenic mechanisms. The genome, and especially the spike gene, undergoes mutations at an abnormally high frequency during virus replication and/or when it is transmitted from one individual to another. We summarized the main mutant strains currently circulating global, and elaborated the structural feature for increased infectivity and immune evasion of variants. Meanwhile, the principal purpose of the review is to update information on the COVID-19 outbreak. Many countries have novel findings on the early stage of the epidemic, and accruing evidence has rewritten the timeline of the outbreak, triggering new thinking about the origin and spread of COVID-19. It is anticipated that this can provide further insights for future research and global epidemic prevention and control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alfaro Alvarado LH, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie‐Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, Ortiz‐Alvarez de la Campa M, Paredes I, Wheeler B, Rupert A, Sam A, See K, Soto Zapata S, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first 6 months of the COVID-19 pandemic. Proteins 2022; 90:1054-1080. [PMID: 34580920 PMCID: PMC8661935 DOI: 10.1002/prot.26250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Christine Zardecki
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Elliott M. Dolan
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Changpeng Lu
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Zhuofan Shen
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shuchismita Dutta
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - John D. Westbrook
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Brian P. Hudson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David S. Goodsell
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- The Scripps Research InstituteLa JollaCaliforniaUSA
| | - Jonathan K. Williams
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Maria Voigt
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Vidur Sarma
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Lingjun Xie
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thejasvi Venkatachalam
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Steven Arnold
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | - Aaliyah Khan
- University of Maryland Baltimore CountyBaltimoreMarylandUSA
| | | | | | | | | | | | | | - Helen Zheng
- Watchung Hills Regional High SchoolWarrenNew JerseyUSA
| | | | | | - Mark Dresel
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | | | | | | | | | | | | | - Evan Lenkeit
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | | | | | | | | | - Andrew Sam
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Katherine See
- Rochester Institute of TechnologyRochesterNew YorkUSA
| | | | - Paul A. Craig
- Rochester Institute of TechnologyRochesterNew YorkUSA
| | | | - Jennifer Jiang
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | | | | | | | | | - Yana Bromberg
- Department of Biochemistry and MicrobiologyRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Jay Tischfield
- Department of GeneticsRutgers, The State University of New Jersey, and Human Genetics Institute of New JerseyPiscatawayNew JerseyUSA
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and MedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Eddy Arnold
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Center for Advanced Biotechnology and MedicineRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jean Baum
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jesse Sandberg
- Center for Computational and Integrative BiologyRutgers, The State University of New JerseyCamdenNew JerseyUSA
| | - Grace Brannigan
- Center for Computational and Integrative BiologyRutgers, The State University of New JerseyCamdenNew JerseyUSA
- Department of PhysicsRutgers, The State University of New JerseyCamdenNew JerseyUSA
| | - Sagar D. Khare
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Stephen K. Burley
- Institute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data BankRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer CenterUniversity of CaliforniaSan Diego, La JollaCaliforniaUSA
| |
Collapse
|
12
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
He Z, Khatib AM, Creemers JWM. The proprotein convertase furin in cancer: more than an oncogene. Oncogene 2022; 41:1252-1262. [PMID: 34997216 DOI: 10.1038/s41388-021-02175-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
Furin is the first discovered proprotein convertase member and is present in almost all mammalian cells. Therefore, by regulating the maturation of a wide range of proproteins, Furin expression and/or activity is involved in various physiological and pathophysiological processes ranging from embryonic development to carcinogenesis. Since many of these protein precursors are involved in initiating and maintaining the hallmarks of cancer, Furin has been proposed as a potential target for treating several human cancers. In contrast, other studies have revealed that some types of cancer do not benefit from Furin inhibition. Therefore, understanding the heterogeneous functions of Furin in cancer will provide important insights into the design of effective strategies targeting Furin in cancer treatment. Here, we present recent advances in understanding how Furin expression and activity are regulated in cancer cells and their influences on the activity of Furin substrates in carcinogenesis. Furthermore, we discuss how Furin represses tumorigenic properties of several cancer cells and why Furin inhibition leads to aggressive phenotypes in other tumors. Finally, we summarize the clinical applications of Furin inhibition in treating human cancers.
Collapse
Affiliation(s)
- Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.
- Institut Bergoinié, Bordeaux, France.
| | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Khan H, Winstone H, Jimenez-Guardeño JM, Graham C, Doores KJ, Goujon C, Matthews DA, Davidson AD, Rihn SJ, Palmarini M, Neil SJD, Malim MH. TMPRSS2 promotes SARS-CoV-2 evasion from NCOA7-mediated restriction. PLoS Pathog 2021; 17:e1009820. [PMID: 34807954 PMCID: PMC8648102 DOI: 10.1371/journal.ppat.1009820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.
Collapse
Affiliation(s)
- Hataf Khan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jose M. Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | | | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Suzannah J. Rihn
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Budhraja A, Pandey S, Kannan S, Verma CS, Venkatraman P. The polybasic insert, the RBD of the SARS-CoV-2 spike protein, and the feline coronavirus - evolved or yet to evolve. Biochem Biophys Rep 2021; 25:100907. [PMID: 33521335 PMCID: PMC7833556 DOI: 10.1016/j.bbrep.2021.100907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
Recent research on the SARS-CoV-2 pandemic has exploded around the furin-cleavable polybasic insert PRRAR↓S, found within the spike protein. The insert and the receptor-binding domain, (RBD), are vital clues in the Sherlock Holmes-like investigation into the origin of the virus and in its zoonotic crossover. Based on comparative analysis of the whole genome and the sequence features of the insert and the RBD domain, the bat and the pangolin have been proposed as very likely intermediary hosts. In this study, using the various databases, in-house developed tools, sequence comparisons, structure-guided docking, and molecular dynamics simulations, we cautiously present a fresh, theoretical perspective on the SARS-CoV-2 virus activation and its intermediary host. They are a) the SARS-CoV-2 has not yet acquired a fully optimal furin binding site or this seemingly less optimal sequence, PRRARS, has been selected for survival; b) in structural models of furin complexed with peptides, PRRAR↓S binds less well and with distinct differences as compared to the all basic RRKRR↓S; c) these differences may be exploited for the design of virus-specific inhibitors; d) the novel polybasic insert of SARS-CoV-2 may be promiscuous enough to be cleaved by multiple enzymes of the human airway epithelium and tissues which may explain its unexpected broad tropism; e) the RBD domain of the feline coronavirus spike protein carries residues that are responsible for high-affinity binding of the SARS-CoV-2 to the ACE 2 receptor; f) en route zoonotic transfer, the virus may have passed through the domestic cat whose very human-like ACE2 receptor and furin may have played some role in optimizing the traits required for zoonotic transfer. Polybasic insert of the SARS-CoV-2 spike protein is rare among several hundred proteins with a motif ‘RRARS’. SARS CoV-2 shares furin-like site and RBD interface residues including hotspot sites, with some of the lethal form of Feline coronavirus spike protein and those from the healthy cats. Polybasic sequence PRRARS binds less well to furin in structural models. SARS-CoV-2 may have passed through the domestic cat during zoonotic transfer.
Collapse
Affiliation(s)
- Anshul Budhraja
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, Plot No 50, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Sakshi Pandey
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector 15, Plot No 50, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
- Corresponding author. Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
| |
Collapse
|
17
|
Wan S, Cao S, Wang X, Zhou Y, Yan W, Gu X, Wu TC, Pang X. Generation and preliminary characterization of vertebrate-specific replication-defective Zika virus. Virology 2021; 552:73-82. [PMID: 33075709 PMCID: PMC7733535 DOI: 10.1016/j.virol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that replicates in both vertebrate and insect cells, whereas insect-specific flaviviruses (ISF) replicate only in insect cells. We sought to convert ZIKV, from a dual-tropic flavivirus, into an insect-specific virus for the eventual development of a safe ZIKV vaccine. Reverse genetics was used to introduce specific mutations into the furin cleavage motif within the ZIKV pre-membrane protein (prM). Mutant clones were selected, which replicated well in C6/36 insect cells but exhibited reduced replication in non-human primate (Vero) cells. Further characterization of the furin cleavage site mutants indicated they replicated poorly in both human (HeLa, U251), and baby hamster kidney (BHK-21) cells. One clone with the induced mutation in the prM protein and at positions 291and 452 within the NS3 protein was totally and stably replication-defective in vertebrate cells (VSRD-ZIKV). Preliminary studies in ZIKV sensitive, immunodeficient mice demonstrated that VSRD-ZIKV-infected mice survived and were virus-negative. Our study indicates that a reverse genetic approach targeting the furin cleavage site in prM can be used to select an insect-specific ZIKV with the potential utility as a vaccine strain.
Collapse
Affiliation(s)
- Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Weidong Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Tzyy-Choou Wu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
18
|
Papa G, Mallery DL, Albecka A, Welch LG, Cattin-Ortolá J, Luptak J, Paul D, McMahon HT, Goodfellow IG, Carter A, Munro S, James LC. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathog 2021; 17:e1009246. [PMID: 33493182 PMCID: PMC7861537 DOI: 10.1371/journal.ppat.1009246] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/04/2021] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Donna L. Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Lawrence G. Welch
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Jakub Luptak
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - David Paul
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Harvey T. McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, United Kingdom
| | - Andrew Carter
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Leo C. James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
19
|
Hatmal MM, Alshaer W, Al-Hatamleh MAI, Hatmal M, Smadi O, Taha MO, Oweida AJ, Boer JC, Mohamud R, Plebanski M. Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. Cells 2020; 9:2638. [PMID: 33302501 PMCID: PMC7763676 DOI: 10.3390/cells9122638] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has recently emerged in China and caused a disease called coronavirus disease 2019 (COVID-19). The virus quickly spread around the world, causing a sustained global outbreak. Although SARS-CoV-2, and other coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV) are highly similar genetically and at the protein production level, there are significant differences between them. Research has shown that the structural spike (S) protein plays an important role in the evolution and transmission of SARS-CoV-2. So far, studies have shown that various genes encoding primarily for elements of S protein undergo frequent mutation. We have performed an in-depth review of the literature covering the structural and mutational aspects of S protein in the context of SARS-CoV-2, and compared them with those of SARS-CoV and MERS-CoV. Our analytical approach consisted in an initial genome and transcriptome analysis, followed by primary, secondary and tertiary protein structure analysis. Additionally, we investigated the potential effects of these differences on the S protein binding and interactions to angiotensin-converting enzyme 2 (ACE2), and we established, after extensive analysis of previous research articles, that SARS-CoV-2 and SARS-CoV use different ends/regions in S protein receptor-binding motif (RBM) and different types of interactions for their chief binding with ACE2. These differences may have significant implications on pathogenesis, entry and ability to infect intermediate hosts for these coronaviruses. This review comprehensively addresses in detail the variations in S protein, its receptor-binding characteristics and detailed structural interactions, the process of cleavage involved in priming, as well as other differences between coronaviruses.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.A.I.A.-H.); (R.M.)
| | | | - Othman Smadi
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan;
| | - Mutasem O. Taha
- Drug Design and Discovery Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Ayman J. Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Jennifer C. Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia; (J.C.B.); (M.P.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia; (M.A.I.A.-H.); (R.M.)
- Hospital Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia; (J.C.B.); (M.P.)
| |
Collapse
|
20
|
Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alvarado LHA, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie-Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, de la Campa MOA, Paredes I, Wheeler B, Rupert A, Sam A, See K, Zapata SS, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33299989 DOI: 10.1101/2020.12.01.406637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
Collapse
|
21
|
Lemmin T, Kalbermatter D, Harder D, Plattet P, Fotiadis D. Structures and dynamics of the novel S1/S2 protease cleavage site loop of the SARS-CoV-2 spike glycoprotein. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100038. [PMID: 33043289 PMCID: PMC7534663 DOI: 10.1016/j.yjsbx.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023]
Abstract
At the end of 2019, a new highly virulent coronavirus known under the name SARS-CoV-2 emerged as a human pathogen. One key feature of SARS-CoV-2 is the presence of an enigmatic insertion in the spike glycoprotein gene representing a novel multibasic S1/S2 protease cleavage site. The proteolytic cleavage of the spike at this site is essential for viral entry into host cells. However, it has been systematically abrogated in structural studies in order to stabilize the spike in the prefusion state. In this study, multi-microsecond molecular dynamics simulations and ab initio modeling were leveraged to gain insights into the structures and dynamics of the loop containing the S1/S2 protease cleavage site. They unveiled distinct conformations, formations of short helices and interactions of the loop with neighboring glycans that could potentially regulate the accessibility of the cleavage site to proteases and its processing. In most conformations, this loop protrudes from the spike, thus representing an attractive SARS-CoV-2 specific therapeutic target.
Collapse
Affiliation(s)
- Thomas Lemmin
- DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, CH-8092 Zürich, Switzerland.,Trkola Group, Institute for Virology, University of Zurich, CH-8057 Zürich, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Philippe Plattet
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
22
|
Liu S, Shen J, Fang S, Li K, Liu J, Yang L, Hu CD, Wan J. Genetic Spectrum and Distinct Evolution Patterns of SARS-CoV-2. Front Microbiol 2020; 11:593548. [PMID: 33101264 PMCID: PMC7545136 DOI: 10.3389/fmicb.2020.593548] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Four signature groups of frequently occurred single-nucleotide variants (SNVs) were identified in over twenty-eight thousand high-quality and high-coverage SARS-CoV-2 complete genome sequences, representing different viral strains. Some SNVs predominated but were mutually exclusively presented in patients from different countries and areas. These major SNV signatures exhibited distinguishable evolution patterns over time. A few hundred patients were detected with multiple viral strain-representing mutations simultaneously, which may stand for possible co-infection or potential homogenous recombination of SARS-CoV-2 in environment or within the viral host. Interestingly nucleotide substitutions among SARS-CoV-2 genomes tended to switch between bat RaTG13 coronavirus sequence and Wuhan-Hu-1 genome, indicating the higher genetic instability or tolerance of mutations on those sites or suggesting that major viral strains might exist between Wuhan-Hu-1 and RaTG13 coronavirus.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Collaborative Core for Cancer Bioinformatics (C3B) shared by Indiana University Simon Comprehensive Cancer Center and Purdue University Center for Cancer Research, Indianapolis, IN, United States
| | - Jikui Shen
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shuyi Fang
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kailing Li
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Collaborative Core for Cancer Bioinformatics (C3B) shared by Indiana University Simon Comprehensive Cancer Center and Purdue University Center for Cancer Research, Indianapolis, IN, United States.,Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States.,The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
23
|
Liu S, Shen J, Fang S, Li K, Liu J, Yang L, Hu CD, Wan J. Genetic spectrum and distinct evolution patterns of SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32588000 DOI: 10.1101/2020.06.16.20132902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Four signature groups of frequently occurred single-nucleotide variants (SNVs) were identified in over twenty-eight thousand high-quality and high-coverage SARS-CoV-2 complete genome sequences, representing different viral strains. Some SNVs predominated but were mutually exclusively presented in patients from different countries and areas. These major SNV signatures exhibited distinguishable evolution patterns over time. A few hundred patients were detected with multiple viral strain-representing mutations simultaneously, which may stand for possible co-infection or potential homogenous recombination of SARS-CoV-2 in environment or within the viral host. Interestingly nucleotide substitutions among SARS-CoV-2 genomes tended to switch between bat RaTG13 coronavirus sequence and Wuhan-Hu-1 genome, indicating the higher genetic instability or tolerance of mutations on those sites or suggesting that major viral strains might exist between Wuhan-Hu-1 and RaTG13 coronavirus.
Collapse
|
24
|
Schneck NA, Ivleva VB, Cai CX, Cooper JW, Lei QP. Characterization of the furin cleavage motif for HIV-1 trimeric envelope glycoprotein by intact LC-MS analysis. Analyst 2020; 145:1636-1640. [PMID: 31932825 PMCID: PMC10246425 DOI: 10.1039/c9an02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Generating a soluble and native-like trimeric envelope glycoprotein (Env) with high efficacy as an immunogen has been a major focus for developing an effective vaccine against HIV-1. The Env immunogen is a heavily glycosylated protein composed of 3 identical surface gp120 and gp41 subunits that form into a trimer of heterodimers (3 × 28 N-glycan sites). During Env immunogen production, endogenous furin works to cleave a hexa-arginine motif connecting the gp120 and gp41 subunits, which is needed to ensure proper protein folding and a native-like conformation of Env. Verification of the overall identity and proteolytic cleavage of Env is therefore important for HIV-1 vaccine development and product quality. Herein, we report the first work using LC-MS to (1) achieve fast and accurate intact mass measurement of Env after deglycosylation and (2) confidently identify the furin cleavage sites.
Collapse
Affiliation(s)
- Nicole A Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Cindy X Cai
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA.
| |
Collapse
|
25
|
Izaguirre G. The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein Convertases. Viruses 2019; 11:v11090837. [PMID: 31505793 PMCID: PMC6784293 DOI: 10.3390/v11090837] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity. Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases intracellularly during morphogenesis or extracellularly after egress and during entry in order to produce mature virions activated for infection. Although viruses also take advantage of other proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity. Besides reacting with furin, some viruses may also react with the PCs of the other specificity group constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been developed and tested for their antiviral activity in cell-based assays.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Sun X, Belser JA, Yang H, Pulit-Penaloza JA, Pappas C, Brock N, Zeng H, Creager HM, Stevens J, Maines TR. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology 2019; 535:232-240. [PMID: 31325838 DOI: 10.1016/j.virol.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that despite no airborne transmissibility increase compared to low pathogenic avian influenza viruses, select human isolates of highly pathogenic avian influenza A(H7N9) virus exhibit greater virulence in animal models and a lower threshold pH for fusion. In the current study, we utilized both in vitro and in vivo approaches to identify key residues responsible for hemagglutinin (HA) intracellular cleavage, acid stability, and virulence in mice. We found that the four amino acid insertion (-KRTA-) at the HA cleavage site of A/Taiwan/1/2017 virus is essential for HA intracellular cleavage and contributes to disease in mice. Furthermore, a lysine to glutamic acid mutation at position HA2-64 increased the threshold pH for HA activation, reduced virus stability, and replication in mice. Identification of a key residue responsible for enhanced acid stability of A(H7N9) viruses is of great significance for future surveillance activities and improvements in vaccine stability.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
27
|
Lee SN, Ahn JS, Lee SG, Lee HS, Choi AMK, Yoon JH. Integrins αvβ5 and αvβ6 Mediate IL-4–induced Collective Migration in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2019; 60:420-433. [DOI: 10.1165/rcmb.2018-0081oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Seong Gyu Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Hyung-Suk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Augustine M. K. Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Joo-Heon Yoon
- The Airway Mucus Institute and
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Risk Assessment of Fifth-Wave H7N9 Influenza A Viruses in Mammalian Models. J Virol 2018; 93:JVI.01740-18. [PMID: 30305359 DOI: 10.1128/jvi.01740-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023] Open
Abstract
The fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells. We found that an LPAI virus exhibited a similar capacity to replicate and cause disease in two animal species as viruses from previous waves. In contrast, HPAI H7N9 viruses possessed enhanced virulence, causing greater lethargy and mortality, with an extended tropism for brain tissues in both ferret and mouse models. These HPAI viruses also showed signs of adaptation to mammalian hosts by acquiring the ability to fuse at a lower pH threshold than other H7N9 viruses. All of the fifth-wave H7N9 viruses were able to transmit among cohoused ferrets but exhibited a limited capacity to transmit by respiratory droplets, and deep sequencing analysis revealed that the H7N9 viruses sampled after transmission showed a reduced amount of minor variants. Taken together, we conclude that the fifth-wave HPAI H7N9 viruses have gained the ability to cause enhanced disease in mammalian models and with further adaptation may acquire the ability to cause an H7N9 pandemic.IMPORTANCE The potential pandemic risk posed by avian influenza H7N9 viruses was heightened during the fifth epidemic wave in China due to the sudden increase in the number of human infections and the emergence of antigenically distinct LPAI and HPAI H7N9 viruses. In this study, a group of fifth-wave HPAI and LPAI viruses was evaluated for its ability to infect, cause disease, and transmit in small-animal models. The ability of HPAI H7N9 viruses to cause more severe disease and to replicate in brain tissues in animal models as well as their ability to fuse at a lower pH threshold than LPAI H7N9 viruses suggests that the fifth-wave H7N9 viruses have evolved to acquire novel traits with the potential to pose a higher risk to humans. Although the fifth-wave H7N9 viruses have not yet gained the ability to transmit efficiently by air, continuous surveillance and risk assessment remain essential parts of our pandemic preparedness efforts.
Collapse
|
29
|
Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. J Virol 2018; 92:JVI.02106-17. [PMID: 29593032 DOI: 10.1128/jvi.02106-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus 16 (HPV16) is the leading cause of cervical cancer. For initial infection, HPV16 utilizes a novel endocytic pathway for host cell entry. Unique among viruses, uptake occurs asynchronously over a protracted period of time, with half-times between 9 and 12 h. To trigger endocytic uptake, the virus particles need to undergo a series of structural modifications after initial binding to heparan sulfate proteoglycans (HSPGs). These changes involve proteolytic cleavage of the major capsid protein L1 by kallikrein-8 (KLK8), exposure of the N terminus of the minor capsid protein L2 by cyclophilins, and cleavage of this N terminus by furin. Overall, the structural changes are thought to facilitate the engagement of an elusive secondary receptor for internalization. Here, we addressed whether structural changes are the rate-limiting steps during infectious internalization of HPV16 by using structurally primed HPV16 particles. Our findings indicate that the structural modifications mediated by cyclophilins and furin, which lead to exposure and cleavage, respectively, of the L2 N terminus contribute to the slow and asynchronous internalization kinetics, whereas conformational changes elicited by HSPG binding and KLK8 cleavage did not. However, these structural modifications accounted for only 30 to 50% of the delay in internalization. Therefore, we propose that limited internalization receptor availability for engagement of HPV16 causes slow and asynchronous internalization in addition to rate-limiting structural changes in the viral capsid.IMPORTANCE HPVs are the main cause of anogenital cancers. Their unique biology is linked to the differentiation program of skin or mucosa. Here, we analyzed another unique aspect of HPV infections using the prototype HPV16. After initial cell binding, HPVs display an unusually protracted residence time on the plasma membrane prior to asynchronous uptake. As viruses typically do not expose themselves to host immune sensing, we analyzed the underlying reasons for this unusual behavior. This study provides evidence that both extracellular structural modifications and possibly a limited availability of the internalization receptor contribute to the slow internalization process of the virus. These findings indicate that perhaps a unique niche for initial infection that could allow for rapid infection exists. In addition, our results may help to develop novel, preventive antiviral measures.
Collapse
|
30
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
31
|
An easy-to-use FRET protein substrate to detect calpain cleavage in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:221-230. [DOI: 10.1016/j.bbamcr.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023]
|
32
|
Dahms SO, Hardes K, Steinmetzer T, Than ME. X-ray Structures of the Proprotein Convertase Furin Bound with Substrate Analogue Inhibitors Reveal Substrate Specificity Determinants beyond the S4 Pocket. Biochemistry 2018; 57:925-934. [PMID: 29314830 DOI: 10.1021/acs.biochem.7b01124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proprotein convertase furin is a highly specific serine protease modifying and thereby activating proteins in the secretory pathway by proteolytic cleavage. Its substrates are involved in many diseases, including cancer and infections caused by bacteria and viruses. Understanding furin's substrate specificity is crucially important for the development of pharmacologically applicable inhibitors. Using protein X-ray crystallography, we investigated the extended substrate binding site of furin in complex with three peptide-derived inhibitors at up to 1.9 Å resolution. The structure of the protease bound with a hexapeptide inhibitor revealed molecular details of its S6 pocket, which remained completely unknown so far. The arginine residue at P6 induced an unexpected turnlike conformation of the inhibitor backbone, which is stabilized by intra- and intermolecular H-bonds. In addition, we confirmed the binding of arginine to the previously proposed S5 pocket (S51). An alternative S5 site (S52) could be utilized by shorter side chains as demonstrated for a 4-aminomethyl-phenylacetyl residue, which shows steric properties similar to those of a lysine side chain. Interestingly, we also observed binding of a peptide with citrulline at P4 substituting for the highly conserved arginine. The structural data might indicate an unusual protonation state of Asp264 maintaining the interaction with uncharged citrulline. The herein identified molecular interaction sites at P5 and P6 can be utilized to improve next-generation furin inhibitors. Our data will also help to predict furin substrates more precisely on the basis of the additional specificity determinants observed for P5 and P6.
Collapse
Affiliation(s)
- Sven O Dahms
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria.,Protein Crystallography Group, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Beutenbergstrasse 11, 07745 Jena, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg , Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) , Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
33
|
Beilhartz GL, Sugiman-Marangos SN, Melnyk RA. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochem Pharmacol 2017; 142:13-20. [DOI: 10.1016/j.bcp.2017.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
|
34
|
Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets. Atherosclerosis 2017; 262:163-170. [DOI: 10.1016/j.atherosclerosis.2017.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
|
35
|
Lee SN, Choi IS, Kim HJ, Yang EJ, Min HJ, Yoon JH. Proprotein convertase inhibition promotes ciliated cell differentiation - a potential mechanism for the inhibition of Notch1 signalling by decanoyl-RVKR-chloromethylketone. J Tissue Eng Regen Med 2016; 11:2667-2680. [PMID: 27878968 PMCID: PMC6214225 DOI: 10.1002/term.2240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 04/22/2016] [Accepted: 06/17/2016] [Indexed: 01/17/2023]
Abstract
Chronic repetitive rounds of injury and repair in the airway lead to airway remodelling, including ciliated cell loss and mucous cell hyperplasia. Airway remodelling is mediated by many growth and differentiation factors including Notch1, which are proteolytically processed by proprotein convertases (PCs). The present study evaluated a novel approach for controlling basal cell‐type determination based on the inhibition of PCs. It was found that decanoyl‐RVKR‐chloromethylketone (CMK), a PC inhibitor, promotes ciliated cell differentiation and has no effect on the ciliary beat frequency in air–liquid interface (ALI) cultures of human nasal epithelial cells (HNECs). Comparative microarray analysis revealed that CMK considerably increases ciliogenesis‐related gene expression. Use of cell‐permeable and cell‐impermeable PC inhibitors suggests that intracellular PCs regulate basal cell‐type determination in ALI culture. Furthermore, CMK effect on ciliated cell differentiation was reversed by a Notch inhibitor N‐[N‐(3,5‐difluorophenacetyl)‐l‐alanyl]‐S‐phenylglycine t‐butyl ester (DAPT). CMK inhibited the processing of Notch1, a key regulator of basal cell differentiation toward secretory cell lineages in the airway epithelium, and down‐regulated the expression of Notch1 target genes together with furin, a PC. Specific lentiviral shRNA‐mediated knockdown of furin resulted in reduced Notch1 processing and increased numbers of ciliated cells in HNECs. Moreover, CMK inhibited Notch1 processing and promoted regeneration and ciliogenesis of the mouse nasal respiratory epithelium after ZnSO4 injury. These observations suggest that PC inhibition promotes airway ciliated cell differentiation, possibly through suppression of furin‐mediated Notch1 processing. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd
Collapse
Affiliation(s)
- Sang-Nam Lee
- Research Centre for Human Natural Defence System, Yonsei University College of Medicine, Seoul, Korea
| | - In-Suk Choi
- Research Centre for Human Natural Defence System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jun Kim
- Department of Otorhinolaryngology, School of Medicine, Ajou University, Seoul, Korea
| | - Eun Jin Yang
- Clinical Research Division, Korea Institute of Oriental Medicine, Seoul, Korea
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Research Centre for Human Natural Defence System, Yonsei University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Brandes N, Ofer D, Linial M. ASAP: a machine learning framework for local protein properties. Database (Oxford) 2016; 2016:baw133. [PMID: 27694209 PMCID: PMC5045867 DOI: 10.1093/database/baw133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 08/28/2016] [Indexed: 11/14/2022]
Abstract
Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial similarity. Machine Learning (ML) methods are becoming fundamental in annotating unknown proteins and their heterogeneous properties. We present ASAP (Amino-acid Sequence Annotation Prediction), a universal ML framework for predicting residue-level properties. ASAP extracts numerous features from raw sequences, and supports easy integration of external features such as secondary structure, solvent accessibility, intrinsically disorder or PSSM profiles. Features are then used to train ML classifiers. ASAP can create new classifiers within minutes for a variety of tasks, including PTM prediction (e.g. cleavage sites by convertase, phosphoserine modification). We present a detailed case study for ASAP: CleavePred, an ASAP-based model to predict protein precursor cleavage sites, with state-of-the-art results. Protein cleavage is a PTM shared by a wide variety of proteins sharing minimal sequence similarity. Current rule-based methods suffer from high false positive rates, making them suboptimal. The high performance of CleavePred makes it suitable for analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass spectrometry search engines and the discovery of new bioactive peptides from precursors. ASAP functions as a baseline approach for residue-level protein sequence prediction. CleavePred is freely accessible as a web-based application. Both ASAP and CleavePred are open-source with a flexible Python API.Database URL: ASAP's and CleavePred source code, webtool and tutorials are available at: https://github.com/ddofer/asap; http://protonet.cs.huji.ac.il/cleavepred.
Collapse
Affiliation(s)
- Nadav Brandes
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dan Ofer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
37
|
Hapuarachchi HC, Koo C, Kek R, Xu H, Lai YL, Liu L, Kok SY, Shi Y, Chuen RLT, Lee KS, Maurer-Stroh S, Ng LC. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Sci Rep 2016; 6:22592. [PMID: 26940650 PMCID: PMC4778070 DOI: 10.1038/srep22592] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013–2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design.
Collapse
Affiliation(s)
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Relus Kek
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lilac Liu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suet Yheng Kok
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Raphael Lee Tze Chuen
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671
| | - Kim-Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Block 83, #04-00, 535 Clementi Road, Singapore 599489
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551.,National Public Health Laboratory (NPHL), Ministry of Health (MOH), 3 Biopolis Drive, #05-14 to 16, Synapse, Singapore 138623
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
38
|
Sun X, Belser JA, Tumpey TM. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice. Virology 2015; 488:120-8. [PMID: 26629952 DOI: 10.1016/j.virol.2015.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023]
Abstract
In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice.
Collapse
Affiliation(s)
- Xiangjie Sun
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunology and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunology and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Terrence M Tumpey
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunology and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
39
|
Hernandez F, Huether R, Carter L, Johnston T, Thompson J, Gossage JR, Chao E, Elliott AM. Mutations in RASA1 and GDF2 identified in patients with clinical features of hereditary hemorrhagic telangiectasia. Hum Genome Var 2015; 2:15040. [PMID: 27081547 PMCID: PMC4785548 DOI: 10.1038/hgv.2015.40] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder caused by mutations in ENG, ACVRL1 and SMAD4, which function in regulating the transforming growth factor beta and bone morphogenetic protein signaling pathways. Symptoms of HHT can be present in individuals who test negative for mutations in these three genes indicating other genes may be involved. In this study, we tested for mutations in two genes, RASA1 and GDF2, which were recently reported to be involved in vascular disorders. To determine whether RASA1 and GDF2 have phenotypic overlap with HHT and should be included in diagnostic testing, we developed a next-generation sequencing assay to detect mutations in 93 unrelated individuals who previously tested negative for mutations in ENG, ACVRL1 and SMAD4, but were clinically suspected to have HHT. Pathogenic mutations in RASA1 were identified in two samples (2.15%) and a variant of unknown significance in GDF2 was detected in one sample. All three individuals experienced epistaxis with dermal lesions described in medical records as telangiectases. These results indicate that the inclusion of RASA1 and GDF2 screening in individuals suspected to have HHT will increase the detection rate and aid clinicians in making an accurate diagnosis.
Collapse
Affiliation(s)
- Felicia Hernandez
- Department of Research and Development, Ambry Genetics , Aliso Viejo, CA, USA
| | - Robert Huether
- Department of Bioinformatics, Ambry Genetics , Aliso Viejo, CA, USA
| | - Lester Carter
- Department of Bioinformatics, Ambry Genetics , Aliso Viejo, CA, USA
| | - Tami Johnston
- Department of Clinical Genetics, Ambry Genetics , Aliso Viejo, CA, USA
| | - Jennifer Thompson
- Department of Clinical Genetics, Ambry Genetics , Aliso Viejo, CA, USA
| | - James R Gossage
- Division of Pulmonary/Critical Care, Georgia Regents University , Augusta, GA, USA
| | - Elizabeth Chao
- Department of Clinical Genetics, Ambry Genetics , Aliso Viejo, CA, USA
| | - Aaron M Elliott
- Department of Research and Development, Ambry Genetics , Aliso Viejo, CA, USA
| |
Collapse
|
40
|
Kukreja M, Shiryaev SA, Cieplak P, Muranaka N, Routenberg DA, Chernov AV, Kumar S, Remacle AG, Smith JW, Kozlov IA, Strongin AY. High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family. ACTA ACUST UNITED AC 2015; 22:1122-33. [PMID: 26256476 DOI: 10.1016/j.chembiol.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design.
Collapse
Affiliation(s)
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Igor A Kozlov
- Prognosys Biosciences Inc., San Diego, CA 92121, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Kumar S, Ratnikov BI, Kazanov MD, Smith JW, Cieplak P. CleavPredict: A Platform for Reasoning about Matrix Metalloproteinases Proteolytic Events. PLoS One 2015; 10:e0127877. [PMID: 25996941 PMCID: PMC4440711 DOI: 10.1371/journal.pone.0127877] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
CleavPredict (http://cleavpredict.sanfordburnham.org) is a Web server for substrate cleavage prediction for matrix metalloproteinases (MMPs). It is intended as a computational platform aiding the scientific community in reasoning about proteolytic events. CleavPredict offers in silico prediction of cleavage sites specific for 11 human MMPs. The prediction method employs the MMP specific position weight matrices (PWMs) derived from statistical analysis of high-throughput phage display experimental results. To augment the substrate cleavage prediction process, CleavPredict provides information about the structural features of potential cleavage sites that influence proteolysis. These include: secondary structure, disordered regions, transmembrane domains, and solvent accessibility. The server also provides information about subcellular location, co-localization, and co-expression of proteinase and potential substrates, along with experimentally determined positions of single nucleotide polymorphism (SNP), and posttranslational modification (PTM) sites in substrates. All this information will provide the user with perspectives in reasoning about proteolytic events. CleavPredict is freely accessible, and there is no login required.
Collapse
Affiliation(s)
- Sonu Kumar
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Boris I. Ratnikov
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Marat D. Kazanov
- Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Jeffrey W. Smith
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Piotr Cieplak
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Oksanen A, Aittomäki S, Jankovic D, Ortutay Z, Pulkkinen K, Hämäläinen S, Rokka A, Corthals GL, Watford WT, Junttila I, O'Shea JJ, Pesu M. Proprotein convertase FURIN constrains Th2 differentiation and is critical for host resistance against Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2014; 193:5470-9. [PMID: 25355923 DOI: 10.4049/jimmunol.1401629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proprotein convertase subtilisin/kexin enzymes proteolytically convert immature proproteins into bioactive molecules, and thereby they serve as key regulators of cellular homeostasis. The archetype proprotein convertase subtilisin/kexin, FURIN, is a direct target gene of the IL-12/STAT4 pathway and it is upregulated in Th1 cells. We have previously demonstrated that FURIN expression in T cells critically regulates the maintenance of peripheral immune tolerance and the functional maturation of pro-TGF-β1 in vivo, but FURIN's role in cell-mediated immunity and Th polarization has remained elusive. In this article, we show that T cell-expressed FURIN is essential for host resistance against a prototypic Th1 pathogen, Toxoplasma gondii, and for the generation of pathogen-specific Th1 lymphocytes, including Th1-IL-10 cells. FURIN-deficient Th cells instead show elevated expression of IL-4R subunit α on cell surface, sensitized IL-4/STAT6 signaling, and a propensity to polarize toward the Th2 phenotype. By exploring FURIN-interacting proteins in Jurkat T cells with Strep-Tag purification and mass spectrometry, we further identify an association with a cytoskeleton modifying Ras-related C3 botulinum toxin substrate/dedicator of cytokinesis 2 protein complex and unravel that FURIN promotes F-actin polymerization, which has previously been shown to downregulate IL-4R subunit α cell surface expression and promote Th1 responses. In conclusion, our results demonstrate that in addition to peripheral immune tolerance, T cell-expressed FURIN is also a central regulator of cell-mediated immunity and Th1/2 cell balance.
Collapse
Affiliation(s)
- Anna Oksanen
- Laboratory of Immunoregulation, BioMediTech, University of Tampere, 33014 Tampere, Finland
| | - Saara Aittomäki
- Laboratory of Immunoregulation, BioMediTech, University of Tampere, 33014 Tampere, Finland
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Zsuzsanna Ortutay
- Laboratory of Immunoregulation, BioMediTech, University of Tampere, 33014 Tampere, Finland
| | - Kati Pulkkinen
- Laboratory of Immunoregulation, BioMediTech, University of Tampere, 33014 Tampere, Finland
| | - Sanna Hämäläinen
- Laboratory of Immunoregulation, BioMediTech, University of Tampere, 33014 Tampere, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Garry L Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1090 GD Amsterdam, the Netherlands
| | - Wendy T Watford
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Ilkka Junttila
- Fimlab Laboratories, Pirkanmaa Hospital District, 33101 Tampere, Finland; School of Medicine, University of Tampere, 33014 Tampere, Finland; and
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Marko Pesu
- Laboratory of Immunoregulation, BioMediTech, University of Tampere, 33014 Tampere, Finland; Fimlab Laboratories, Pirkanmaa Hospital District, 33101 Tampere, Finland; Department of Dermatology, Pirkanmaa Hospital District, 33101 Tampere, Finland
| |
Collapse
|
43
|
Mu J, Liu F, Rajab MS, Shi M, Li S, Goh C, Lu L, Xu QH, Liu B, Ng LG, Xing B. A Small-Molecule FRET Reporter for the Real-Time Visualization of Cell-Surface Proteolytic Enzyme Functions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Mu J, Liu F, Rajab MS, Shi M, Li S, Goh C, Lu L, Xu QH, Liu B, Ng LG, Xing B. A Small-Molecule FRET Reporter for the Real-Time Visualization of Cell-Surface Proteolytic Enzyme Functions. Angew Chem Int Ed Engl 2014; 53:14357-62. [DOI: 10.1002/anie.201407182] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/26/2014] [Indexed: 01/16/2023]
|
45
|
Chuang KH, Hsieh YC, Chiang IS, Chuang CH, Kao CH, Cheng TC, Wang YT, Lin WW, Chen BM, Roffler SR, Huang MY, Cheng TL. High-throughput sorting of the highest producing cell via a transiently protein-anchored system. PLoS One 2014; 9:e102569. [PMID: 25036759 PMCID: PMC4103822 DOI: 10.1371/journal.pone.0102569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Developing a high-throughput method for the effecient selection of the highest producing cell is very important for the production of recombinant protein drugs. Here, we developed a novel transiently protein-anchored system coupled with fluorescence activated cell sorting (FACS) for the efficient selection of the highest producing cell. A furin cleavage peptide (RAKR) was used to join a human anti-epithelial growth factor antibody (αEGFR Ab) and the extracellular-transmembrane-cytosolic domains of the mouse B7-1 antigen (B7). The furin inhibitor can transiently switch secreted αEGFR Ab into a membrane-anchored form. After cell sorting, the level of membrane αEGFR Ab-RAKR-B7 is proportional to the amount of secreted αEGFR Ab in the medium. We further selected 23 αEGFR Ab expressing cells and demonstrated a high correlation (R2 = 0.9165) between the secretion level and surface expression levels of αEGFR Ab. These results suggested that the novel transiently protein-anchored system can easily and efficiently select the highest producing cells, reducing the cost for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Clinical Drug Discovery from Botanical Herbs, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Chin Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Shiuan Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Han Kao
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chun Cheng
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (MYH); (TLC)
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail: (MYH); (TLC)
| |
Collapse
|
46
|
Shiryaev SA, Aleshin AE, Muranaka N, Kukreja M, Routenberg DA, Remacle AG, Liddington RC, Cieplak P, Kozlov IA, Strongin AY. Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island. FEBS J 2014; 281:2487-502. [PMID: 24698179 DOI: 10.1111/febs.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
Abstract
Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases.
Collapse
|
47
|
Turpeinen H, Ortutay Z, Pesu M. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr Genomics 2014; 14:453-67. [PMID: 24396277 PMCID: PMC3867721 DOI: 10.2174/1389202911314050010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 12/16/2022] Open
Abstract
Members of the substilisin/kexin like proprotein convertase (PCSK) protease family cleave and convert immature pro-proteins into their biologically active forms. By cleaving for example prohormones, cytokines and cell membrane proteins, PCSKs participate in maintaining the homeostasis in a healthy human body. Conversely, erratic enzymatic function is thought to contribute to the pathogenesis of a wide variety of diseases, including obesity and hypercholestrolemia. The first characterized seven PCSK enzymes (PCSK1-2, FURIN, PCSK4-7) process their substrates at a motif made up of paired basic amino acid residues. This feature results in a variable degree of biochemical redundancy in vitro, and consequently, shared substrate molecules between the different PCSK enzymes. This redundancy has confounded our understanding of the specific biological functions of PCSKs. The physiological roles of these enzymes have been best illustrated by the phenotypes of genetically engineered mice and patients that carry mutations in the PCSK genes. Recent developments in genome-wide methodology have generated a large amount of novel information on the genetics of the first seven proprotein convertases. In this review we summarize the reported genetic alterations and their associated phenotypes.
Collapse
Affiliation(s)
- Hannu Turpeinen
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland
| | - Zsuzsanna Ortutay
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland; ; Fimlab laboratories, Pirkanmaa Hospital District, Finland
| |
Collapse
|
48
|
Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, Dambacher CM, Capek P, Kukreja M, Kozlov IA, Perucho M, Cieplak P, Strongin AY. Substrate cleavage profiling suggests a distinct function of Bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem 2013; 288:34956-67. [PMID: 24145028 DOI: 10.1074/jbc.m113.516153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.
Collapse
Affiliation(s)
- Sergey A Shiryaev
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037 and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|