1
|
Wang Q, Aye L, Schumacher JG, Swan A, Cai W, Su C, Chen X, Yang K. Dysregulated angiogenin and related pathways in the ventral midbrain of "redhead" mice with MC1R disruption. J Neurophysiol 2025; 133:1740-1748. [PMID: 40214139 DOI: 10.1152/jn.00627.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/06/2025] [Accepted: 04/04/2025] [Indexed: 05/23/2025] Open
Abstract
A relationship between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and Parkinson's disease (PD) has been previously suggested. The present study aims to investigate the gene expression pattern in the ventral midbrain (VMB) of MC1R extension (MC1Re/e) mice to provide insights into the underlying mechanism of dopaminergic neuron loss in these mice. RNA sequencing (RNA-seq) was conducted on VMB tissues from MC1Re/e mice and their wild-type (WT) C57BL/6J littermates. Gene expression levels and pathway activity were assessed using differential gene expression analysis, Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). To validate the RNA-seq results, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting (WB), and ELISA were performed. Our analyses found significant transcriptomic differences in the VMB between MC1Re/e mice and WT controls. Several immune response-related pathways were identified to be downregulated in the MC1Re/e group. Angiogenin (ANG) was implicated in several of the enriched pathways in MC1Re/e mice. Furthermore, Ang was found to be significantly downregulated in the VMB of MC1Re/e mice, which was confirmed at both mRNA and protein levels. There was no significant difference in Ang protein levels in the serum of MC1Re/e and WT mice. Our results suggest a differential gene expression pattern in the VMB as a result of MC1R mutation. Notably, lower Ang expression may be involved in the neuronal loss observed in the VMB of the MC1Re/e mice.NEW & NOTEWORTHY Our study identifies reduced angiogenin (Ang) expression in the ventral midbrain (VMB) of MC1Re/e mice, validated through RNA-seq, RT-qPCR, and Western blot. This CNS-specific downregulation suggests localized regulatory mechanisms linked to neuroprotection and Parkinson's disease (PD) pathogenesis. Ang's role in neurodegeneration, angiogenesis, and oxidative stress responses highlights its therapeutic potential in PD. These findings provide critical insights into Ang's CNS-specific function and underscore the importance of further research into its mechanistic role in PD.
Collapse
Affiliation(s)
- Qing Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ling Aye
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jackson G Schumacher
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychology and Neuroscience, Morrissey College of Arts and Sciences, Boston College, Boston, Massachusetts, United States
| | - Aidan Swan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Behavioral Neuroscience, College of Science, Northeastern University, Boston, Massachusetts, United States
| | - Waijiao Cai
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chienwen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Xiqun Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Kai Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Zhou Y, Rashad S, Niizuma K. Transcriptome-wide alternative mRNA splicing analysis reveals post-transcriptional regulation of neuronal differentiation. FEBS J 2025; 292:2051-2070. [PMID: 39853922 PMCID: PMC12001157 DOI: 10.1111/febs.17408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Alternative splicing (AS) plays an important role in neuronal development, function, and disease. Efforts to analyze the transcriptome of AS in neurons on a wide scale are currently limited. We characterized the transcriptome-wide AS changes in SH-SY5Y neuronal differentiation model, which is widely used to study neuronal function and disorders. Our analysis revealed global changes in five AS programs that drive neuronal differentiation. Motif analysis revealed the contribution of RNA-binding proteins (RBPs) to the regulation of AS during neuronal development. We concentrated on the primary alternative splicing program that occurs during differentiation, specifically on events involving exon skipping (SE). Motif analysis revealed motifs for polypyrimidine tract-binding protein 1 (PTB) and ELAV-like RNA binding protein 1 (HuR/ELAVL1) to be the top enriched in SE events, and their protein levels were downregulated after differentiation. shRNA knockdown of either PTB and HuR was associated with enhanced neuronal differentiation and transcriptome-wide exon skipping events that drive the process of differentiation. At the level of gene expression, we observed only modest changes, indicating predominant post-transcriptional effects of PTB and HuR. We also observed that both RBPs altered cellular responses to oxidative stress, in line with the differentiated phenotype observed after either gene knockdown. Our work characterizes the AS changes in a widely used and important model of neuronal development and neuroscience research and reveals intricate post-transcriptional regulation of neuronal differentiation.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
3
|
Zhao S, Wang Y, Zhou L, Li Z, Weng Q. Exploring the Potential of tsRNA as Biomarkers for Diagnosis and Treatment of Neurogenetic Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04760-5. [PMID: 40009263 DOI: 10.1007/s12035-025-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
tRNA-derived small RNA (tsRNA) is a recently discovered small non-coding RNA (ncRNA) molecule that widely exists in prokaryotic and eukaryotic transcriptomes and is produced by specific cleavage of mature tRNA or precursor tRNA. In recent years, with the development of high-throughput sequencing technology, tsRNA has been found to have a variety of biological functions, including gene expression regulation, stress signal activation, etc. In addition, it has been found that these molecules are abnormally expressed in various diseases and participate in various pathological processes, which play an important role. At present, more and more studies have shown that the expression level of tsRNA changes significantly during the development of neurogenetic diseases. This review provides an overview of the classification and biological functions of tsRNAs, with a particular emphasis on their roles in neurogenetic disorders and their potential as diagnostic biomarkers and therapeutic targets. Despite the nascent stage of tsRNA research, their relevance to the diagnosis and treatment of neurogenetic diseases warrants further investigation.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujia Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liqun Zhou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Qiuyan Weng
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
4
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
5
|
Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J 2022; 41:e110501. [PMID: 35791631 PMCID: PMC9379547 DOI: 10.15252/embj.2021110501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Nölle
- Department of Pathology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Margherita Farina
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Truus Em Abbink
- Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Yang H, Yuan L, Ibaragi S, Li S, Shapiro R, Vanli N, Goncalves KA, Yu W, Kishikawa H, Jiang Y, Hu AJ, Jay D, Cochran B, Holland EC, Hu GF. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer 2022; 127:422-435. [PMID: 35418212 PMCID: PMC9345892 DOI: 10.1038/s41416-022-01814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated. METHODS Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models. RESULTS Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf-/-:Pten-/- background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models. CONCLUSIONS Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.
Collapse
Affiliation(s)
- Hailing Yang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Shuping Li
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Robert Shapiro
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Nil Vanli
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Wenhao Yu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hiroko Kishikawa
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Jiang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Alexander J Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Daniel Jay
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Brent Cochran
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
7
|
Richard P, Kozlowski L, Guillorit H, Garnier P, McKnight NC, Danchin A, Manière X. Queuine, a bacterial-derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration. PLoS One 2021; 16:e0253216. [PMID: 34379627 PMCID: PMC8357117 DOI: 10.1371/journal.pone.0253216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022] Open
Abstract
Growing evidence suggests that human gut bacteria, which comprise the microbiome, are linked to several neurodegenerative disorders. An imbalance in the bacterial population in the gut of Parkinson's disease (PD) and Alzheimer's disease (AD) patients has been detected in several studies. This dysbiosis very likely decreases or increases microbiome-derived molecules that are protective or detrimental, respectively, to the human body and those changes are communicated to the brain through the so-called 'gut-brain-axis'. The microbiome-derived molecule queuine is a hypermodified nucleobase enriched in the brain and is exclusively produced by bacteria and salvaged by humans through their gut epithelium. Queuine replaces guanine at the wobble position (position 34) of tRNAs with GUN anticodons and promotes efficient cytoplasmic and mitochondrial mRNA translation. Queuine depletion leads to protein misfolding and activation of the endoplasmic reticulum stress and unfolded protein response pathways in mice and human cells. Protein aggregation and mitochondrial impairment are often associated with neural dysfunction and neurodegeneration. To elucidate whether queuine could facilitate protein folding and prevent aggregation and mitochondrial defects that lead to proteinopathy, we tested the effect of chemically synthesized queuine, STL-101, in several in vitro models of neurodegeneration. After neurons were pretreated with STL-101 we observed a significant decrease in hyperphosphorylated alpha-synuclein, a marker of alpha-synuclein aggregation in a PD model of synucleinopathy, as well as a decrease in tau hyperphosphorylation in an acute and a chronic model of AD. Additionally, an associated increase in neuronal survival was found in cells pretreated with STL-101 in both AD models as well as in a neurotoxic model of PD. Measurement of queuine in the plasma of 180 neurologically healthy individuals suggests that healthy humans maintain protective levels of queuine. Our work has identified a new role for queuine in neuroprotection uncovering a therapeutic potential for STL-101 in neurological disorders.
Collapse
Affiliation(s)
- Patricia Richard
- Stellate Therapeutics Inc., JLABS @ NYC, New York, New York, United States of America
| | | | - Hélène Guillorit
- Stellate Therapeutics SAS, Paris, France
- Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Nicole C. McKnight
- Stellate Therapeutics Inc., JLABS @ NYC, New York, New York, United States of America
| | | | | |
Collapse
|
8
|
Adeno-Associated Viral Vectors as Versatile Tools for Parkinson's Research, Both for Disease Modeling Purposes and for Therapeutic Uses. Int J Mol Sci 2021; 22:ijms22126389. [PMID: 34203739 PMCID: PMC8232322 DOI: 10.3390/ijms22126389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson’s disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge. Accordingly, here we will be summarizing some insights on different AAV serotypes, and which would be the most appropriate AAV delivery route. Next, the use of AAVs for modeling synucleinopathies is highlighted, providing potential readers with a landscape view of ongoing pre-clinical and clinical initiatives pushing forward AAV-based therapeutic approaches for Parkinson’s disease and related synucleinopathies.
Collapse
|
9
|
Underwood R, Gannon M, Pathak A, Kapa N, Chandra S, Klop A, Yacoubian TA. 14-3-3 mitigates alpha-synuclein aggregation and toxicity in the in vivo preformed fibril model. Acta Neuropathol Commun 2021; 9:13. [PMID: 33413679 PMCID: PMC7792107 DOI: 10.1186/s40478-020-01110-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/19/2020] [Indexed: 12/26/2022] Open
Abstract
Alpha-synuclein (αsyn) is the key component of proteinaceous aggregates termed Lewy Bodies that pathologically define a group of disorders known as synucleinopathies, including Parkinson's Disease (PD) and Dementia with Lewy Bodies. αSyn is hypothesized to misfold and spread throughout the brain in a prion-like fashion. Transmission of αsyn necessitates the release of misfolded αsyn from one cell and the uptake of that αsyn by another, in which it can template the misfolding of endogenous αsyn upon cell internalization. 14-3-3 proteins are a family of highly expressed brain proteins that are neuroprotective in multiple PD models. We have previously shown that 14-3-3θ acts as a chaperone to reduce αsyn aggregation, cell-to-cell transmission, and neurotoxicity in the in vitro pre-formed fibril (PFF) model. In this study, we expanded our studies to test the impact of 14-3-3s on αsyn toxicity in the in vivo αsyn PFF model. We used both transgenic expression models and adenovirus associated virus (AAV)-mediated expression to examine whether 14-3-3 manipulation impacts behavioral deficits, αsyn aggregation, and neuronal counts in the PFF model. 14-3-3θ transgene overexpression in cortical and amygdala regions rescued social dominance deficits induced by PFFs at 6 months post injection, whereas 14-3-3 inhibition by transgene expression of the competitive 14-3-3 peptide inhibitor difopein in the cortex and amygdala accelerated social dominance deficits. The behavioral rescue by 14-3-3θ overexpression was associated with delayed αsyn aggregation induced by PFFs in these brain regions. Conversely, 14-3-3 inhibition by difopein in the cortex and amygdala accelerated αsyn aggregation and reduction in NECAB1-positive neuron counts induced by PFFs. 14-3-3θ overexpression by AAV in the substantia nigra (SN) also delayed αsyn aggregation in the SN and partially rescued PFF-induced reduction in tyrosine hydroxylase (TH)-positive dopaminergic cells in the SN. 14-3-3 inhibition in the SN accelerated nigral αsyn aggregation and enhanced PFF-induced reduction in TH-positive dopaminergic cells. These data indicate a neuroprotective role for 14-3-3θ against αsyn toxicity in vivo.
Collapse
Affiliation(s)
- Rachel Underwood
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA
| | - Mary Gannon
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Aneesh Pathak
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Navya Kapa
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Sidhanth Chandra
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Alyssa Klop
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Talene A. Yacoubian
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Civitan International Research Center, Room 510A, 1719 Sixth Avenue South, Birmingham, AL 35294 USA
| |
Collapse
|
10
|
Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48:9433-9448. [PMID: 32890397 PMCID: PMC7515703 DOI: 10.1093/nar/gkaa657] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- To whom correspondence should be addressed. Tel: +1 215 503 4219; Fax: +1 215 503 0466;
| |
Collapse
|
11
|
Gámez-Valero A, Guisado-Corcoll A, Herrero-Lorenzo M, Solaguren-Beascoa M, Martí E. Non-Coding RNAs as Sensors of Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1095. [PMID: 33171576 PMCID: PMC7695195 DOI: 10.3390/antiox9111095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) results from an imbalance between the production of reactive oxygen species and the cellular antioxidant capacity. OS plays a central role in neurodegenerative diseases, where the progressive accumulation of reactive oxygen species induces mitochondrial dysfunction, protein aggregation and inflammation. Regulatory non-protein-coding RNAs (ncRNAs) are essential transcriptional and post-transcriptional gene expression controllers, showing a highly regulated expression in space (cell types), time (developmental and ageing processes) and response to specific stimuli. These dynamic changes shape signaling pathways that are critical for the developmental processes of the nervous system and brain cell homeostasis. Diverse classes of ncRNAs have been involved in the cell response to OS and have been targeted in therapeutic designs. The perturbed expression of ncRNAs has been shown in human neurodegenerative diseases, with these changes contributing to pathogenic mechanisms, including OS and associated toxicity. In the present review, we summarize existing literature linking OS, neurodegeneration and ncRNA function. We provide evidences for the central role of OS in age-related neurodegenerative conditions, recapitulating the main types of regulatory ncRNAs with roles in the normal function of the nervous system and summarizing up-to-date information on ncRNA deregulation with a direct impact on OS associated with major neurodegenerative conditions.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Anna Guisado-Corcoll
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28046 Madrid, Spain
| |
Collapse
|
12
|
Ivanova MV, Chekanova EO, Belugin BV, Dolzhikova IV, Tutykhina IL, Zakharova MN. Exosomal Angiogenin as a Potential Biomarker in Amyotrophic Lateral Sclerosis. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420030058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Prehn JHM, Jirström E. Angiogenin and tRNA fragments in Parkinson's disease and neurodegeneration. Acta Pharmacol Sin 2020; 41:442-446. [PMID: 32144338 PMCID: PMC7470775 DOI: 10.1038/s41401-020-0375-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
In this review, we summarise the evidence for a role of the ribonuclease angiogenin in the pathophysiology of neurodegenerative disorders, with a specific focus on Parkinson’s disease (PD). Angiogenin is a stress-induced, secreted ribonuclease with both nuclear and cytosolic activities. Loss-of-function mutations in the angiogenin gene (ANG) have been initially discovered in familial cases of amyotrophic lateral sclerosis (ALS), however, variants in ANG have subsequently been identified in PD and Alzheimer’s disease. Delivery of angiogenin protein reduces neurodegeneration and delays disease progression in in vitro and in vivo models of ALS and in vitro models of PD. In the nucleus, angiogenin promotes ribosomal RNA transcription. Under stress conditions, angiogenin also translocates to the cytosol where it cleaves non-coding RNA into RNA fragments, in particular transfer RNAs (tRNAs). Stress-induced tRNA fragments have been proposed to have multiple cellular functions, including inhibition of ribosome biogenesis, inhibition of protein translation and inhibition of apoptosis. We will discuss recent evidence of tRNA fragment accumulation in PD, as well as their potential neuroprotective activities.
Collapse
|
14
|
Bhat SA, Henry RJ, Blanchard AC, Stoica BA, Loane DJ, Faden AI. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J Neurochem 2020; 156:225-248. [PMID: 31926033 DOI: 10.1111/jnc.14954] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3β. GSK-3β regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3β/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3β/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3β/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.
Collapse
Affiliation(s)
- Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa C Blanchard
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers (Basel) 2019; 11:cancers11091322. [PMID: 31500197 PMCID: PMC6770958 DOI: 10.3390/cancers11091322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023] Open
Abstract
Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60–68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60–68) or chemisorption (the cysteine analogous Ang60–68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment.
Collapse
|
16
|
Magee R, Londin E, Rigoutsos I. TRNA-derived fragments as sex-dependent circulating candidate biomarkers for Parkinson's disease. Parkinsonism Relat Disord 2019; 65:203-209. [PMID: 31402278 DOI: 10.1016/j.parkreldis.2019.05.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Parkinson's Disease (PD) is diagnosed clinically. Reliable non-invasive PD biomarkers are actively sought. Transfer RNAs produce short non-coding RNAs, the tRNA-derived fragments (tRF). tRF have been shown to play diverse roles, including in amyotrophic lateral sclerosis, and the response to ischemic stroke. Rich tRF populations are being reported in biofluids. We explored the possibility that tRF can serve as non-invasive biomarkers for PD. METHODS We collected existing RNA-seq samples and re-analyzed a total of 254 legacy datasets from 3 previous studies, from male and female PD patients and controls that belong to three categories: prefrontal cortex samples from 29 patients and 33 controls; cerebrospinal fluid (CSF) samples from 63 patients and 64 controls; and, serum samples from 34 patients and 31 controls. First, we identified tRF exhaustively and deterministically in every dataset. Second, we determined tRF that are differentially abundant (DA) between PD and control samples, using uncorrected t-tests. Lastly, we assessed all the DA tRF from the previous step with Partial Least Squares - Discriminant Analysis (PLS-DA) to stringently sub-select tRF that can distinguish PD patients from controls. RESULTS We show that PLS-DA identified tRF from prefrontal cortex, CSF, and serum that can distinguish PD patients from controls. A handful of identified tRF were previously investigated in neurological contexts. Signatures built from relatively few tRF suffice to distinguish PD from control in each category of samples with high sensitivity (89-100%) and specificity (79-98%). CONCLUSION tRF-based signatures are promising candidates that warrant further evaluation as non-invasive PD biomarkers.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Jefferson Alumni Hall #M81, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Jefferson Alumni Hall #M81, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall #M81, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Magrì A, Tabbì G, Breglia R, De Gioia L, Fantucci P, Bruschi M, Bonomo RP, La Mendola D. Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Trans 2018. [PMID: 28636006 DOI: 10.1039/c7dt01209h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiogenin protein (Ang) is a member of the vertebrate-specific secreted ribonucleases and one of the most potent angiogenic factors known. Ang is a normal constituent of human plasma and its concentration increases under some physiological and pathological conditions to promote neovascularization. Ang was originally identified as an angiogenic tumour factor, but its biological activity has been found to extend from inducing angiogenesis to promoting cell survival in different neurodegenerative diseases. Ang exhibits weak ribonucleolytic activity, which is critical for its biological functions. The RNase catalytic sites are two histidine residues, His-13 and His-114, and the lysine Lys-40. Copper is also an essential cofactor in angiogenesis and influences angiogenin's biological properties. The main Cu(ii) anchoring site of Ang is His-114, where metal binding inhibits RNase activity of the protein. To reveal the Cu(ii) coordination environment in the C-terminal domain of the Ang protein, we report on the characterization, by means of potentiometric, voltammetric, and spectroscopic (CD, UV-Vis and EPR) methods and DFT calculations, of Cu(ii) complexes formed with a peptide fragment including the Ang sequence 112-117 (PVHLDQ). Potentiometric titrations indicated that [CuLH-2] is the predominant species at physiological pH. EPR, voltammetric data and DFT calculations are consistent with a CuN3O2 coordination mode in which a distorted square pyramidal arrangement of the peptide was observed with the equatorial positions occupied by the nitrogen atoms of the deprotonated amides of the Asp and Leu residues, the δ-N atom of histidine and the oxygen atom of the aspartic carboxylic group. Moreover, two analogous peptides encompassing the PVHLNQ and LVHLDQ sequences were also characterized by using thermodynamic, spectroscopic and DFT studies to reveal the role they play in Cu(ii) complex formation by the carboxylate side chain of the Asp and Pro residues, a known breaking-point in metal coordination.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gabriel-Salazar M, Morancho A, Rodriguez S, Buxó X, García-Rodríguez N, Colell G, Fernandez A, Giralt D, Bustamante A, Montaner J, Rosell A. Importance of Angiogenin and Endothelial Progenitor Cells After Rehabilitation Both in Ischemic Stroke Patients and in a Mouse Model of Cerebral Ischemia. Front Neurol 2018; 9:508. [PMID: 30008694 PMCID: PMC6034071 DOI: 10.3389/fneur.2018.00508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Rehabilitation therapy is the only available treatment for stroke survivors presenting neurological deficits; however, the underlying molecules and mechanisms associated with functional/motor improvement during rehabilitation are poorly understood. Objective: Our aim is to study the modulation of angiogenin and endothelial progenitor cells (EPCs) as repair-associated factors in a cohort of stroke patients and mouse models of rehabilitation after cerebral ischemia. Methods: The clinical study included 18 ischemic strokes admitted to an intensive rehabilitation therapy (IRT) unit, 18 non-ischemic controls and brain samples from three deceased patients. Angiogenin and EPCs were measured in blood obtained before and up to 6 months after IRT together with an extensive evaluation of the motor/functional status. In parallel, C57BL/6 mice underwent middle cerebral artery occlusion, and the pasta matrix reaching-task or treadmill exercises were used as rehabilitation models. Angiogenin RNA expression was measured after 2 or 12 days of treatment together with cell counts from EPCs cultures. Results: Brain angiogenin was identified in both human and mouse tissue, whereas serum levels increased after 1 month of IRT in association with motor/functional improvement. EPC populations were increased after stroke and remained elevated during follow-up after IRT. The mouse model of rehabilitation by the task-specific pasta matrix exercise increased the number of EPCs at 2 days and increased angiogenin expression after 12 days of rehabilitation. Conclusions: Angiogenin and EPCs are modulated by rehabilitation after cerebral ischemia, suggesting that both angiogenin and EPCs could serve as biomarkers of improvement during rehabilitation or future therapeutic targets.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavi Buxó
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Guillem Colell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Fernandez
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Gold nanoparticles functionalized with angiogenin-mimicking peptides modulate cell membrane interactions. Biointerphases 2018; 13:03C401. [PMID: 29660986 DOI: 10.1116/1.5022295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Angiogenin is a protein crucial in angiogenesis, and it is overexpressed in many cancers and downregulated in neurodegenerative diseases, respectively. The protein interaction with actin, through the loop encompassing the 60-68 residues, is an essential step in the cellular cytoskeleton reorganization. This, in turn, influences the cell proliferation and migration processes. In this work, hybrid nanoassemblies of gold nanoparticles with angiogenin fragments containing the 60-68 sequence were prepared and characterized in their interaction with both model membranes of supported lipid bilayers (SLBs) and cellular membranes of cancer (neuroblastoma) and normal (fibroblasts) cell lines. The comparison between physisorption and chemisorption mechanisms was performed by the parallel investigation of the 60-68 sequence and the peptide analogous containing an extra cysteine residue. Moreover, steric hindrance and charge effects were considered with a third analogous peptide sequence, conjugated with a fluorescent carboxyfluorescein (Fam) moiety. The hybrid nanobiointerface was characterized by means of ultraviolet-visible, atomic force microscopy and circular dichroism, to scrutinize plasmonic changes, nanoparticles coverage and conformational features, respectively. Lateral diffusion measurements on SLBs "perturbed" by the interaction with the gold nanoparticles-peptides point to a stronger membrane interaction in comparison with the uncoated nanoparticles. Cell viability and proliferation assays indicate a slight nanotoxicity in neuroblastoma cells and a proliferative activity in fibroblasts. The actin staining confirms different levels of interaction between the hybrid assemblies and the cell membranes.
Collapse
|
20
|
Bradshaw WJ, Rehman S, Pham TTK, Thiyagarajan N, Lee RL, Subramanian V, Acharya KR. Structural insights into human angiogenin variants implicated in Parkinson's disease and Amyotrophic Lateral Sclerosis. Sci Rep 2017; 7:41996. [PMID: 28176817 PMCID: PMC5296752 DOI: 10.1038/srep41996] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in Angiogenin (ANG), a member of the Ribonuclease A superfamily (also known as RNase 5) are known to be associated with Amyotrophic Lateral Sclerosis (ALS, motor neurone disease) (sporadic and familial) and Parkinson’s Disease (PD). In our previous studies we have shown that ANG is expressed in neurons during neuro-ectodermal differentiation, and that it has both neurotrophic and neuroprotective functions. In addition, in an extensive study on selective ANG-ALS variants we correlated the structural changes to the effects on neuronal survival and the ability to induce stress granules in neuronal cell lines. Furthermore, we have established that ANG-ALS variants which affect the structure of the catalytic site and either decrease or increase the RNase activity affect neuronal survival. Neuronal cell lines expressing the ANG-ALS variants also lack the ability to form stress granules. Here, we report a detailed experimental structural study on eleven new ANG-PD/ALS variants which will have implications in understanding the molecular basis underlying their role in PD and ALS.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Saima Rehman
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Tram T K Pham
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Nethaji Thiyagarajan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Rebecca L Lee
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
21
|
La Mendola D, Arnesano F, Hansson Ö, Giacomelli C, Calò V, Mangini V, Magrì A, Bellia F, Trincavelli ML, Martini C, Natile G, Rizzarelli E. Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity. Metallomics 2016; 8:118-24. [PMID: 26594037 DOI: 10.1039/c5mt00216h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenin is a member of the ribonuclease family and a normal constituent of human plasma. It is one of the most potent angiogenic factors known and is overexpressed in different types of cancers. Copper is also an essential cofactor in angiogenesis and, during this process, it is mobilized from inside to outside of the cell. To date, contrasting results have been reported about copper(ii) influencing angiogenin activity. However, in these studies, the recombinant form of the protein was used. Unlike recombinant angiogenin, that contains an extra methionine with a free terminal amino group, the naturally occurring protein present in human plasma starts with a glutamine residue that spontaneously cyclizes to pyroglutamate, a lactam derivative. Herein, we report spectroscopic evidence indicating that copper(ii) experiences different coordination environments in the two protein isoforms, and affects their RNase and angiogenic activity differently. These results show how relatively small differences between recombinant and wild type proteins can result in markedly different behaviours.
Collapse
Affiliation(s)
- D La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - F Arnesano
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - Ö Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, PO Box 462, SE-40530 Göteborg, Sweden
| | - C Giacomelli
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - V Calò
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - V Mangini
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - A Magrì
- Institute of Biostructure and Bioimaging, CNR, via P. Gaifami 18, 95126 Catania, Italy
| | - F Bellia
- Institute of Biostructure and Bioimaging, CNR, via P. Gaifami 18, 95126 Catania, Italy
| | - M L Trincavelli
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - C Martini
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - G Natile
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - E Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
22
|
Magrì A, Munzone A, Peana M, Medici S, Zoroddu MA, Hansson O, Satriano C, Rizzarelli E, La Mendola D. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein. Int J Mol Sci 2016; 17:ijms17081240. [PMID: 27490533 PMCID: PMC5000638 DOI: 10.3390/ijms17081240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang-actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo ("wild-type", wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein-copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1-17) and AcAng(1-17), which encompass the sequence 1-17 of angiogenin (QDNSRYTHFLTQHYDAK-NH₂), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Biostructures and Bioimages, National Council of Research ( CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| | - Alessia Munzone
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Maria Antonietta Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Orjan Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Göteborg, Sweden.
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimages, National Council of Research ( CNR), Via P. Gaifami 18, 95126 Catania, Italy.
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
23
|
Li XY, Teng JJ, Liu Y, Wu YB, Zheng Y, Xie AM. Association of AKT1 gene polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett 2016; 629:38-42. [PMID: 27353512 DOI: 10.1016/j.neulet.2016.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/20/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Genetic variants of AKT1 have been shown to influence brain function of Parkinson's disease (PD) patients, and in this paper our aim is to investigate the association between the three single-nucleotide polymorphisms (rs2498799; rs2494732; rs1130214) and PD in Han Chinese. 413 Han Chinese PD patients and 450 healthy age and gender-matched controls were genotyped using the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. Both the patient and control groups show similar genotype frequencies at the three loci: rs2498799, rs2494732 and rs1130214. We are able to identify a significant difference in the frequencies of genotype (p=0.019) and G allele (OR=0.764, 95% CI=0.587-0.995, p=0.045) both at rs2498799 between the patient and control groups. Furthermore, the association of subjects with GG genotypes versus those with GA+AA genotype remain significant after adjusting for age in the Han Chinese female cohort (OR=0.538, 95%CI=0.345-0.841, p=0.006), which is especially evident in the late-onset cohort (OR=0.521, 95%CI=0.309-0.877, p=0.012). In contrast, allele frequencies at rs2494732 and rs1130214 were similar between patients and controls in all subgroup analyses. These results suggest that polymorphism of AKT1 locus is associated with risk of PD and that the G allele at rs2498799 may decrease the risk of PD in the North-eastern part of Han Chinese female population.
Collapse
Affiliation(s)
- Xiao-Yuan Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Department of Neurology, Hospital of Integrated Traditional and Western Medicine, Qingdao, China
| | - Ji-Jun Teng
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu-Bin Wu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Zheng
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
A drug delivery hydrogel system based on activin B for Parkinson's disease. Biomaterials 2016; 102:72-86. [PMID: 27322960 DOI: 10.1016/j.biomaterials.2016.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Activins are members of the superfamily of transforming growth factors and have many potential neuroprotective effects. Herein, at the first place, we verified activin B's neuroprotective role in a PD model, and revealed that activin B's fast release has limited function in the PD therapy. To this end, we developed a multi-functional crosslinker based thermosensitive injectable hydrogels to deliver activin B, and stereotactically injected the activin B-loaded hydrogel into the striatum of a mouse model of PD. The histological evaluation showed that activin B can be detected even 5 weeks post-surgery in PD mice implanted with activin B-loaded hydrogels, and activin B-loaded hydrogels can significantly increase the density of tyrosine hydroxylase positive (TH(+)) nerve fibers and reduce inflammatory responses. The behavioral evaluation demonstrated that activin B-loaded hydrogels significantly improved the performance of the mice in the PD model. Meanwhile, we found that hydrogels can slightly induce the activation of microglia cells and astrocytes, while cannot induce apoptosis in the striatum. Overall, our data demonstrated that the developed activin B-loaded hydrogels provide sustained release of activin B for over 5 weeks and contribute to substantial cellular protection and behavioral improvement, suggesting their potential as a therapeutic strategy for PD.
Collapse
|
25
|
Mutational analysis of angiogenin gene in Parkinson's disease. PLoS One 2014; 9:e112661. [PMID: 25386690 PMCID: PMC4227694 DOI: 10.1371/journal.pone.0112661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022] Open
Abstract
Mutations in the angiogenic factor, angiogenin (ANG), have been identified in patients with both familial and sporadic amyotrophic lateral sclerosis (ALS) and are thought to have a neuroprotective function. Parkinsonism has been noted in kindreds with ANG mutations and variants in the ANG gene have been found to associate with PD in two Caucasian populations. We therefore hypothesized that mutations in ANG may also contribute to idiopathic Parkinson's disease (PD). We sequenced ANG gene in a total of 1498 participants comprising 750 PD patients and 748 age/gender matched controls from Taiwan. We identified one novel synonymous substitution, c.C100T (p.L10L), in a single heterozygous state in one PD patient, which was not observed in controls. The clinical phenotypes and [99mTc]-TORDAT-SPECT images of the p.L10L carrier were similar to that seen in idiopathic PD. In addition, we also identified one common variant, c.T330G (p.G110G, rs11701), which was previously reported to associate with PD risk in Caucasians. However, the frequency of TG/GG genotype was comparable between PD cases and controls (odds ratio: 0.85, 95% confidence interval: 0.29–2.55, P = 0.78). Our results did not support that ANG rs11701 variant is a genetic risk factor for PD in our population. We conclude that mutations in ANG are not a common cause for idiopathic PD.
Collapse
|
26
|
Parlato R, Liss B. How Parkinson's disease meets nucleolar stress. Biochim Biophys Acta Mol Basis Dis 2014; 1842:791-7. [PMID: 24412806 DOI: 10.1016/j.bbadis.2013.12.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Although the causes of PD are still not understood, aging is a predisposing factor and metabolic stress seems to be a common trigger. Interestingly, the response to stress conditions and quality control mechanisms is impaired in PD, as well as in other neurodegenerative disorders. Downregulation of rRNA transcription is one major strategy to maintain cellular homeostasis under stress conditions, as it limits energy consumption in disadvantageous circumstances. Altered rRNA transcription and disruption of nucleolar integrity are associated with neurodegenerative disorders, and with aging. Nucleolar stress can be triggered by genetic and epigenetic factors, and by specific signaling mechanisms, that are altered in neurodegenerative disorders. The consequences of neuronal nucleolar stress seem to depend on p53 function, the mammalian target of rapamycin (mTOR) activity and deregulation of protein translation. In this review, we will summarize findings identifying an emerging role of nucleolar stress for the onset and progression of in particular PD. Emphasis is given to similarities in molecular causes and consequences of nucleolar stress in other neurodegenerative disorders. The mechanisms by which nucleolar stress participates in PD could help identify novel risk factors, and develop new therapeutic strategies to slow down the progressive loss of neurons in neurodegenerative diseases. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany; Institute of Anatomy and Cell Biology, Department of Medical Biology, University of Heidelberg, Heidelberg, Germany; Dept. of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| |
Collapse
|