1
|
Dong K, Reyes JL, Mastroianni MA, Coury JR, Sevensky R, Hassan FM, Lombardi JM, Popkin CA, Chien BY, Lenke LG, Sardar ZM. Foot Drop in Orthopaedic Surgery: Anatomy, Etiology, Differential Diagnosis, and Treatment. JBJS Rev 2025; 13:01874474-202505000-00002. [PMID: 40403122 DOI: 10.2106/jbjs.rvw.24.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
» Foot drop is a problem encountered by orthopaedic surgeons from various subspecialties. The etiology can vary from the lower extremity to the spine and can be managed conservatively depending on functional limitations. Common nonsurgical interventions include ankle-foot orthoses, physical therapy, electrical nerve stimulation, and activity modification. Surgical options vary between nerve decompression and lower extremity tendon transfers. The purpose of this review was to provide an overview of the anatomy, etiology, diagnoses, and treatment options of foot drop.
Collapse
Affiliation(s)
- Katherine Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Justin L Reyes
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| | - Michael A Mastroianni
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, New York, New York
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center/Center for Shoulder, Elbow and Sports Medicine, New York, New York
| | - Josephine R Coury
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| | - Riley Sevensky
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| | - Fthimnir M Hassan
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| | - Joseph M Lombardi
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| | - Charles A Popkin
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center/Center for Shoulder, Elbow and Sports Medicine, New York, New York
| | - Bonnie Y Chien
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, New York, New York
| | - Lawrence G Lenke
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| | - Zeeshan M Sardar
- Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, New York
| |
Collapse
|
2
|
Burrell JC, Ali ZS, Zager EL, Rosen JM, Tatarchuk MM, Cullen DK. Engineering the Future of Restorative Clinical Peripheral Nerve Surgery. Adv Healthc Mater 2025:e2404293. [PMID: 40166822 DOI: 10.1002/adhm.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Peripheral nerve injury is a significant clinical challenge, often leading to permanent functional deficits. Standard interventions, such as autologous nerve grafts or distal nerve transfers, require sacrificing healthy nerve tissue and typically result in limited motor or sensory recovery. Nerve regeneration is complex and influenced by several factors: 1) the regenerative capacity of proximal neurons, 2) the ability of axons and support cells to bridge the injury, 3) the capacity of Schwann cells to maintain a supportive environment, and 4) the readiness of target muscles or sensory organs for reinnervation. Emerging bioengineering solutions, including biomaterials, drug delivery systems, fusogens, electrical stimulation devices, and tissue-engineered products, aim to address these challenges. Effective translation of these therapies requires a deep understanding of the physiology and pathology of nerve injury. This article proposes a comprehensive framework for developing restorative strategies that address all four major physiological responses in nerve repair. By implementing this framework, we envision a paradigm shift that could potentially enable full functional recovery for patients, where current approaches offer minimal hope.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric L Zager
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, NH, 03766, USA
| | - Mykhailo M Tatarchuk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Wong ZY, Adegboye O, Damavandi P, Faderani R, Kanapathy M, Miranda BH, Nikkhah D, Mosahebi A. Top 75 most-cited articles in hand microsurgery: A bibliometric and visualised analysis. J Hand Microsurg 2025; 17:100214. [PMID: 39866367 PMCID: PMC11758942 DOI: 10.1016/j.jham.2025.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Introduction Hand microsurgery is an important advancement of the speciality that has improved outcomes in hand trauma and hand surgical conditions. This bibliometric analysis aims to identify the 75 most cited hand microsurgery articles and explore their relevance to contemporary practice. Methods The Web of Science core collection database was used to screen and identify the top 75 most-cited articles relevant to hand microsurgery. VOSviewer 1.6.18 and CiteSpace 6.2.R4 software were used to analyse and visualise occurrences, authorship, countries, institutions, journals, keywords, and Evidence Level (Oxford Centre for Evidence-Based Medicine). Results The initial search identified 3024 articles. The top 75 most-cited articles were published between 1980 and 2018, with contributions from 291 authors. Professor Fu Chang Wei from Chang Gung Memorial Hospital, Taiwan, was the most prolific author. Articles originated from 14 countries, with the United States leading (29.3 %), followed by Taiwan (14.6 %), Italy (8.0 %), and Germany (8.0 %). The 75 most-cited articles were published in 22 journals, led by Plastic and Reconstructive Surgery, followed by the Journal of Hand Surgery (American Volume) and Microsurgery. A total of 345 keywords were analysed, with "Hand," "Defects," "Reconstruction," and "Regeneration" being the most frequent. Level of Evidence 4 was most common (40 %), followed by Levels 3 (25 %) and 5 (24 %). Conclusions The top 75 most-cited hand microsurgery articles influence current surgical practice and teaching material. Understanding specific surgical techniques in hand microsurgery and examining their outcomes will benefit patients, surgeons, researchers and policymakers alike.
Collapse
Affiliation(s)
- Zhen Yu Wong
- Morriston Hospital, Swansea, Wales, United Kingdom
| | - Oluwatobi Adegboye
- St Andrew's Centre for Plastic Surgery & Burns, Broomfield Hospital, Chelmsford, CM1 7ET, United Kingdom
- St Andrew's Anglia Ruskin (StAAR) Research Group, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Pegah Damavandi
- University of Nottingham, Nottingham, England, United Kingdom
| | - Ryan Faderani
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Muholan Kanapathy
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Ben H. Miranda
- St Andrew's Centre for Plastic Surgery & Burns, Broomfield Hospital, Chelmsford, CM1 7ET, United Kingdom
- St Andrew's Anglia Ruskin (StAAR) Research Group, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Dariush Nikkhah
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Afshin Mosahebi
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
4
|
Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. FK506 Enhancement of Neuromuscular Junction Recovery After Nerve Injury Is Macrophage-Dependent. Muscle Nerve 2025; 71:463-473. [PMID: 39780562 DOI: 10.1002/mus.28336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation. Tacrolimus (FK506) treatment speeds functional recovery through unknown mechanisms. This study investigated whether macrophages were required for FK506 neuroenhancing effects. METHODS Wildtype (WT) mice and mice with impaired macrophage recruitment to injury sites (Ccr2 -/- ) were injected subcutaneously with either saline or FK506 for 3 days prior to sciatic nerve transection and immediate repair and then daily for 4 weeks. Functional recovery was assessed by grid walk and muscle force. Morphometric NMJ and macrophage analyses were conducted in extensor digitorum longus muscles. RESULTS FK506-injected WT mice showed increased proportions of fully reinnervated NMJs and terminal Schwann cells/NMJ (p < 0.05), improved recovery of tetanic muscle force (p < 0.05), and improved grid walking (p < 0.05) relative to controls. Ccr2 -/- mice showed no enhancements in recovery; Ccr2 -/- mice treated with FK506 did not differ from controls on any tested metric. We also observed at the NMJ of WT mice increased macrophage numbers with FK506 treatment and increased macrophages expressing FK506 binding protein, FKBP52, after nerve injury. DISCUSSION These results show that macrophages are required for FK506-mediated improvements in NMJ reinnervation and muscle function. These data implicate macrophages in the mechanism underlying FK506-mediated enhancement of motor recovery after nerve injury. Enhanced knowledge of the neuroenhancing mechanism of FK506 may identify new clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Lundeen AL, Wu EJ. Delayed Repair of Recurrent Motor Branch Injury after Carpal Tunnel Release. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2025; 7:238-241. [PMID: 40182862 PMCID: PMC11963005 DOI: 10.1016/j.jhsg.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 04/05/2025] Open
Abstract
Iatrogenic injury to the recurrent motor branch of the median nerve is an uncommon but severe complication following carpal tunnel release. Surgeons should be aware of the anatomical variations of this branch, particularly with the advent of smaller incisions and endoscopic techniques. Here, we present the case of a 60-year-old woman whose recurrent motor branch injury was not identified until 2 years following her index procedure. She underwent a successful primary repair 25 months after her initial injury, with notable improvements in thumb function, strength, and return of thenar muscle bulk beginning 2 months after surgery and continuing through last follow-up at 7 months. Our patient's outcome suggests that repair of a severed recurrent motor branch remains a viable option 2 years after initial injury and that functional improvement and thenar muscle reinnervation can occur even after considerable time has elapsed.
Collapse
Affiliation(s)
- Anna L. Lundeen
- Department of Orthopedic Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Edward J. Wu
- Department of Orthopedic Surgery, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
6
|
Harnoncourt L, Schmoll M, Festin C, Pflaum L, Breuss M, Klepetko J, Dotzauer DC, Jaklin FJ, Maierhofer U, Tratnig-Frankl P, Aszmann OC. Axonal regeneration and innervation ratio following supercharged end-to-side nerve transfer. Front Cell Dev Biol 2025; 13:1513321. [PMID: 40012850 PMCID: PMC11860980 DOI: 10.3389/fcell.2025.1513321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Peripheral nerve injuries often result in incomplete recovery, particularly after the occurrence of proximal lesions, owing to the extended reinnervation time as well as consequent reductions in the regeneration supportive factors and muscle recovery potential. In these cases, supercharged end-to-side (SETS) nerve transfers preserve the continuity of the original nerves while facilitating additional axonal support to mitigate muscle atrophy. This approach enhances functional recovery and has been demonstrated to be effective in both preclinical models and clinical settings. In this study, a novel SETS nerve transfer model is presented for the upper extremity of the rat to assess the impacts on muscle function, innervation ratio, and motor neuron regeneration as well as investigate the potential to enhance motor function recovery. Methods The surgical interventions include transection and end-to-end repair of the musculocutaneous nerve (MCN) in Group A, transfer of the ulnar nerve (UN) to the side of the MCN in Group B, and a combination of both in Group C. The biceps muscle function was assessed 12 weeks post-surgery using electrical stimulation. Results Muscle assessments revealed no significant differences in force between the experimental groups. UN-related muscle reinnervation was observed only in Group C after transfer to a regenerating nerve. Retrograde labeling demonstrated motor neuron regeneration of both the MCN and UN in a distal direction toward the muscle; however, tracer uptake of the UN motor neurons following intramuscular tracer application was detected only in Group C. In contrast, stained pseudounipolar cells in the dorsal root ganglia associated with the UN and MCN revealed afferent muscle innervations in Groups B and C. Discussion This novel SETS nerve transfer model enables isolated electrophysiological as well as histological evaluations of all nerve sections to determine the muscle innervation ratio exactly. Our findings indicate that substantial functional efferent muscle innervation by the donor nerve is exclusively observed in a regenerating environment.
Collapse
Affiliation(s)
- Leopold Harnoncourt
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christopher Festin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Laurenz Pflaum
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Breuss
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Klepetko
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik C. Dotzauer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian J. Jaklin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Tratnig-Frankl
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Oskar C. Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Lauer H, Heinzel JC, Vasselli B, Farzaliyev F, Ritter J, Kolbenschlag J, Daigeler A, Prahm C. Tendon Transfer Procedures for Correction of Foot Drop Due to Injury to the Peripheral Nerves or Muscles. J Brachial Plex Peripher Nerve Inj 2025; 20:e1-e8. [PMID: 39802981 PMCID: PMC11723794 DOI: 10.1055/s-0044-1801322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Background Foot drop is a challenging condition that significantly impacts the affected patient's mobility and quality of life. Tendon transfer has emerged as a viable treatment option. We hereby present data of the tendon transfer procedures in patients with foot drop in our department. Besides a detailed description of our surgical technique, we also compare our results with those reported in the literature. Methods Data from 17 patients (11 males and 6 females) suffering from foot drop due to peripheral nerve or muscle lesions were retrospectively analyzed. All the patients underwent tendon transfer procedures between 2017 and 2022. Assessed outcomes encompassed parameters such as strength of foot dorsiflexion, the necessity for postoperative orthotic devices, and patient satisfaction. Demographic data, the time elapsed from injury/illness to surgery, and the underlying causes of foot drop were collected. Results Postsurgery, 14 patients regained robust dorsiflexion strength (M4), while 2 exhibited slightly lower strength (M3) and 1 attained equal strength as on the unaffected side (M5). Corrective procedures were undertaken in five patients to address problems with tendon tension. After an average follow-up period of 11.9 months (± 9.13), 82.4% of patients reported a high level of satisfaction, although three patients experienced persistent foot inversion. Most patients (94.1%) no longer required orthotic devices following the operative procedure. Conclusion A tendon transfer procedure for correction of foot drop has proven to be a safe and effective treatment option, resulting in a high level of patient satisfaction and restoration of quality of life.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Johannes Christoph Heinzel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Benedetta Vasselli
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Farhad Farzaliyev
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Jana Ritter
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
| | - Cosima Prahm
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany
- Department of Hand, Replantation and Microsurgery, BG Klinikum Unfallkrankenhaus Berlin, Germany
- Department of Hand, Replantation and Microsurgery, Charité University Medicine, Berlin, Germany
| |
Collapse
|
8
|
Nemani S, Chaker S, Ismail H, Yao J, Chang M, Kang H, Desai M, Weikert D, Bhandari PL, Drolet B, Sandvall B, Hill JB, Thayer W. Polyethylene Glycol-Mediated Axonal Fusion Promotes Early Sensory Recovery after Digital Nerve Injury: A Randomized Clinical Trial. Plast Reconstr Surg 2024; 154:1247-1256. [PMID: 38335500 DOI: 10.1097/prs.0000000000011334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Peripheral nerve repair is limited by Wallerian degeneration coupled with the slow and inconsistent rates of nerve regrowth. In more proximal injuries, delayed nerve regeneration can cause debilitating muscle atrophy. Topical application of polyethylene glycol (PEG) during neurorrhaphy facilitates the fusion of severed axonal membranes, immediately restoring action potentials across the coaptation site. In preclinical animal models, PEG fusion resulted in remarkable early functional recovery. METHODS This is the first randomized clinical trial comparing functional outcomes between PEG fusion and standard neurorrhaphy. Participants with digital nerve transections were followed up at 2 weeks, 1 month, and 3 months postoperatively. The primary outcome was assessed using the Medical Research Council Classification (MRCC) rating for sensory recovery at each time point. Semmes-Weinstein monofilaments and static 2-point discrimination determined MRCC ratings. Postoperative quality of life was measured using the Michigan Hand Outcomes Questionnaire. RESULTS Forty-eight transected digital nerves (25 control and 23 PEG) across 22 patients were analyzed. PEG-fused nerves demonstrated significantly higher MRCC scores at 2 weeks (OR, 16.95; 95% CI, 1.79 to 160.38; P = 0.008) and 1 month (OR, 13.40; 95% CI, 1.64 to 109.77; P = 0.009). Participants in the PEG cohort also had significantly higher average Michigan Hand Outcomes Questionnaire scores at 2 weeks (Hodge g , 1.28; 95% CI, 0.23 to 2.30; P = 0.0163) and 1 month (Hodge g , 1.02; 95% CI, 0.04 to 1.99; P = 0.049). No participants had adverse events related to the study drug. CONCLUSION PEG fusion promotes early sensory recovery and improved patient well-being following peripheral nerve repair of digital nerves. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
| | | | | | - Julia Yao
- From the Departments of Plastic Surgery
| | - Monal Chang
- Department of Radiology, National Taiwan University Hospital
| | | | - Mihir Desai
- Orthopedic Surgery, Vanderbilt University Medical Center
| | | | | | | | - Brinkley Sandvall
- From the Departments of Plastic Surgery
- Division of Pediatric Plastic Surgery, Baylor College of Medicine
| | | | | |
Collapse
|
9
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
10
|
Guiotto M, Clayton A, Morgan R, Raffoul W, Hart A, Riehle M, di Summa P. Biogelx-IKVAV Is An Innovative Human Platelet Lysate-Adipose-Derived Stem Cells Delivery Strategy to Improve Peripheral Nerve Repair. Tissue Eng Part A 2024; 30:681-692. [PMID: 38482791 DOI: 10.1089/ten.tea.2023.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024] Open
Abstract
Adipose-derived stem cells (ADSC) are nowadays one of the most exploited cells in regenerative medicine. They are fast growing, capable of enhancing axonal elongation, support and locally stimulate Schwann cells (SCs), and protect de-innervated muscles from atrophy after a peripheral nerve injury. With the aim of developing a bio-safe, clinically translatable cell-therapy, we assessed the effect of ADSC pre-expanded with human platelet lysate in an in vivo rat model, delivering the cells into a 15 mm critical-size sciatic nerve defect embedded within a laminin-peptide-functionalized hydrogel (Biogelx-IKVAV) wrapped by a poly-ɛ-caprolactone (PCL) nerve conduit. ADSC retained their stemness, their immunophenotype and proliferative activity when tested in vitro. At 6 weeks post-implantation, robust regeneration was observed across the critical-size gap as evaluated by both the axonal elongation (anti-NF 200) and SC proliferation (anti-S100) within the human ADSC-IKVAV filled PCL conduit. All the other experimental groups manifested significantly lower levels of growth cone elongation. The histological gastrocnemius muscle analysis was comparable with no quantitative significant differences among the experimental groups. Taken together, these results suggest that ADSC encapsulated in Biogelx-IKVAV are a potential path to improve the efficacy of nerve regeneration. New perspectives can be pursued for the development of a fully synthetic bioengineered nerve graft for the treatment of peripheral nerve injury. Impact statement Human adipose-derived stem cells pre-expanded in vitro with human platelet lysate culture medium additive and encapsulated into BiogelX-IKVAV are a promising strategy to improve nerve regeneration through a critical nerve gap in rat model.
Collapse
Affiliation(s)
- Martino Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Andrew Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
- Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Mathis Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
| | - Pietro di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
11
|
Drewry MD, Shi D, Dailey MT, Rothermund K, Trbojevic S, Almarza AJ, Cui XT, Syed-Picard FN. Enhancing facial nerve regeneration with scaffold-free conduits engineered using dental pulp stem cells and their endogenous, aligned extracellular matrix. J Neural Eng 2024; 21:056015. [PMID: 39197480 PMCID: PMC11406051 DOI: 10.1088/1741-2552/ad749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Objective. Engineered nerve conduits must simultaneously enhance axon regeneration and orient axon extension to effectively restore function of severely injured peripheral nerves. The dental pulp contains a population of stem/progenitor cells that endogenously express neurotrophic factors (NTFs), growth factors known to induce axon repair. We have previously generated scaffold-free dental pulp stem/progenitor cell (DPSC) sheets comprising an aligned extracellular matrix (ECM). Through the intrinsic NTF expression of DPSCs and the topography of the aligned ECM, these sheets both induce and guide axon regeneration. Here, the capacity of bioactive conduits generated using these aligned DPSC sheets to restore function in critical-sized nerve injuries in rodents was evaluated.Approach. Scaffold-free nerve conduits were formed by culturing DPSCs on a substrate with aligned microgrooves, inducing the cells to align and deposit an aligned ECM. The sheets were then detached from the substrate and assembled into scaffold-free cylindrical tissues.Main results. In vitroanalyses confirmed that scaffold-free DPSC conduits maintained an aligned ECM and had uniformly distributed NTF expression. Implanting the aligned DPSC conduits across critical-sized defects in the buccal branch of rat facial nerves resulted in the regeneration of a fascicular nerve-like structure and myelinated axon extension across the injury site. Furthermore, compound muscle action potential and stimulated whisker movement measurements revealed that the DPSC conduit treatment promoted similar functional recovery compared to the clinical standard of care, autografts. Significance. This study demonstrates that scaffold-free aligned DPSC conduits supply trophic and guidance cues, key design elements needed to successfully promote and orient axon regeneration. Consequently, these conduits restore function in nerve injuries to similar levels as autograft treatments. These conduits offer a novel bioactive approach to nerve repair capable of improving clinical outcomes and patient quality of life.
Collapse
Affiliation(s)
- Michelle D Drewry
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Delin Shi
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matthew T Dailey
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sara Trbojevic
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alejandro J Almarza
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xinyan T Cui
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Fatima N Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
12
|
Weiss SN, Legato JM, Liu Y, Vaccaro CN, Da Silva RP, Miskiel S, Gilbert GV, Hakonarson H, Fuller DA, Buono RJ. An analysis of differential gene expression in peripheral nerve and muscle utilizing RNA sequencing after polyethylene glycol nerve fusion in a rat sciatic nerve injury model. PLoS One 2024; 19:e0304773. [PMID: 39231134 PMCID: PMC11373823 DOI: 10.1371/journal.pone.0304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/19/2024] [Indexed: 09/06/2024] Open
Abstract
Application of polyethylene glycol (PEG) to a peripheral nerve injury at the time of primary neurorrhaphy is thought to prevent Wallerian degeneration via direct axolemma fusion. The molecular mechanisms of nerve fusion and recovery are unclear. Our study tested the hypothesis that PEG alters gene expression in neural and muscular environments as part of its restorative properties. Lewis rats underwent unilateral sciatic nerve transection with immediate primary repair. Subjects were randomly assigned to receive either PEG treatment or standard repair at the time of neurorrhaphy. Samples of sciatic nerve distal to the injury and tibialis muscle at the site of innervation were harvested at 24 hours and 4 weeks postoperatively. Total RNA sequencing and subsequent bioinformatics analyses were used to identify significant differences in differentially expressed genes (DEGs) and their related biological pathways (p<0.05) in PEG-treated subjects compared to non-PEG controls. No significant DEGs were identified in PEG-treated sciatic nerve compared to controls after 24 hours, but 1,480 DEGs were identified in PEG-treated tibialis compared to controls. At 4 weeks, 918 DEGs were identified in PEG-treated sciatic nerve, whereas only 3 DEGs remained in PEG-treated tibialis compared to controls. DEGs in sciatic were mostly upregulated (79%) and enriched in pathways present during nervous system development and growth, whereas DEGs in muscle were mostly downregulated (77%) and related to inflammation and tissue repair. Our findings indicate that PEG application during primary neurorrhaphy leads to significant differential gene regulation in the neural and muscular environment that is associated with improved functional recovery in animals treated with PEG compared to sham non-PEG controls. A detailed understanding of key molecules underlying PEG function in recovery after peripheral nerve repair may facilitate amplification of PEG effects through systemic or focal treatments at the time of neurotmesis.
Collapse
Affiliation(s)
- Samantha N Weiss
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - Joseph M Legato
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Courtney N Vaccaro
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Renata Pellegrino Da Silva
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sandra Miskiel
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Grace V Gilbert
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - David A Fuller
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Bazarek SF, Krenn MJ, Shah SB, Mandeville RM, Brown JM. Novel Technologies to Address the Lower Motor Neuron Injury and Augment Reconstruction in Spinal Cord Injury. Cells 2024; 13:1231. [PMID: 39056812 PMCID: PMC11274462 DOI: 10.3390/cells13141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons. In this review, we describe the LMN injury associated with SCI and its clinical consequences. The process of degeneration of the muscle and nerve is broken down into the primary components of the neuromuscular circuit and reviewed, including the nerve and Schwann cells, the neuromuscular junction, and the muscle. Finally, we discuss three promising strategies to reverse denervation atrophy. These include providing surrogate axons from local sources; introducing stem cell-derived spinal motor neurons into the nerve to provide the missing axons; and finally, instituting a training program of high-energy electrical stimulation to directly rehabilitate these muscles. Successful interventions for denervation atrophy would significantly expand reconstructive options for cervical SCI and could be transformative for the predominantly LMN injuries of the conus medullaris and cauda equina.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurological Surgery, University Hospitals-Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthias J. Krenn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216, USA
- Spinal Cord Injury Medicine and Research Services, VA Medical Center, Jackson, MS 39216, USA
| | - Sameer B. Shah
- Departments of Orthopedic Surgery and Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA;
- Research Division, VA San Diego Medical Center, San Diego, CA 92161, USA
| | - Ross M. Mandeville
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| | - Justin M. Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| |
Collapse
|
14
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
He L, Sato JE, Sundar P, Azimi T, Beachy PA, Bekale LA, Pepper JP. Localized application of SAG21k-loaded fibrin hydrogels for targeted modulation of the hedgehog pathway in facial nerve injury. Int J Biol Macromol 2024; 269:131747. [PMID: 38670196 PMCID: PMC11774140 DOI: 10.1016/j.ijbiomac.2024.131747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Given the broad biological effects of the Hedgehog (Hh) pathway, there is potential clinical value in local application of Hh pathway modulators to restrict pathway activation of target tissues and avoid systemic pathway activation. One option to limit Hh pathway activation is using fibrin hydrogels to deliver pathway modulators directly to tissues of interest, bypassing systemic distribution of the drug. In this study, we loaded the potent Hh pathway agonist, SAG21k, into fibrin hydrogels. We describe the binding between fibrin and SAG21k and achieve sustained release of the drug in vitro. SAG21k-loaded fibrin hydrogels exhibit strong biological activity in vitro, using a pathway-specific reporter cell line. To test in vivo activity, we used a mouse model of facial nerve injury. Application of fibrin hydrogels is a common adjunct to surgical nerve repair, and the Hh pathway is known to play an important role in facial nerve injury and regeneration. Local application of the Hh pathway agonist SAG21k using a fibrin hydrogel applied to the site of facial nerve injury successfully activates the Hh pathway in treated nerve tissue. Importantly, this method appears to avoid systemic pathway activation when Hh-responsive organs are analyzed for transcriptional pathway activation. This method of local tissue Hh pathway agonist administration allows for effective pathway targeting surgically accessible tissues and may have translational value in situations where supranormal pathway activation is therapeutic.
Collapse
Affiliation(s)
- Lili He
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Justine Esther Sato
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Praveen Sundar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Tannaz Azimi
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Philip Arden Beachy
- Departments of Urology, and Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Laurent Adonis Bekale
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States.
| | - Jon-Paul Pepper
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine; 300 Pasteur Drive, Stanford, CA 94305, United States.
| |
Collapse
|
16
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
17
|
Xu G, Zou X, Dong Y, Alhaskawi A, Zhou H, Ezzi SHA, Kota VG, Abdulla MHAH, Alenikova O, Abdalbary SA, Lu H. Advancements in autologous peripheral nerve transplantation care: a review of strategies and practices to facilitate recovery. Front Neurol 2024; 15:1330224. [PMID: 38523615 PMCID: PMC10959128 DOI: 10.3389/fneur.2024.1330224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Autologous peripheral nerve transplantation, a pioneering technique in nerve injury treatment, has demonstrated remarkable progress. We examine recent nursing strategies and methodologies tailored to various anatomical sites, highlighting their role in postoperative recovery enhancement. Encompassing brachial plexus, upper limb, and lower limb nerve transplantation care, this discussion underscores the importance of personalized rehabilitation plans, interdisciplinary collaboration, and innovative approaches like nerve electrical stimulation and nerve growth factor therapy. Moreover, the exploration extends to effective complication management and prevention strategies, encompassing infection control and pain management. Ultimately, the review concludes by emphasizing the advances achieved in autologous peripheral nerve transplantation care, showcasing the potential to optimize postoperative recovery through tailored and advanced practices.
Collapse
Affiliation(s)
- Guoying Xu
- Operating Theater, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | - Olga Alenikova
- Department of Neurology, Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Operating Theater, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
18
|
Li Y, Huang J, Chen Y, Zhu S, Huang Z, Yang L, Li G. Nerve function restoration following targeted muscle reinnervation after varying delayed periods. Neural Regen Res 2023; 18:2762-2766. [PMID: 37449642 DOI: 10.4103/1673-5374.373659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Targeted muscle reinnervation has been proposed for reconstruction of neuromuscular function in amputees. However, it is unknown whether performing delayed targeted muscle reinnervation after nerve injury will affect restoration of function. In this rat nerve injury study, the median and musculocutaneous nerves of the forelimb were transected. The proximal median nerve stump was sutured to the distal musculocutaneous nerve stump immediately and 2 and 4 weeks after surgery to reinnervate the biceps brachii. After targeted muscle reinnervation, intramuscular myoelectric signals from the biceps brachii were recorded. Signal amplitude gradually increased with time. Biceps brachii myoelectric signals and muscle fiber morphology and grooming behavior did not significantly differ among rats subjected to delayed target muscle innervation for different periods. Targeted muscle reinnervation delayed for 4 weeks can acquire the same nerve function restoration effect as that of immediate reinnervation.
Collapse
Affiliation(s)
- Yuanheng Li
- Key Laboratory of Human-Machine Intelligence-Synergy Systems and Branch of Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Jiangping Huang
- Key Laboratory of Human-Machine Intelligence-Synergy Systems and Branch of Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Yuling Chen
- Department of Rehabilitation Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province; Department of Rehabilitation Medicine, Yibin Hospital of Traditional Chinese Medicine, Yibin, Sichuan Province, China
| | - Shanshan Zhu
- Key Laboratory of Human-Machine Intelligence-Synergy Systems and Branch of Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province; Department of Rehabilitation Medicine, Yibin Hospital of Traditional Chinese Medicine, Yibin, Sichuan Province, China
| | - Lin Yang
- Key Laboratory of Human-Machine Intelligence-Synergy Systems and Branch of Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guanglin Li
- Key Laboratory of Human-Machine Intelligence-Synergy Systems and Branch of Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Wu Y, Barrere V, Han A, Andre MP, Orozco E, Cheng X, Chang EY, Shah SB. Quantitative evaluation of rat sciatic nerve degeneration using high-frequency ultrasound. Sci Rep 2023; 13:20228. [PMID: 37980432 PMCID: PMC10657462 DOI: 10.1038/s41598-023-47264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
In this study, we evaluated the utility of using high-frequency ultrasound to non-invasively track the degenerative process in a rat model of peripheral nerve injury. Primary analyses explored spatial and temporal changes in quantitative backscatter coefficient (BSC) spectrum-based outcomes and B-mode textural outcomes, using gray level co-occurrence matrices (GLCMs), during the progressive transition from acute to chronic injury. As secondary analyses, correlations among GLCM and BSC spectrum-based parameters were evaluated, and immunohistochemistry were used to suggest a structural basis for ultrasound outcomes. Both mean BSC spectrum-based and mean GLCM-based measures exhibited significant spatial differences across presurgical and 1-month/2-month time points, distal stumps enclosed proximity to the injury site being particularly affected. The two sets of parameters sensitively detected peripheral nerve degeneration at 1-month and 2-month post-injury, with area under the receiver operating charactersitic curve > 0.8 for most parameters. The results also indicated that the many BSC spectrum-based and GLCM-based parameters significantly correlate with each other, and suggested a common structural basis for a diverse set of quantitative ultrasound parameters. The findings of this study suggest that BSC spectrum-based and GLCM-based analysis are promising non-invasive techniques for diagnosing peripheral nerve degeneration.
Collapse
Affiliation(s)
- Yuanshan Wu
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093-0683, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Victor Barrere
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Aiguo Han
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michael P Andre
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Elisabeth Orozco
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xin Cheng
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093-0683, USA.
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
20
|
Saggaf MM, Anastakis DJ. The Impact of COVID-19 on the Surgical Wait Times for Plastic and Reconstructive Surgery in Ontario. Plast Surg (Oakv) 2023; 31:338-349. [PMID: 37915345 PMCID: PMC10617460 DOI: 10.1177/22925503211064381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2023] Open
Abstract
Purpose: The aim of this study was to assess the impact of COVID-19 on surgical wait times for Plastic and Reconstructive Surgery (PRS) in Ontario, Canada. Methods: Ontario's wait time data has fourteen reporting categories for PRS. For each category, the mean wait time for consultation and for surgery were reported. Each category was given a priority ranging from 1 to 4. Two periods, three-month and six-month, were selected and compared to the same calendar months of the previous year. Wait times, surgical volume and percent change to the provincial wait time target were reported and compared to the baseline data. Results: This study reviewed 9563 consults and 15,000 operative cases. There was a 50% reduction in the volume of surgical consults during the study period compared to the baseline period (P = 0.004). The reduction ranged from 46% to 75% based on the reporting category. The volume of surgical cases decreased by 43% during the study period compared to the baseline period (P = 0.005). A statistically significant increase in the mean wait times for surgery was observed, involving priorities 2 to 4 (overall mean = 32 days, P ≤ 0.01). There was a 15% decrease in the percentage of surgeries meeting the provincial target times (P < 0.0001). Conclusion: COVID-19 has caused a significant reduction in the volume of cases performed in the majority of PRS categories with an overall increase in the wait times for consultation and for surgery. Recovery following COVID-19 will require strategies to address the growing volume of cases and wait times for surgery across all PRS categories.
Collapse
Affiliation(s)
- Moaath M. Saggaf
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Toronto Western Hospital Hand Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dimitri J. Anastakis
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Toronto Western Hospital Hand Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Mu L, Chen J, Sobotka S, Li J, Nyirenda T. Focal Application of Neurotrophic Factors Augments Outcomes of Nerve-Muscle-Endplate Grafting Technique for Limb Muscle Reinnervation. J Reconstr Microsurg 2023; 39:695-704. [PMID: 36948213 DOI: 10.1055/s-0043-1764487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND We have developed a novel muscle reinnervation technique called "nerve-muscle-endplate grafting (NMEG) in the native motor zone (NMZ)." This study aimed to augment the outcomes of the NMEG-NMZ (NN) by focal application of exogenous neurotrophic factors (ENFs) for limb reinnervation. METHODS Adult rats were used to conduct NN plus ENF (NN/ENF) and autologous nerve grafting (ANG, technique control). The nerve innervating the left tibialis anterior (TA) muscle was resected and the denervated TA was immediately treated with NN/ENF or ANG. For NN procedure, an NMEG pedicle was taken from the lateral gastrocnemius muscle and transferred to the NMZ of the denervated TA. For ANG, the nerve gap was bridged with sural nerve. Three months after treatment, the extent of functional and neuromuscular recovery was assessed by measuring static toe spread, maximal muscle force, wet muscle weight, regenerated axons, and innervated motor endplates (MEPs). RESULTS NN/ENF resulted in 90% muscle force recovery of the treated TA, which is far superior to ANG (46%) and NN alone (79%) as reported elsewhere. Toe spread recovered up to 89 and 49% of the control for the NN/ENF and ANG groups, respectively. The average wet muscle weight was 87 and 52% of the control for muscles treated with NN/ENF and ANG, respectively. The mean number of the regenerated axons was 88% of the control for the muscles treated with NN/ENF, which was significantly larger than that for the ANG-repaired muscles (39%). The average percentage of the innervated MEPs in the NN/ENF-treated TA (89%) was higher compared with that in the ANG-repaired TA (48%). CONCLUSION ENF enhances nerve regeneration and MEP reinnervation that further augment outcomes of NN. The NN technique could be an alternative option to treat denervated or paralyzed limb muscles caused by traumatic nerve injuries or lesions.
Collapse
Affiliation(s)
- Liancai Mu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Jingming Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Stanislaw Sobotka
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Jing Li
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Themba Nyirenda
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| |
Collapse
|
22
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
23
|
Stocco E, Barbon S, Faccio D, Petrelli L, Incendi D, Zamuner A, De Rose E, Confalonieri M, Tolomei F, Todros S, Tiengo C, Macchi V, Dettin M, De Caro R, Porzionato A. Development and preclinical evaluation of bioactive nerve conduits for peripheral nerve regeneration: A comparative study. Mater Today Bio 2023; 22:100761. [PMID: 37600351 PMCID: PMC10433238 DOI: 10.1016/j.mtbio.2023.100761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
In severe peripheral nerve injuries, nerve conduits (NCs) are good alternatives to autografts/allografts; however, the results the available devices guarantee for are still not fully satisfactory. Herein, differently bioactivated NCs based on the new polymer oxidized polyvinyl alcohol (OxPVA) are compared in a rat model of sciatic nerve neurotmesis (gap: 5 mm; end point: 6 weeks). Thirty Sprague Dawley rats are randomized to 6 groups: Reverse Autograft (RA); Reaxon®; OxPVA; OxPVA + EAK (self-assembling peptide, mechanical incorporation); OxPVA + EAK-YIGSR (mechanical incorporation); OxPVA + Nerve Growth Factor (NGF) (adsorption). Preliminarily, all OxPVA-based devices are comparable with Reaxon® in Sciatic Functional Index score and gait analysis; moreover, all conduits sustain nerve regeneration (S100, β-tubulin) without showing substantial inflammation (CD3, F4/80) evidences. Following morphometric analyses, OxPVA confirms its potential in PNI repair (comparable with Reaxon®) whereas OxPVA + EAK-YIGSR stands out for its myelinated axons total number and density, revealing promising in injury recovery and for future application in clinical practice.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Diego Faccio
- Plastic and Reconstructive Surgery Unit, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Damiana Incendi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Annj Zamuner
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- Department of Civil, Environmental and Architectural Engineering University of Padova, Via Francesco Marzolo 9, 35131, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Enrico De Rose
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Marta Confalonieri
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Francesco Tolomei
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Cesare Tiengo
- Plastic and Reconstructive Surgery Unit, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Monica Dettin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| |
Collapse
|
24
|
Keyan Z, Liqian Z, Xinzhong X, Juehua J, Chungui X. Pulsed Electromagnetic Fields Improved Peripheral Nerve Regeneration After Delayed Repair of One Month. Bioelectromagnetics 2023; 44:133-143. [PMID: 37277911 DOI: 10.1002/bem.22443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 06/07/2023]
Abstract
The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty-six Sprague-Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain-derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi-quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Zhu Keyan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Liqian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Xinzhong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Juehua
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Chungui
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Drewry MD, Rothermund K, Syed-Picard FN. Topographical and Chemical Inductive Cues Synergistically Enhance the Schwann Cell Differentiation of Aligned Dental Pulp Stem Cell Sheets. J Tissue Eng Regen Med 2023; 2023:7958770. [PMID: 40226400 PMCID: PMC11918939 DOI: 10.1155/2023/7958770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 04/15/2025]
Abstract
Peripheral nerves have an inherent capacity for regeneration, but these Schwann cell-mediated mechanisms are insufficient for severe injuries. With current clinical treatments, slow regeneration and aberrant reinnervation result in poor functional outcomes. Dental pulp stem cells (DPSCs) offer a promising source of therapeutic neurotrophic factors (NTFs), growth factors that stimulate axon regeneration. Previously, we established that DPSCs can generate scaffold-free sheets with a linearly aligned extracellular matrix (ECM). These sheets provide trophic cues via the DPSCs and directional cues through the aligned ECM to both accelerate and orient axon outgrowth, thus providing a biomaterial capable of addressing the current clinical challenges. DPSCs have a propensity for differentiating into Schwann cells (SC-DPSCs), further enhancing their endogenous NTF expression. Here, we evaluated the effect of inducing SC differentiation on the neuroregenerative bioactivity of our DPSC sheets. These sheets were formed on substrates with linear microgrooves to direct the cells to deposit an aligned ECM. Inducing differentiation using an SC differentiation medium (SCDM) increased NTF expression 2-fold compared to unaligned uDPSC sheets, and this effect was amplified in linearly oriented SC-DPSC sheets by up to 8-fold. Furthermore, these aligned SC-DPSC sheets remodeled the sheet ECM to more closely emulate a regenerative neural microenvironment, expressing 8-fold and 2 × 107-fold more collagen IV and laminin, respectively, than unaligned uDPSC sheets. These data demonstrate that the chemical cues of the SCDM and the mechanotransductive cues of the aligned cell sheet synergistically enhanced the differentiation of DPSCs into repair SC-like cells. To evaluate their functional effects on neuritogenesis, the DPSC sheets were directly cocultured with neuronally differentiated neuroblastoma SH-SY5Y cells. In this in vitro culture system, the aligned SC-DPSC sheets promoted oriented neurite-like outgrowth similar to aligned uninduced DPSC sheets and increased collateral branching, which may emulate stages associated with natural SC-mediated repair processes. Therefore, linearly aligned SC-DPSC sheets have the potential to both promote nerve regeneration and reduce aberrant reinnervation, thus providing a promising biomaterial for applications to improve the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Michelle D. Drewry
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fatima N. Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Zhang N, Zhang D, Zhang Q, Zhang R, Wang Y. Mechanism of Danggui Sini underlying the treatment of peripheral nerve injury based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33528. [PMID: 37171334 PMCID: PMC10174355 DOI: 10.1097/md.0000000000033528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Danggui Sini is a traditional Chinese medicine prescription for treating peripheral nerve injury (PNI). We studied the mechanisms of this decoction through network pharmacology analysis and molecular docking. Using R language and Perl software, the active components and predicted targets of Danggui Sini, as well as the related gene targets of PNI, were mined through TCMSP, GeneCards, OMIM, TTD, and DrugBank. The network diagram of active components and intersection targets was constructed using Cytoscape software and the STRING database. The CytoNCA plug-in was used to screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. AutoDock was used to analyze the molecular docking of key targets and core compounds of diseases. The drug component disease target regulatory network showed that the key components included quercetin, kaempferol, naringenin, and licochalcone A, which play key roles in the whole network and may be the primary compounds associated with the action of Danggui Sini against PNI. PPI network topology analysis showed high degree values for RELA, JUN, MAPK1, RB1, and FOS. Enrichment analysis showed that the core targets of Danggui Sini participated in pathways associated with neurogenesis-multiple diseases. Molecular docking showed that the active ingredients in Danggui Sini had a good binding ability with key targets. We conclude that many active components of Danggui Sini play therapeutic roles in PNI treatment by regulating RELA, JUN, MAPK1, RB1, and FOS, and multiple other targets in inflammation, immunity, and lipid metabolism.
Collapse
Affiliation(s)
- Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Port Hospital, Dalian, China
| | - Dandan Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Women and Children’s MedicalGroup, Dalian, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruisu Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
27
|
Lavorato A, Aruta G, De Marco R, Zeppa P, Titolo P, Colonna MR, Galeano M, Costa AL, Vincitorio F, Garbossa D, Battiston B. Traumatic peripheral nerve injuries: a classification proposal. J Orthop Traumatol 2023; 24:20. [PMID: 37162617 PMCID: PMC10172513 DOI: 10.1186/s10195-023-00695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) include several conditions in which one or more peripheral nerves are damaged. Trauma is one of the most common causes of PNIs and young people are particularly affected. They have a significant impact on patients' quality of life and on the healthcare system, while timing and type of surgical treatment are of the utmost importance to guarantee the most favorable functional recovery. To date, several different classifications of PNIs have been proposed, most of them focusing on just one or few aspects of these complex conditions, such as type of injury, anatomic situation, or prognostic factors. Current classifications do not enable us to have a complete view of this pathology, which includes diagnosis, treatment choice, and possible outcomes. This fragmentation sometimes leads to an ambiguous definition of PNIs and the impossibility of exchanging crucial information between different physicians and healthcare structures, which can create confusion in the choice of therapeutic strategies and timing of surgery. MATERIALS The authors retrospectively analyzed a group of 24 patients treated in their center and applied a new classification for PNI injuries. They chose (a) five injury-related factors, namely nerve involved, lesion site, nerve type (whether motor, sensory or mixed), surrounding tissues (whether soft tissues were involved or not), and lesion type-whether partial/in continuity or complete. An alphanumeric code was applied to each of these classes, and (b) four prognostic codes, related to age, timing, techniques, and comorbidities. RESULTS An alphanumeric code was produced, similar to that used in the AO classification of fractures. CONCLUSIONS The authors propose this novel classification for PNIs, with the main advantage to allow physicians to easily understand the characteristics of nerve lesions, severity, possibility of spontaneous recovery, onset of early complications, need for surgical treatment, and the best surgical approach. LEVEL OF EVIDENCE according to the Oxford 2011 level of evidence, level 2.
Collapse
Affiliation(s)
- Andrea Lavorato
- Neurosurgery Unit, Igea Hospital, via Marcona 69, 20129, Milan, Italy
| | - Gelsomina Aruta
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Raffaele De Marco
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Pietro Zeppa
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Paolo Titolo
- Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| | - Michele Rosario Colonna
- Department Human Pathology, University of Messina, Viale Della Libertà 395, 98121, Messina, Italy.
| | - Mariarosaria Galeano
- Department of Biological Imaging and Morphology, University of Messina, Messina, Italy
| | - Alfio Luca Costa
- Clinic of Plastic Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Francesca Vincitorio
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Diego Garbossa
- Department of Neurosciences "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, Turin, Italy
| | - Bruno Battiston
- Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| |
Collapse
|
28
|
Zhang Y, Chen C, Li D, Chen P, Hang L, Yang J, Xie J. Exploration and identification of six novel ferroptosis-related hub genes as potential gene signatures for peripheral nerve injury. Front Genet 2023; 14:1156467. [PMID: 37091802 PMCID: PMC10119587 DOI: 10.3389/fgene.2023.1156467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Specific biomarkers of ferroptosis after peripheral nerve injury (PNI) are still under debate. In this study, 52 differentially expressed ferroptosis-related genes (DE-FRGs) were retrieved from publicly accessible sequencing data of intact and injured samples of rats with sciatic nerve crush injury. Functional enrichment analyses revealed that adipogenesis, mitochondrial gene sets, and pathways of MAPK, p53, and CD28 family were predominantly engaged in ferroptosis after PNI. Next, Cdkn1a, Cdh1, Hif1a, Hmox1, Nfe2l2, and Tgfb1 were investigated as new ferroptosis-associated hub genes after PNI. Subsequently, clustering correlation heatmap shows six hub genes are linked to mitochondria. The immunofluorescence assay at 0, 1, 4, 7, and 14 days indicated the temporal expression patterns of Tgfb1, Hmox1, and Hif1a after PNI were consistent with ferroptosis validated by PI and ROS staining, while Cdh1, Cdkn1a, and Nfe2l2 were the opposite. In summary, this study identified six hub genes as possible ferroptosis-related biomarkers for PNI, which may offer therapeutic targets for peripheral nerve regeneration and provide a therapeutic window for ferroptosis.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dawei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Hang
- Business School, Tianhua College, Shanghai Normal University, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| | - Jin Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| |
Collapse
|
29
|
Durner G, Gerst A, Ulrich I, Mayer B, Wirtz CR, König R, Antoniadis G, Pedro M, Pala A. Restoring musculocutaneous nerve function in 146 brachial plexus operations – a retrospective analysis. Clin Neurol Neurosurg 2023; 228:107677. [PMID: 37028253 DOI: 10.1016/j.clineuro.2023.107677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
INTRODUCTION A brachial plexus lesion is a devastating injury often affecting young, male adults after traffic accidents. Therefore, surgical restoration of elbow flexion is critical for establishing antigravity movement of the upper extremity. We analyzed different methods for musculocutaneous reconstruction regarding outcome. METHODS We conducted a retrospective analysis of 146 brachial plexus surgeries with musculocutaneous reconstruction performed at our department from 2013 to 2017. Demographic data, surgical method, donor and graft nerve characteristics, body mass index (BMI) as well as functional outcome of biceps muscle based on medical research council (MRC) strength grades before and after surgery were analyzed. Multivariate analysis was performed using SPSS. RESULTS Oberlin reconstruction was the procedure performed most often (34.2%, n = 50). Nerve transfer and autologous repair showed no significant differences regarding outcome (p = 0.599, OR 0.644 CI95% 0.126-3.307). In case of nerve transfers, we found no significant difference whether reconstruction was performed with or without a nerve graft (e.g. sural nerve) (p = 0.277, OR 0.619 CI95% 0.261-1.469). Multivariate analysis identifies patient age as a strong predictor for outcome, univariate analysis indicates that nerve graft length > 15 cm and BMI of > 25 could lead to inferior outcome. When patients with early recovery (n = 19) are included into final evaluation after 24 months, the general success rate of reconstructions is 62,7% (52/83). CONCLUSION Reconstruction of musculocutaneous nerve after brachial plexus injury results in a high rate of clinical improvement. Nerve transfer and autologous reconstruction both show similar results. Young age was confirmed as an independent predictor for better clinical outcome. Prospective multicenter studies are needed to further clarify.
Collapse
|
30
|
Golshadi M, Claffey EF, Grenier JK, Miller A, Willand M, Edwards MG, Moore TP, Sledziona M, Gordon T, Borschel GH, Cheetham J. Delay modulates the immune response to nerve repair. NPJ Regen Med 2023; 8:12. [PMID: 36849720 PMCID: PMC9970988 DOI: 10.1038/s41536-023-00285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Effective regeneration after peripheral nerve injury requires macrophage recruitment. We investigated the activation of remodeling pathways within the macrophage population when repair is delayed and identified alteration of key upstream regulators of the inflammatory response. We then targeted one of these regulators, using exogenous IL10 to manipulate the response to injury at the repair site. We demonstrate that this approach alters macrophage polarization, promotes macrophage recruitment, axon extension, neuromuscular junction formation, and increases the number of regenerating motor units reaching their target. We also demonstrate that this approach can rescue the effects of delayed nerve graft.
Collapse
Affiliation(s)
- Masoud Golshadi
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Elaine F Claffey
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Jennifer K Grenier
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Andrew Miller
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Willand
- Epineuron Technologies Inc, 5100 Orbitor Dr., Mississauga, ON, L4W 5R8, Canada
| | | | - Tim P Moore
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Sledziona
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Tessa Gordon
- Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1×8, Canada
| | | | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Yashchyshyn ZM, Kreminska IB, Medynskyi MI, Fedorak VM, Ziablitsev SV, Diadyk OO, Fedoniuk LY. TISSUE EXPRESSION OF NEURONAL PROTEINS DURING SCIATIC NERVE REGENERATION AND INFLUENCE OF DIFFERENT SPECTRUM LASER RADIATION. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:112-119. [PMID: 37254757 DOI: 10.36740/merkur202302102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE Aim: To determine the effect of laser irradiation of different spectrum on the expression of neuronal proteins (GFAP, S100, NSE and NF-L) in the sciatic nerve during its regeneration after crossing and surgical suturing. PATIENTS AND METHODS Materials and methods: The experiment was performed on 60 laboratory rats of the Wistar line (200-250 g) with crossing of the left sciatic nerve and sutur¬ing with an epineural suture end to end 30 minutes after neurotomy. 90 days later, an immunohistochemical study was performed using specific antibodies (Thermo Fisher Scientific; USA). RESULTS Results: A study of the marker of non-myelin Schwann GFAP cells showed their pronounced activation with germination in nerve thickness and the formation of weaves of processes around regenerated nerve fibers. The number of S-100-positive myelin Schwann cells decreased, the heterogeneity of their color and the loss of processes were determined. It showed a general decrease in the intensity of NSE- and NF-L-positive staining of nerve fibers regenerated after neurotomy, which was less pronounced when irradiated with a laser with a wavelength of 450-480 nm and 520 nm. CONCLUSION Conclusions: In general, the use of laser radiation had a positive effect on the repair of nerve fibers after neurotomy. According to the immunohistochemical study of neuromarkers, the effect of laser irradiation of the blue spectrum was the most effective.
Collapse
Affiliation(s)
| | - Iryna B Kreminska
- IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE
| | | | | | | | - Olena O Diadyk
- V.SHUPYK NATIONAL UNIVERSITY OF HEALTH CARE OF UKRAINE, KYIV, UKRAINE
| | | |
Collapse
|
32
|
Wu Z, Ding H, Chen Y, Huang C, Chen X, Hu H, Chen Y, Zhang W, Fang X. Motor neurons transplantation alleviates neurofibrogenesis during chronic degeneration by reversibly regulating Schwann cells epithelial-mesenchymal transition. Exp Neurol 2023; 359:114272. [PMID: 36370841 DOI: 10.1016/j.expneurol.2022.114272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
A novel understanding of peripheral nerve injury is epithelial-mesenchymal transition (EMT), which characterizes the process of dedifferentiation and transformation of Schwann cells after nerve injury. Despite being regarded as an important mechanism for healing nerve injuries, long-term EMT is the primary cause of fibrosis in other tissue organs. The potential mechanism promoting neurofibrosis in the process of chronic degeneration of nerve injury and the effects of motor neurons (MNs) transplantation on neurofibrosis and repair of nerve injury were studied by transcriptome sequencing and bioinformatics analysis, which were confirmed by in vivo and in vitro experiments. Even 3 months after nerve injury, the distal nerve maintained high levels of transforming growth factor β-1 (TGFβ-1) and Snail family transcriptional repressor 2 (Snai2). The microenvironment TGFβ-1, Snai2 and endogenous TGFβ-1 formed a positive feedback loop in vivo and in vitro, which may contribute to the sustained EMT state and neurofibrogenesis in the distal injured nerve. Inhibiting TGFβ-1 and Snai2 expression and reversing EMT can be achieved by transferring MNs to distal nerves, and the removal of transplanted MNs is capable of reactivating EMT and promoting the growth of proximal axons. In conclusion, EMT persisting can be an explanation for distal neurofibrosis and a potential therapeutic target. By reversibly regulating EMT, MNs transplantation can alleviate neurofibrogenesis of distal nerve in chronic degeneration.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, Fuzhou, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Changyu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxin Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian,China
| | - Yongfa Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pediatric Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, Fuzhou, China.
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, Fuzhou, China.
| |
Collapse
|
33
|
Micheo WF, Foy CA, Kuffler DP. A Novel Technique Restores Function while Eliminating Intractable Neuropathic Pain in a 71-Year-Old Diabetic Patient under Challenging Injury Conditions. JOURNAL OF RECONSTRUCTIVE MICROSURGERY OPEN 2023. [DOI: 10.1055/s-0042-1757323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Abstract
Background The extent of functional recovery induced in healthy patients by sensory nerve grafts, the clinical “gold standard” technique for repairing peripheral nerves with a gap, is significantly limited by increasing gap length, time between trauma and repair, and patient age. When the values of any two, or all three, variables increase simultaneously, there is little to no recovery. For diabetic patients, even under the best of conditions and without any large variables, the extent of axon regeneration and functional recovery is significantly less, but generally none. Therefore, novel techniques are required that enhance recovery in diabetic patients.
Methods A 12-cm long median nerve gap in the wrist/palm of a 71-year-old male long-term diabetic patient was bridged 1.3 years post nerve injury with a sural nerve graft within a platelet-rich plasma-filled collagen tube.
Results By 2 months post-repair, the patient's level 6 chronic neuropathic pain was permanently eliminated. By 6.75 months, the palm had recovered good sensitivity to stimuli of all sensory modalities, including 4.56 g pressure and less than 15 mm two-point discrimination. Each finger had good motor function of M3–5, with partial to complete sensitivity to stimuli of all sensory modalities and an overall recovery of S3.
Conclusion This technique permanently eliminates severe chronic neuropathic pain while simultaneously inducing good motor and sensory recovery in a long-term diabetic patient, under conditions where recovery is rarely, if ever, seen, even in non-diabetic patients. This technique holds great promise of restoring function to diabetic patients, for whom it is otherwise not possible.
Collapse
Affiliation(s)
- William F. Micheo
- Department of Physical Medicine and Rehabilitation, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian A. Foy
- Section of Orthopedic Surgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Damien P. Kuffler
- Institute of Neurobiology, Medical School, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
34
|
McMorrow LA, Kosalko A, Robinson D, Saiani A, Reid AJ. Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target? Biomolecules 2022; 12:1128. [PMID: 36009023 PMCID: PMC9406133 DOI: 10.3390/biom12081128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Outcomes for patients following major peripheral nerve injury are extremely poor. Despite advanced microsurgical techniques, the recovery of function is limited by an inherently slow rate of axonal regeneration. In particular, a time-dependent deterioration in the ability of the distal stump to support axonal growth is a major determinant to the failure of reinnervation. Schwann cells (SC) are crucial in the orchestration of nerve regeneration; their plasticity permits the adoption of a repair phenotype following nerve injury. The repair SC modulates the initial immune response, directs myelin clearance, provides neurotrophic support and remodels the distal nerve. These functions are critical for regeneration; yet the repair phenotype is unstable in the setting of chronic denervation. This phenotypic instability accounts for the deteriorating regenerative support offered by the distal nerve stump. Over the past 10 years, our understanding of the cellular machinery behind this repair phenotype, in particular the role of c-Jun, has increased exponentially, creating opportunities for therapeutic intervention. This review will cover the activation of the repair phenotype in SC, the effects of chronic denervation on SC and current strategies to 'hack' these cellular pathways toward supporting more prolonged periods of neural regeneration.
Collapse
Affiliation(s)
- Liam A. McMorrow
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Adrian Kosalko
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Daniel Robinson
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Alberto Saiani
- School of Materials & Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| |
Collapse
|
35
|
Intramuscular Stem Cell Injection in Combination with Bioengineered Nerve Repair or Nerve Grafting Reduces Muscle Atrophy. Plast Reconstr Surg 2022; 149:905e-913e. [PMID: 35271540 DOI: 10.1097/prs.0000000000009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nerve injuries represent a clinical challenge, especially when they are accompanied by loss of neural tissue. In this study, the authors attempted to attain a better outcome after a peripheral nerve injury by both repairing the nerve lesion and treating the denervated muscle at the same time. METHODS Rat sciatic nerves were transected to create 10-mm gaps. Repair was performed in five groups (n = 5 rats for each), as follows: group 1, nerve repair using poly-3-hydroxybutyrate strips to connect the proximal and distal stumps, in combination with control growth medium injection in the gastrocnemius muscle; group 2, nerve repair with poly-3-hydroxybutyrate strip seeded with Schwann cell-like differentiated adipose stem cells (differentiated adipose stem cell strip) in combination with growth medium intramuscular injection; group 3, differentiated adipose stem cell strip in combination with intramuscular injection of differentiated adipose stem cells; group 4, repair using autograft (reverse sciatic nerve graft) in combination with intramuscular injection of growth medium; and group 5, autograft in combination with intramuscular injection of differentiated adipose stem cells. Six weeks after nerve injury, the effects of the stem cells on muscle atrophy were assessed. RESULTS Poly-3-hydroxybutyrate strips seeded with differentiated adipose stem cells showed a high number of βIII-tubulin-positive axons entering the distal stump and abundant endothelial cells. Group 1 animals exhibited more muscle atrophy than all the other groups, and group 5 animals had the greatest muscle weights and muscle fibers size. CONCLUSION Bioengineering nerve repair in combination with intramuscular stem cell injection is a promising technique to treat nerve lesions and associated muscle atrophy. CLINICAL RELEVANCE STATEMENT Nerve injuries and resulting muscle atrophy are a clinical challenge. To optimize functional recovery after a nerve lesion, the authors treated the nerve and muscle at the same time by using regenerative medicine with adipose stem cells and obtained encouraging results for future clinical applications.
Collapse
|
36
|
Johnston E, McGarry K, Martin S, Lewis H. Complete transection of the sciatic nerve following closed femoral fracture. BMJ Case Rep 2022; 15:e247765. [PMID: 35487630 PMCID: PMC9058712 DOI: 10.1136/bcr-2021-247765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 11/04/2022] Open
Abstract
Complete transection of the sciatic nerve following femoral fracture is extremely rare. In the setting of closed injury it has only been reported in two other cases. Here we present a teenage motorcyclist who sustained a closed left, mid-femoral fracture following a road traffic collision with complete transection of the sciatic nerve. Despite being a closed injury, the obvious limb deformity of the patient and extreme pain prompted immediate nerve block during the primary survey making formal neurological assessment difficult. This case highlights the possibility of complete major nerve transection in closed injuries, and the importance of careful clinical examination alongside repeat imaging.
Collapse
Affiliation(s)
- Emma Johnston
- School of Medicine, Queen's University Belfast, Belfast, UK
| | - Kevin McGarry
- Department of Plastic and Reconstructive Surgery, South Eastern Health and Social Care Trust, Belfast, Dundonald, UK
| | - Serena Martin
- Department of Plastic and Reconstructive Surgery, South Eastern Health and Social Care Trust, Belfast, Dundonald, UK
| | - Harry Lewis
- Department of Plastic and Reconstructive Surgery, South Eastern Health and Social Care Trust, Belfast, Dundonald, UK
| |
Collapse
|
37
|
Adler M, Pellett S, Sharma SK, Lebeda FJ, Dembek ZF, Mahan MA. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms 2022; 10:microorganisms10050886. [PMID: 35630331 PMCID: PMC9148055 DOI: 10.3390/microorganisms10050886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic peripheral nerve injuries tend to be more common in younger, working age populations and can lead to long-lasting disability. Peripheral nerves have an impressive capacity to regenerate; however, successful recovery after injury depends on a number of factors including the mechanism and severity of the trauma, the distance from injury to the reinnervation target, connective tissue sheath integrity, and delay between injury and treatment. Even though modern surgical procedures have greatly improved the success rate, many peripheral nerve injuries still culminate in persistent neuropathic pain and incomplete functional recovery. Recent studies in animals suggest that botulinum neurotoxin A (BoNT/A) can accelerate nerve regeneration and improve functional recovery after injury to peripheral nerves. Possible mechanisms of BoNT/A action include activation or proliferation of support cells (Schwann cells, mast cells, and macrophages), increased angiogenesis, and improvement of blood flow to regenerating nerves.
Collapse
Affiliation(s)
- Michael Adler
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Correspondence: ; Tel.: +1-410-436-1913
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA;
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Frank J. Lebeda
- Biotechnology, Protein Bioinformatics, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Advanced Academic Programs, 9601 Medical Center Drive, Rockville, MD 20850, USA;
| | - Zygmunt F. Dembek
- Department of Military and Emergency Medicine, Uniformed Services University of Health Sciences, 3154 Jones Bridge Rd., Bethesda, MD 20814, USA;
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences, University of Utah, 175 N Medical Drive East, Salt Lake City, UT 84132, USA;
| |
Collapse
|
38
|
Bazarek S, Johnston BR, Sten M, Mandeville R, Eggan K, Wainger BJ, Brown JM. Spinal motor neuron transplantation to enhance nerve reconstruction strategies: Towards a cell therapy. Exp Neurol 2022; 353:114054. [PMID: 35341748 DOI: 10.1016/j.expneurol.2022.114054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Nerve transfers have become a powerful intervention to restore function following devastating paralyzing injuries. A major limitation to peripheral nerve repair and reconstructive strategies is the progressive, fibrotic degeneration of the distal nerve and denervated muscle, eventually precluding recovery of these targets and thus defining a time window within which reinnervation must occur. One proven strategy in the clinic has been the sacrifice and transfer of an adjacent distal motor nerve to provide axons to occupy, and thus preserve (or "babysit"), the target muscle. However, available nearby nerves are limited in severe brachial plexus or spinal cord injury. An alternative and novel proposition is the transplantation of spinal motor neurons (SMNs) derived from human induced pluripotent stem cells (iPSCs) into the target nerve to extend their axons to occupy and preserve the targets. These cells could potentially be delivered through minimally invasive or percutaneous techniques. Several reports have demonstrated survival, functional innervation, and muscular preservation following transplantation of SMNs into rodent nerves. Advances in the generation, culture, and differentiation of human iPSCs now offer the possibility for an unlimited supply of clinical grade SMNs. This review will discuss the previous reports of peripheral SMN transplantation, outline key considerations, and propose next steps towards advancing this approach to clinic. Stem cells have garnered great enthusiasm for their potential to revolutionize medicine. However, this excitement has often led to premature clinical studies with ill-defined cell products and mechanisms of action, particularly in spinal cord injury. We believe the peripheral transplantation of a defined SMN population to address neuromuscular degeneration will be transformative in augmenting current reconstructive strategies. By thus removing the current barriers of time and distance, this strategy would dramatically enhance the potential for reconstruction and functional recovery in otherwise hopeless paralyzing injuries. Furthermore, this strategy may be used as a permanent axon replacement following destruction of lower motor neurons and would enable exogenous stimulation options, such as pacing of transplanted SMN axons in the phrenic nerve to avoid mechanical ventilation in high cervical cord injury or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Stanley Bazarek
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Margaret Sten
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Kevin Eggan
- BioMarin Pharmaceutical Inc., San Rafael, CA, United States of America
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
39
|
Combination of Stem Cells with Chinese Herbs for Secondary Depression in Neurodegenerative Diseases Based on Traditional Chinese Medicine Theories. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6847917. [PMID: 35280507 PMCID: PMC8913071 DOI: 10.1155/2022/6847917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 11/25/2022]
Abstract
Depression is a common secondary symptom in neurodegenerative diseases (NDs) caused by the loss of neurons and glial cells. Recent research focuses on stem cell therapy to replace dead nerve cells, but the low efficiency of stem cell differentiation and short survival time are obstacles limiting the therapy's effectiveness. Clinically, patients with different diseases cannot obtain the same effect by using the same cell therapy. However, traditional Chinese medicine (TCM) often uses syndrome differentiation to determine the treatment plan for NDs. Based on TCM syndrome differentiation and treatment, this article summarizes the advantages of Chinese herbal medicine combined with stem cell therapy, mainly for the effects of various herbs on diseases and stem cells, including prolonging the survival time of stem cells, resisting inflammation, and antidepressant-like effects. In particular, it analyzes the unique pathways of the influence of drugs and acupuncture on different therapies, seeking to clarify the scientific TCM system. This review mainly elaborates on the treatment of secondary depression in TCM and the advantages of a herbal combined stem cell therapy in various methods. We believe it can provide a new clinical concept for secondary depression to obtain good clinical effects and reduce the risks borne by patients.
Collapse
|
40
|
Bittner GD, Bushman JS, Ghergherehchi CL, Roballo KCS, Shores JT, Smith TA. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation 2022; 19:60. [PMID: 35227261 PMCID: PMC8886977 DOI: 10.1186/s12974-022-02395-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, 82072, USA
| | - Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tyler A Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
41
|
Gao D, Huang Y, Sun X, Yang J, Chen J, He J. Overexpression of c-Jun inhibits erastin-induced ferroptosis in Schwann cells and promotes repair of facial nerve function. J Cell Mol Med 2022; 26:2191-2204. [PMID: 35191156 PMCID: PMC8995448 DOI: 10.1111/jcmm.17241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/15/2023] Open
Abstract
Myelin undergoes various changes after nerve injury, and c‐Jun has a close relationship with Schwann cells (SCs). However, it remains unclear whether c‐Jun can be involved in nerve repair by regulating ferroptosis. To explore this, we first set up a facial nerve injury model and detected the changes of ferroptosis‐related proteins and c‐Jun by immunofluorescence and Western blot. Then, we cultured RSC 96 and pSCs, and studied the potential regulatory relationships by a combination of experimental methods such as CCK‐8, ELISA, immunofluorescence, qRT‐PCR, Western blot and viral transfection. Finally, we corroborated the role of c‐Jun through animal experiments. Our experiments revealed that ferroptosis occurs after facial nerve injury. Erastin decreased GPX4, c‐Jun proteins and GSH content, while PTGS2, NRF2, HO‐1 proteins, MDA, Fe2+ and ROS contents increased. This effect was inhibited after c‐Jun overexpression but was reversed after the addition of c‐Jun siRNA. Besides, we proved in vivo that c‐Jun could inhibit ferroptosis and promote the recovery of facial nerve function. In conclusion, our study identified the relationship between c‐Jun and ferroptosis during peripheral nerve injury repair, which provides new ideas for studying peripheral nerve injury and repair.
Collapse
Affiliation(s)
- Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yuyu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Xiayu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Jingchun He
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| |
Collapse
|
42
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
43
|
Li DD, Deng J, Jin B, Han S, Gu XY, Zhou XF, Yin XF. Effects of delayed repair of peripheral nerve injury on the spatial distribution of motor endplates in target muscle. Neural Regen Res 2022; 17:459-464. [PMID: 34269223 PMCID: PMC8464005 DOI: 10.4103/1673-5374.317990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Motor endplates (MEPs) are important sites of information exchange between motor neurons and skeletal muscle, and are distributed in an organized pattern of lamellae in the muscle. Delayed repair of peripheral nerve injury typically results in unsatisfactory functional recovery because of MEP degeneration. In this study, the mouse tibial nerve was transected and repaired with a biodegradable chitin conduit, immediately following or 1 or 3 months after the injury. Fluorescent α-bungarotoxin was injected to label MEPs. Tissue optical clearing combined with light-sheet microscopy revealed that MEPs were distributed in an organized pattern of lamellae in skeletal muscle after delayed repair for 1 and 3 months. However, the total number of MEPs, the number of MEPs per lamellar cluster, and the maturation of single MEPs in gastrocnemius muscle gradually decreased with increasing denervation time. These findings suggest that delayed repair can restore the spatial distribution of MEPs, but it has an adverse effect on the homogeneity of MEPs in the lamellar clusters and the total number of MEPs in the target muscle. The study procedures were approved by the Animal Ethics Committee of the Peking University People's Hospital (approval No. 2019PHC015) on April 8, 2019.
Collapse
Affiliation(s)
- Dong-Dong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital; Department of Orthopedics, PLA Strategic Support Force Medical Center, Beijing, China
| | - Jin Deng
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Bo Jin
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Shuai Han
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Xin-Yi Gu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Xue-Feng Zhou
- Department of Orthopedics, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiao-Feng Yin
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
44
|
Repair of peripheral nerve injuries using a prevascularized cell-based tissue-engineered nerve conduit. Biomaterials 2021; 280:121269. [PMID: 34847434 DOI: 10.1016/j.biomaterials.2021.121269] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
One of the major challenges in the development of a larger and longer nerve conduit for peripheral nerve repair is the limitation in oxygen and nutrient diffusion within the tissue after transplantation preventing Schwann cell and axonal migration. This restriction is due to the slow neovascularization process of the graft starting from both nerve endings. To overcome this limitation, we propose the design of a living tissue-engineered nerve conduit made of an internal tube with a three-dimensional structure supporting axonal migration, which is inserted inside a hollow external tube that plays the role of an epineurium and is strong enough to be stitched to the severed nerve stumps. The internal tube is made of a rolled living fibroblast sheet and can be seeded with endothelial cells to promote the formation of a network containing capillary-like structures which allow rapid inosculation with the host nerve microvasculature after grafting. Human nerve conduits were grafted in immunodeficient rats to bridge a 15 mm sciatic nerve gap. Human capillaries within the pre-vascularized nerve conduit successfully connected to the host circulation 2 weeks after grafting. Twenty-two weeks after surgery, rats transplanted with the nerve conduits had a similar motor function recovery compared to the autograft group. By promoting rapid vascularization of the internal nerve tube from both ends of the nerve stumps, this endothelialized nerve conduit model displays a favorable environment to enhance axonal migration in both larger caliber and longer nerve grafts.
Collapse
|
45
|
Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J Clin Invest 2021; 131:e141964. [PMID: 34491913 DOI: 10.1172/jci141964] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
46
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
47
|
Choong J, Baldrighi C, Oestreitch K, Jester A. Successful Delayed Neurolysis of the Median Nerve in a Teenager 7 years After Supracondylar Fracture: A Case Report and Review of the Literature. Ann Plast Surg 2021; 87:e37-e39. [PMID: 34559714 DOI: 10.1097/sap.0000000000002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Supracondylar humeral fractures are the commonest elbow fractures in childhood, associated with a high rate of neurological complications. We present the case of a 14-year-old adolescent girl with persisting daily pain, lack of sensation, and strength to her left hand after a displaced supracondylar fracture 7 years earlier. At the time of the fracture, she underwent closed reduction and percutaneous Kirschner wire fixation. During revision surgery, half of the median nerve was found embedded in bone at the level consistent with the healed fracture site. Neurolysis of the fascicles adherent to the bone was performed. Postoperatively, the patient had complete recovery of sensation, reduced pain, and a 2.5-fold improvement of grip strength. This case shows that there is a role for delayed neurolysis in children.
Collapse
|
48
|
Functional Recovery following Repair of Long Nerve Gaps in Senior Patient 2.6 Years Posttrauma. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3831. [PMID: 34584828 PMCID: PMC8460218 DOI: 10.1097/gox.0000000000003831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Sensory nerve grafts are the clinical “gold standard” for repairing peripheral nerve gaps. However, reliable good-to-excellent recovery develops only for gaps less than 3–5 cm, repairs performed less than 3–5 months posttrauma, and patients aged less than 20–25 years. As the value of any variable increases, the extent of recovery decreases precipitously, and if the values of any two or all increase, there is little to no recovery. One 9-cm-long and two 11-cm-long nerve gaps in a 56-year-old patient were repaired 2.6 years posttrauma. They were bridged with two sensory nerve grafts within an autologous platelet-rich plasma-filled collagen tube. Both were connected to the proximal ulnar nerve stump, with one graft end to the distal motor and the other to the sensory nerve branches. Although presurgery the patient suffered chronic level 10 excruciating neuropathic pain, it was reduced to 6 within 2 months, and did not increase for more than 2 years. Motor axons regenerated across the 9-cm gap and innervated the appropriate two measured muscles, with limited muscle fiber recruitment. Sensory axons regenerated across both 11-cm gaps and restored normal topographically correct sensitivity to stimuli of all sensory modalities, including static two-point discrimination of 5 mm, and pressure of 2.83 g to all regions innervated by both sensory nerves. This novel technique induced a significant long-term reduction in chronic excruciating neuropathic pain while promoting muscle reinnervation and complete sensory recovery, despite the values of all three variables that reduce or prevent axon regeneration and recovery being simultaneously large.
Collapse
|
49
|
Sawada H, Kurimoto S, Tokutake K, Saeki S, Hirata H. Optimal conditions for graft survival and reinnervation of denervated muscles after embryonic motoneuron transplantation into peripheral nerves undergoing Wallerian degeneration. J Tissue Eng Regen Med 2021; 15:763-775. [PMID: 34030216 DOI: 10.1002/term.3223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Motoneuron transplantation into peripheral nerves undergoing Wallerian degeneration may have applications in treating diseases causing muscle paralysis. We investigated whether functional reinnervation of denervated muscle could be achieved by early or delayed transplantation after denervation. Adult rats were assigned to six groups with increasing denervation periods (0, 1, 4, 8, 12, and 24 weeks) before inoculation with culture medium containing (transplantation group) or lacking (surgical control group) dissociated embryonic motoneurons into the peroneal nerve. Electrophysiological and tissue analyses were performed 3 months after transplantation. Reinnervation of denervated muscles significantly increased relative muscle weight in the transplantation group compared with the surgical control group for denervation periods of 1 week (0.042% ± 0.0031% vs. 0.032% ± 0.0020%, respectively; p = 0.009), 4 weeks (0.044% ± 0.0069% vs. 0.026% ± 0.0045%, respectively; p = 0.0023), and 8 weeks (0.044% ± 0.0029% vs. 0.026% ± 0.0008%, respectively; p = 0.0023). The ratios of reinnervated muscle contractile forces to naïve muscle in the 0, 1, 4, 8, and 12 weeks transplantation groups were 3.79%, 18.99%, 8.05%, 6.30%, and 5.80%, respectively, indicating that these forces were sufficient for walking. The optimal implantation time for transplantation of motoneurons into the peripheral nerve was 1 week after nerve transection. However, the neurons transplanted 24 weeks after denervation survived and regenerated axons. These results indicated that there is time for preparing cells for transplantation in regenerative medicine and suggested that our method may be useful for paralysed muscles that are not expected to recover with current treatment.
Collapse
Affiliation(s)
- Hideyoshi Sawada
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Tokutake
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sota Saeki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
MacKay BJ, Cox CT, Valerio IL, Greenberg JA, Buncke GM, Evans PJ, Mercer DM, McKee DM, Ducic I. Evidence-Based Approach to Timing of Nerve Surgery: A Review. Ann Plast Surg 2021; 87:e1-e21. [PMID: 33833177 PMCID: PMC8560160 DOI: 10.1097/sap.0000000000002767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023]
Abstract
ABSTRACT Events causing acute stress to the health care system, such as the COVID-19 pandemic, place clinical decisions under increased scrutiny. The priority and timing of surgical procedures are critically evaluated under these conditions, yet the optimal timing of procedures is a key consideration in any clinical setting. There is currently no single article consolidating a large body of current evidence on timing of nerve surgery. MEDLINE and EMBASE databases were systematically reviewed for clinical data on nerve repair and reconstruction to define the current understanding of timing and other factors affecting outcomes. Special attention was given to sensory, mixed/motor, nerve compression syndromes, and nerve pain. The data presented in this review may assist surgeons in making sound, evidence-based clinical decisions regarding timing of nerve surgery.
Collapse
Affiliation(s)
- Brendan J. MacKay
- From the Texas Tech University Health Sciences Center
- University Medical Center, Lubbock, TX
| | | | - Ian L. Valerio
- Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA
| | | | | | - Peter J. Evans
- Orthopaedic Surgery, Cleveland Clinic of Florida, Weston, FL
| | - Deana M. Mercer
- Department of Orthopaedics and Rehabilitation, The University of New Mexico, Albuquerque, NM
| | - Desirae M. McKee
- From the Texas Tech University Health Sciences Center
- University Medical Center, Lubbock, TX
| | | |
Collapse
|