1
|
Zhang W, Yuan C, An X, Guo T, Wei C, Lu Z, Liu J. Genomic Insights into Tibetan Sheep Adaptation to Different Altitude Environments. Int J Mol Sci 2024; 25:12394. [PMID: 39596459 PMCID: PMC11594602 DOI: 10.3390/ijms252212394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, research has gradually uncovered the mechanisms of animal adaptation to hypoxic conditions in different altitude environments, particularly at the genomic level. However, past genomic studies on high-altitude adaptation have often not delved deeply into the differences between varying altitude levels. This study conducted whole-genome sequencing on 60 Tibetan sheep (Medium Altitude Group (MA): 20 Tao sheep (TS) at 2887 m, High Altitude Group (HA): 20 OuLa sheep (OL) at 3501 m, and Ultra-High Altitude Group (UA): 20 AWang sheep (AW) at 4643 m) from different regions of the Tibetan Plateau in China to assess their responses under varying conditions. Population genetic structure analysis revealed that the three groups are genetically independent, but the TS and OL groups have experienced gene flow with other northern Chinese sheep due to geographical factors. Selection signal analysis identified FGF10, MMP14, SLC25A51, NDUFB8, ALAS1, PRMT1, PRMT5, and HIF1AN as genes associated with ultra-high-altitude hypoxia adaptation, while HMOX2, SEMA4G, SLC16A2, SLC22A17, and BCL2L2 were linked to high-altitude hypoxia adaptation. Functional analysis showed that ultra-high-altitude adaptation genes tend to influence physiological mechanisms directly affecting oxygen uptake, such as lung development, angiogenesis, and red blood cell formation. In contrast, high-altitude adaptation genes are more inclined to regulate mitochondrial DNA replication, iron homeostasis, and calcium signaling pathways to maintain cellular function. Additionally, the functions of shared genes further support the adaptive capacity of Tibetan sheep across a broad geographic range, indicating that these genes offer significant selective advantages in coping with oxygen scarcity. In summary, this study not only reveals the genetic basis of Tibetan sheep adaptation to different altitudinal conditions but also highlights the differences in gene regulation between ultra-high- and high-altitude adaptations. These findings offer new insights into the adaptive evolution of animals in extreme environments and provide a reference for exploring adaptation mechanisms in other species under hypoxic conditions.
Collapse
Affiliation(s)
- Wentao Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.Z.); (C.Y.); (X.A.); (T.G.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Williams DE, King K, Jackson R, Kuehner F, Arnoldy C, Marroquin JN, Tobey I, Banka A, Ragonese S, Van Doorslaer K. PRMT1 Modulates Alternative Splicing to Enhance HPV18 mRNA Stability and Promote the Establishment of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614592. [PMID: 39386465 PMCID: PMC11463397 DOI: 10.1101/2024.09.26.614592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Only persistent HPV infections lead to the development of cancer. Thus, understanding the virus-host interplay that influences the establishment of viral infection has important implications for HPV biology and human cancers. The ability of papillomaviruses to establish in cells requires the strict temporal regulation of viral gene expression in sync with cellular differentiation. This control primarily happens at the level of RNA splicing and polyadenylation. However, the details of how this spatio-temporal regulation is achieved still need to be fully understood. Until recently, it has been challenging to study the early events of the HPV lifecycle following infection. We used a single-cell genomics approach to identify cellular factors involved in viral infection and establishment. We identify protein arginine N-methyltransferase 1 (PRMT1) as an important factor in viral infection of primary human cervical cells. PRMT1 is the main cellular enzyme responsible for asymmetric dimethylation of cellular proteins. PRMT1 is an enzyme responsible for catalyzing the methylation of arginine residues on various proteins, which influences processes such as RNA processing, transcriptional regulation, and signal transduction. In this study, we show that HPV18 infection leads to increased PRMT1 levels across the viral lifecycle. PRMT1 is critical for the establishment of a persistent infection in primary cells. Mechanistically, PRMT1 inhibition leads to a highly dysregulated viral splicing pattern. Specifically, reduced PRMT1 activity leads to intron retention and a change in the E6 and E7 expression ratio. In the absence of PRMT1, viral transcripts are destabilized and subject to degradation via the nonsense-mediated decay (NMD) pathway. These findings highlight PRMT1 as a critical regulator of the HPV18 lifecycle, particularly in RNA processing, and position it as a potential therapeutic target for persistent HPV18 infections.
Collapse
Affiliation(s)
- David E.J. Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program, University of Arizona, Tucson, AZ, USA
| | - Kelly King
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Robert Jackson
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Franziska Kuehner
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Christina Arnoldy
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | | | - Isabelle Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Amy Banka
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
| | - Sofia Ragonese
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Molecular and cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
- The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA
| |
Collapse
|
3
|
Gonzalez ME, Naimo GD, Anwar T, Paolì A, Tekula SR, Kim S, Medhora N, Leflein SA, Itkin J, Trievel R, Kidwell KM, Chen YC, Mauro L, Yoon E, Andò S, Kleer CG. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience 2022; 25:104827. [PMID: 35992062 PMCID: PMC9389258 DOI: 10.1016/j.isci.2022.104827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently poorly differentiated with high propensity for metastasis. Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 that mediates transcriptional repression in normal cells and in cancer through H3K27me3. However, H3K27me3-independent non-canonical functions of EZH2 are incompletely understood. We reported that EZH2 phosphorylation at T367 by p38α induces TNBC metastasis in an H3K27me3-independent manner. Here, we show that cytosolic EZH2 methylates p38α at lysine 139 and 165 leading to enhanced p38α stability and that p38 methylation and activation require T367 phosphorylation of EZH2. Dual inhibition of EZH2 methyltransferase and p38 kinase activities downregulates pEZH2-T367, H3K27me3, and p-p38 pathways in vivo and reduces TNBC growth and metastasis. These data uncover a cooperation between EZH2 canonical and non-canonical mechanisms and suggest that inhibition of these pathways may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Maria E. Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Giuseppina Daniela Naimo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Talha Anwar
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Alessandro Paolì
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Shilpa R. Tekula
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Suny Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Natasha Medhora
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shoshana A. Leflein
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacob Itkin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raymond Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kelley M. Kidwell
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Tsai CY, Fang TP, Chen SW, Chen HW, Lin ECY, Lin TA, Tarng DC, Chang YI. Di(2-ethylhexyl)phthalate impairs erythropoiesis via inducing Klotho expression and not via bioenergetic reprogramming. Am J Transl Res 2022; 14:1234-1245. [PMID: 35273725 PMCID: PMC8902563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate to manufacture various plastic products. However, the potential effects of DEHP on erythropoiesis have not been investigated comprehensively. Here, we aimed to investigate whether DEHP modulated the function of hematopoietic stem and progenitor cells (HSPCs) to influence erythropoiesis, and to explore the associated mechanisms. In the present study, human cell lines with a capacity to differentiate into erythroid cells and murine bone marrow cells were treated with DEHP. DEHP not only impaired HSPC function, but also suppressed erythroid differentiation in a dose-dependent manner. In addition, DEHP removal restored HSPC activity. To explore how DEHP interfered with erythroid differentiation, we focused on energy metabolism and Klotho expression. DEHP suppressed erythroid differentiation via upregulating Klotho expression, while it did not via modulating cellular bioenergetics. Therefore, our results provided a novel insight into the pathophysiological link between phthalates and dysregulated erythroid differentiation.
Collapse
Affiliation(s)
- Chang-Yi Tsai
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Te-Ping Fang
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Shuoh-Wen Chen
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Hsiao-Wen Chen
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Eric Chang-Yi Lin
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| | - Ting-An Lin
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General HospitalTaipei 112201, Taiwan
| | - Der-Cherng Tarng
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General HospitalTaipei 112201, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B)Hsinchu 300093, Taiwan
| | - Yuan-I Chang
- Department and Institute of Physiology, National Yang Ming Chiao Tung UniversityTaipei 112304, Taiwan
| |
Collapse
|
5
|
Kuo YH, Wei SH, Jiang JH, Chang YS, Liu MY, Fu SL, Huang CYF, Lin WJ. Perturbation of p38α MAPK as a Novel Strategy to Effectively Sensitize Chronic Myeloid Leukemia Cells to Therapeutic BCR-ABL Inhibitors. Int J Mol Sci 2021; 22:ijms222212573. [PMID: 34830455 PMCID: PMC8623086 DOI: 10.3390/ijms222212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs) specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK activity is critically linked to the pathogenesis of a number of diseases including hematopoietic diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation imatinib, and second generation dasatinib by approximately 2.5–3.0-fold in BCR-ABL-positive CML-derived leukemia K562 and KMB5 cells. Knockdown of p38β, which displays the most sequence similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy. These results show the importance of isotype-specific intervention in enhancing the therapeutic efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib- and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future clinic application. Taken together, our results demonstrated that p38α is a promising target for combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to increase therapeutic efficacy.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Combined Modality Therapy
- Dasatinib/pharmacology
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Gene Knockdown Techniques
- Genetic Therapy
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitogen-Activated Protein Kinase 14/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 14/deficiency
- Mitogen-Activated Protein Kinase 14/genetics
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Yi-Hue Kuo
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Shih-Hsiang Wei
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Jie-Hau Jiang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Yueh-Shih Chang
- Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, College of Medicine, Keelung & Chang Gung University, Taoyuan City 33302, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
- Correspondence: ; Tel.: +886-2-2826-7257
| |
Collapse
|
6
|
Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, Xavier-Ferrucio J, Jin S, Tran NT, Liu SM, Sun CW, Zhu Y, Zhao Q, Chen Y, Cable L, Shen Y, Liu J, Qu CK, Han X, Klug CA, Bhatia R, Chen Y, Nimer SD, Zheng YG, Iancu-Rubin C, Jin J, Deng H, Krause DS, Xiang J, Verma A, Luo M, Zhao X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep 2021; 36:109421. [PMID: 34320342 PMCID: PMC9110119 DOI: 10.1016/j.celrep.2021.109421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.
Collapse
Affiliation(s)
- Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ming Jiang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Tuo Zhang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Han Guo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuiling Jin
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Szu-Mam Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongxia Zhu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Qing Zhao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuling Chen
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng-Kui Qu
- Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaosi Han
- Department of Neurology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher A Klug
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Veterans Affairs Birmingham Medical Center, Research Department, Birmingham, AL 35294, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146 USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Camelia Iancu-Rubin
- Department of Medicine, Hematology and Oncology Division, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haiteng Deng
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Diane S Krause
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jenny Xiang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA.
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Liu MY, Hua WK, Chen CJ, Lin WJ. The MKK-Dependent Phosphorylation of p38α Is Augmented by Arginine Methylation on Arg49/Arg149 during Erythroid Differentiation. Int J Mol Sci 2020; 21:ijms21103546. [PMID: 32429593 PMCID: PMC7278938 DOI: 10.3390/ijms21103546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
The activation of p38 mitogen-activated protein kinases (MAPKs) through a phosphorylation cascade is the canonical mode of regulation. Here, we report a novel activation mechanism for p38α. We show that Arg49 and Arg149 of p38α are methylated by protein arginine methyltransferase 1 (PRMT1). The non-methylation mutations of Lys49/Lys149 abolish the promotive effect of p38α on erythroid differentiation. MAPK kinase 3 (MKK3) is identified as the major p38α upstream kinase and MKK3-mediated activation of the R49/149K mutant p38α is greatly reduced. This is due to a profound reduction in the interaction of p38α and MKK3. PRMT1 can enhance both the methylation level of p38α and its interaction with MKK3. However, the phosphorylation of p38α by MKK3 is not a prerequisite for methylation. MAPK-activated protein kinase 2 (MAPKAPK2) is identified as a p38α downstream effector in the PRMT1-mediated promotion of erythroid differentiation. The interaction of MAPKAPK2 with p38α is also significantly reduced in the R49/149K mutant. Together, this study unveils a novel regulatory mechanism of p38α activation via protein arginine methylation on R49/R149 by PRMT1, which impacts partner interaction and thus promotes erythroid differentiation. This study provides a new insight into the complexity of the regulation of the versatile p38α signaling and suggests new directions in intervening p38α signaling.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
| | - Wei-Kai Hua
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan;
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
- Correspondence: ; Tel.: +886-2-28267257
| |
Collapse
|
8
|
Zhang Y, Wu W, Gao L, Chen M, Liu X, Huang M, Li A, Zheng K, Liu D, Deng H, Zhao B, Liu B, Pang Q. Protein arginine methyltransferase 1 mediates regeneration in Dugesia japonica. Biochem Biophys Res Commun 2020; 524:411-417. [DOI: 10.1016/j.bbrc.2020.01.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 11/30/2022]
|
9
|
Tu PS, Lin ECY, Chen HW, Chen SW, Lin TA, Gau JP, Chang YI. The extracellular signal-regulated kinase 1/2 modulates the intracellular localization of DNA methyltransferase 3A to regulate erythrocytic differentiation. Am J Transl Res 2020; 12:1016-1030. [PMID: 32269731 PMCID: PMC7137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is a heritable epigenetic mark, participating in numerous physiological processes. DNMT3A is of particular relevance to hematopoietic differentiation, because DNMT3A mutations are strongly related to hematopoietic malignancies. Additionally, DNMT3A deficiency has been reported to increase the hematopoietic stem cell pool by limiting their differentiation. Our previous study demonstrated that complete loss of DNMT3A resulted in anemia, while DNMT3A haploinsufficiency caused an elevated population of erythrocytes in the content of oncogenic KRAS. Since erythropoiesis is tightly regulated via the erythropoietin (EPO)-mediated RAS-RAF-MEK-ERK1/2 pathway, the question arises whether DNMT3A cooperates with RAS signaling to modulate erythropoiesis. Human leukemia cell lines were used, with differentiation capabilities towards megakaryocyte and erythroid lineages. Overexpression of DNMT3A was found to enhance erythrocytic differentiation of K562 cells, while DNMT3A knockdown suppressed differentiation. Furthermore, higher DNMT3A expression was detected in late-stage mouse erythroblasts along with the DNMT3A translocation to the nucleus. Further studies demonstrated that both ERK1/2-DNMT3A interaction and serine-255 phosphorylation in DNMT3A led to DNMT3A translocation into the nucleus, and modulated erythrocytic differentiation. Our results not only explore the critical role of DNMT3A in erythropoiesis, but also provide a new insight into ERK1/2-DNMT3A interaction in the hematopoietic system.
Collapse
Affiliation(s)
- Po-Shu Tu
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Eric Chang-Yi Lin
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Hsiao-Wen Chen
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Shuoh-Wen Chen
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Ting-An Lin
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Jyh-Pyng Gau
- Faculty of Medicine, National Yang-Ming UniversityTaipei 11221, Taiwan
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Yuan-I Chang
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| |
Collapse
|
10
|
Zhu L, He X, Dong H, Sun J, Wang H, Zhu Y, Huang F, Zou J, Chen Z, Zhao X, Li L. Protein arginine methyltransferase 1 is required for maintenance of normal adult hematopoiesis. Int J Biol Sci 2019; 15:2763-2773. [PMID: 31853216 PMCID: PMC6909962 DOI: 10.7150/ijbs.38859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the predominant asymmetric (type I) methyltransferase in mammalian cells. Mounting evidence suggested that PRMT1 is essential to embryonic development and tumor pathogenesis, but its role in normal adult hematopoiesis is less studied. We used a Prmt1 conditional knockout (KO) mouse model to identify the role of PRMT1 in normal adult hematopoiesis. The results indicated that deletion of PRMT1 results in anemia and leukopenia, reducing terminal erythroid and lymphocyte differentiation. Additionally, we found a significant decrease of megakaryocyte progenitors (MkPs) compared with similarly treated littermate control mice. The frequency of short-term hematopoietic stem cells (ST-HSCs) and granulocyte-macrophage progenitors (GMPs) populations were significantly lower in PRMT1f/f/Mx1-CRE bone marrow (BM) compared with littermate control mice. Importantly, in-vitro replating assays and BM transplantation results revealed that PRMT1 KO results in reduced hematopoietic stem and progenitor cells (HSPCs) self-renewal capacity. Thus, we conclude that PRMT1 is required for hematopoietic differentiation and the competitive fitness of HSPCs, and we believed that PRMT1 serves as a key epigenetic regulator of normal hematopoiesis that occurs throughout life.
Collapse
Affiliation(s)
- Lei Zhu
- Department of clinical laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Xin He
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Haojie Dong
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Jie Sun
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Hanying Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Yinghui Zhu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Feiteng Huang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Jingying Zou
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Zexin Chen
- Department of Science and Development, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xiaoying Zhao
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| |
Collapse
|
11
|
Liu MY, Hua WK, Chiou YY, Chen CJ, Yao CL, Lai YT, Lin CH, Lin WJ. Calcium-dependent methylation by PRMT1 promotes erythroid differentiation through the p38α MAPK pathway. FEBS Lett 2019; 594:301-316. [PMID: 31541584 DOI: 10.1002/1873-3468.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Protein arginine methyltransferase 1 (PRMT1) stimulates erythroid differentiation, but the signaling events upstream are yet to be identified. Ca2+ plays crucial roles during erythroid differentiation. Here, we show that Ca2+ enhances methylation during induced erythroid differentiation and that Ca2+ directly upregulates the catalytic activity of recombinant PRMT1 by increasing Vmax toward the substrate heterogeneous nuclear ribonucleoprotein A2. We demonstrate that PRMT1 is essential and responsible for the effect of Ca2+ on differentiation. Depletion of Ca2+ suppresses PRMT1-mediated activation of p38α and p38α-stimulated differentiation. Furthermore, Ca2+ stimulates methylation of p38α by PRMT1. This study uncovers a novel regulatory mechanism for PRMT1 by Ca2+ and identifies the PRMT1/p38α axis as an intracellular mediator of Ca2+ signaling during erythroid differentiation.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Kai Hua
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Xie Y, Gao L, Xu C, Chu L, Gao L, Wu R, Liu Y, Liu T, Sun XJ, Ren R, Tang J, Zheng Y, Zhou Y, Shen S. ARHGEF12 regulates erythropoiesis and is involved in erythroid regeneration after chemotherapy in acute lymphoblastic leukemia patients. Haematologica 2019; 105:925-936. [PMID: 31467124 PMCID: PMC7109745 DOI: 10.3324/haematol.2018.210286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/22/2019] [Indexed: 12/04/2022] Open
Abstract
Hematopoiesis is a finely regulated process in vertebrates under both homeostatic and stress conditions. By whole exome sequencing, we studied the genomics of acute lymphoblastic leukemia (ALL) patients who needed multiple red blood cell (RBC) transfusions after intensive chemotherapy treatment. ARHGEF12, encoding a RhoA guanine nucleotide exchange factor, was found to be associated with chemotherapy-induced anemia by genome-wide association study analyses. A single nucleotide polymorphism (SNP) of ARHGEF12 located in an intron predicted to be a GATA1 binding site, rs10892563, is significantly associated with patients who need RBC transfusion (P=3.469E-03, odds ratio 5.864). A luciferase reporter assay revealed that this SNP impairs GATA1-mediated trans-regulation of ARHGEF12, and quantitative polymerase chain reaction studies confirmed that the homozygotes status is associated with an approximately 61% reduction in ARHGEF12 expression (P=0.0088). Consequently, erythropoiesis was affected at the pro-erythroblast phases. The role of ARHGEF12 and its homologs in erythroid differentiation was confirmed in human K562 cells, mouse 32D cells and primary murine bone marrow cells. We further demonstrated in zebrafish by morpholino-mediated knockdown and CRISPR/Cas9-mediated knockout of arhgef12 that its reduction resulted in erythropoiesis defects. The p38 kinase pathway was affected by the ARHGEF12-RhoA signaling in K562 cells, and consistently, the Arhgef12-RhoA-p38 pathway was also shown to be important for erythroid differentiation in zebrafish as active RhoA or p38 readily rescued the impaired erythropoiesis caused by arhgef12 knockdown. Finally, ARHGEF12-mediated p38 activity also appeared to be involved in phenotypes of patients of the rs10892563 homozygous genotype. Our findings present a novel SNP of ARHGEF12 that may involve ARHGEF12-RhoA-p38 signaling in erythroid regeneration in ALL patients after chemotherapy.
Collapse
Affiliation(s)
- Yangyang Xie
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Chunhui Xu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Chu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Beijing, China
| | - Ruichi Wu
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Liu
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jian Sun
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai, China
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai, China
| | - Jingyan Tang
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuhong Shen
- Key Lab of Pediatrics Hematology/Oncology, Ministry of Health, Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
vanLieshout TL, Bonafiglia JT, Gurd BJ, Ljubicic V. Protein arginine methyltransferase biology in humans during acute and chronic skeletal muscle plasticity. J Appl Physiol (1985) 2019; 127:867-880. [PMID: 31369333 DOI: 10.1152/japplphysiol.00142.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins. While dysregulation of PRMTs has been documented in a number of the most prevalent diseases, our understanding of PRMT biology in human skeletal muscle is limited. This study served to address this knowledge gap by exploring PRMT expression and function in human skeletal muscle in vivo and characterizing PRMT biology in response to acute and chronic stimuli for muscle plasticity. Fourteen untrained, healthy men performed one session of sprint interval exercise (SIE) before completing four bouts of SIE per week for 6 wk as part of a sprint interval training (SIT) program. Throughout this time course, multiple muscle biopsies were collected. We found that at basal, resting conditions PRMT1, PRMT4, PRMT5, and PRMT7 were the most abundantly expressed PRMT mRNAs in human quadriceps muscle. Additionally, the broad subcellular distribution pattern of PRMTs suggests methyltransferase activity throughout human myofibers. A spectrum of PRMT-specific inductions, and decrements, in expression and activity were observed in response to acute and chronic cues for muscle plasticity. In conclusion, our findings demonstrate that PRMTs are present and active in human skeletal muscle in vivo and that there are distinct, enzyme-specific responses and adaptations in PRMT biology to acute and chronic stimuli for muscle plasticity. This work advances our understanding of this critical family of enzymes in humans.NEW & NOTEWORTHY This is the first report of protein arginine methyltransferase (PRMT) biology in human skeletal muscle in vivo. We observed that PRMT1, -4, -5, and -7 were the most abundant PRMT mRNAs in human muscle and that PRMT proteins exhibited a broad subcellular localization that included myonuclear, cytosolic, and sarcolemmal compartments. Acute exercise and chronic training evoked PRMT-specific alterations in expression and activity. This study reveals a hitherto unknown complexity to PRMT biology in human muscle.
Collapse
Affiliation(s)
| | - Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| |
Collapse
|
14
|
Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2018; 234:2373-2385. [PMID: 30192008 DOI: 10.1002/jcp.27262] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Erythropoiesis is a multi-step process that involves the differentiation of hematopoietic stem cells into mature red blood cells (RBCs). This process is regulated by several signaling pathways, transcription factors and microRNAs (miRNAs). Many studies have shown that dysregulation of this process can lead to hematologic disorders. PI3K/AKT is one of the most important pathways that control many cellular processes including, cell division, autophagy, survival, and differentiation. In this review, we focus on the role of PI3K/AKT pathway in erythropoiesis and discuss the function of some of the most important genes, transcription factors, and miRNAs that regulate different stages of erythropoiesis which play roles in differentiation and maturation of RBCs, prevention of apoptosis, and autophagy induction. Understanding the role of the PI3K pathway in erythropoiesis may provide new insights into diagnosing erythrocyte disorders.
Collapse
Affiliation(s)
- Mahjoobeh Jafari
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Dadkhah
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Zheng R, Liu Q, Wang T, Wang L, Zhang Y. FAM98A promotes proliferation of non-small cell lung cancer cells via the P38-ATF2 signaling pathway. Cancer Manag Res 2018; 10:2269-2278. [PMID: 30100758 PMCID: PMC6067791 DOI: 10.2147/cmar.s163323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background FAM98A, a novel protein, is expressed in ovarian and colorectal cancer tissues. However, the association between FAM98A expression and the clinicopathological characteristics of non-small cell lung cancer (NSCLC) remains undetermined. Materials and methods The FAM98A expression pattern was determined in NSCLC samples and corresponding adjacent normal lung tissues using immunohistochemical staining and Western blotting. The association of FAM98A expression with clinicopathological characteristics was measured in 131 NSCLC samples. Finally, the overexpression and inhibition of FAM98A was performed in the A549 and SPC-A1 cell lines to explore its role in the development of lung cancer. Results Western blot analysis of 20 paired NSCLC samples showed that expression of FAM98A was higher in lung cancer tissues than in the corresponding adjacent normal lung tissues (p<0.05). Immunohistochemical staining of 128 NSCLC specimens showed that expression of FAM98A was significantly higher in lung cancer samples than in adjacent normal lung tissues (118/128 vs 10/128; p<0.001). Positive expression of FAM98A was significantly related to tumor TNM stage (p<0.05) and lymph node metastasis (p<0.001). Additionally, overexpression of FAM98A induced an increase in the expression of phosphorylated P38, phosphorylated ATF2, and cyclin D1, which promoted proliferation of lung cancer cells. Correspondingly, the effects of FAM98A overexpression were reversed by administration of a specific inhibitor of phosphorylated P38. Conclusion FAM98A was overexpressed in the cytoplasm of NSCLC samples and correlated with advanced TNM staging and lymph node metastasis. Thus, FAM98A increases the expression of cyclin D1 by activating the P38-ATF2 signaling pathway and subsequently enhancing tumor cell proliferation; these results are promising and need further validation.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China,
| | - Quanbo Liu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China,
| | - Tianxu Wang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China,
| | - Lili Wang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China,
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China,
| |
Collapse
|
16
|
Stouth DW, vanLieshout TL, Shen NY, Ljubicic V. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders. Front Physiol 2017; 8:870. [PMID: 29163212 PMCID: PMC5674940 DOI: 10.3389/fphys.2017.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nicole Y Shen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Unexpected role for p19INK4d in posttranscriptional regulation of GATA1 and modulation of human terminal erythropoiesis. Blood 2016; 129:226-237. [PMID: 27879259 DOI: 10.1182/blood-2016-09-739268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Terminal erythroid differentiation is tightly coordinated with cell-cycle exit, which is regulated by cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors (CDKI), yet their roles in erythropoiesis remain to be fully defined. We show here that p19INK4d, a member of CDKI family, is abundantly expressed in erythroblasts and that p19INK4d knockdown delayed erythroid differentiation, inhibited cell growth, and led to increased apoptosis and generation of abnormally nucleated late-stage erythroblasts. Unexpectedly, p19INK4d knockdown did not affect cell cycle. Rather, it led to decreased expression of GATA1 protein. Importantly, the differentiation and nuclear defects were rescued by ectopic expression of GATA1. Because the GATA1 protein is protected by nuclear heat shock protein family (HSP) member HSP70, we examined the effects of p19INK4d knockdown on HSP70 and found that p19INK4d knockdown led to decreased expression of HSP70 and its nuclear localization. The reduced levels of HSP70 are the result of reduced extracellular signal-regulated kinase (ERK) activation. Further biochemical analysis revealed that p19INK4d directly binds to Raf kinase inhibitor PEBP1 and that p19INK4d knockdown increased the expression of PEBP1, which in turn led to reduced ERK activation. Thus we have identified an unexpected role for p19INK4d via a novel PEBP1-p-ERK-HSP70-GATA1 pathway. These findings are likely to have implications for improved understanding of disordered erythropoiesis.
Collapse
|
18
|
Jeong HJ, Lee HJ, Vuong TA, Choi KS, Choi D, Koo SH, Cho SC, Cho H, Kang JS. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. Diabetes 2016; 65:1868-82. [PMID: 27207521 DOI: 10.2337/db15-1500] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/19/2016] [Indexed: 11/13/2022]
Abstract
Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α.
Collapse
Affiliation(s)
- Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea
| | - Hye-Jin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea
| | - Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea
| | - Kyu-Sil Choi
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, South Korea
| | - Dahee Choi
- Division of Life Science, Korea University, Seoul, South Korea
| | - Sung-Hoi Koo
- Division of Life Science, Korea University, Seoul, South Korea
| | - Sung Chun Cho
- Well Aging Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon, South Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea
| |
Collapse
|