1
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
Yang L, Pu J, Cai F, Zhang Y, Gao R, Zhuang S, Liang Y, Wu Z, Pan S, Song J, Han F, Tang J, Wang X. Chronic Epstein-Barr virus infection: A potential junction between primary Sjögren's syndrome and lymphoma. Cytokine 2023; 168:156227. [PMID: 37244248 DOI: 10.1016/j.cyto.2023.156227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that targets exocrine glands, leading to exocrine dysfunction. Due to its propensity to infect epithelial and B cells, Epstein-Barr virus (EBV) is hypothesized to be related with pSS. Through molecular mimicry, the synthesis of specific antigens, and the release of inflammatory cytokines, EBV contributes to the development of pSS. Lymphoma is the most lethal outcome of EBV infection and the development of pSS. As a population-wide virus, EBV has had a significant role in the development of lymphoma in people with pSS. In the review, we will discuss the possible causes of the disease.
Collapse
Affiliation(s)
- Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shuqi Zhuang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
3
|
Kurz KS, Ott M, Kalmbach S, Steinlein S, Kalla C, Horn H, Ott G, Staiger AM. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms-Updated Classification and New Concepts. Cancers (Basel) 2023; 15:cancers15082285. [PMID: 37190213 DOI: 10.3390/cancers15082285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The family/class of the large B-cell lymphomas (LBCL) in the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumors (WHO-HAEM5) features only a few major changes as compared to the 4th edition. In most entities, there are only subtle changes, many of them only representing some minor modifications in diagnostic terms. Major changes have been made in the diffuse large B-cell lymphomas (DLBCL)/high-grade B-cell lymphomas (HGBL) associated with MYC and BCL2 and/or BCL6 rearrangements. This category now consists of MYC and BCL2 rearranged cases exclusively, while the MYC/BCL6 double hit lymphomas now constitute genetic subtypes of DLBCL, not otherwise specified (NOS) or of HGBL, NOS. Other major changes are the conceptual merger of lymphomas arising in immune-privileged sites and the description of LBCL arising in the setting of immune dysregulation/deficiency. In addition, novel findings concerning underlying biological mechanisms in the pathogenesis of the different entities are provided.
Collapse
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Michaela Ott
- Department of Pathology, Marienhospital, 70199 Stuttgart, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Sophia Steinlein
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| |
Collapse
|
4
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
5
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Drees EEE, Pegtel DM. Circulating miRNAs as Biomarkers in Aggressive B Cell Lymphomas. Trends Cancer 2020; 6:910-923. [PMID: 32660885 DOI: 10.1016/j.trecan.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
B cell lymphomas are heterogeneous malignancies of hematological origin with vastly different biology and clinical outcomes. Histopathology of tissue biopsies and image-based assessment guide clinical decisions. Given that tissue biopsies cannot be frequently repeated and will not inform on systemic responses to the treatment, more accessible biomarkers, such as circulating miRNAs, are considered. Aberrant miRNA expression in lymphoma tissues and ongoing immune reactions may lead to miRNA alterations in circulation. miRNAs bound to extracellular vesicles (EVs) are of interest because of their role in intercellular communication and organ crosstalk. Herein, we highlight the role of miRNAs and EVs in B cell lymphomagenesis and explain how circulating miRNAs may be turned into robust liquid biopsy tests for aggressive B cell lymphoma.
Collapse
Affiliation(s)
- Esther E E Drees
- Amsterdam UMC, Vrije Universiteit Amsterdam, Exosomes Research Group, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Exosomes Research Group, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Tokuhira M, Tamaru JI, Kizaki M. Clinical management for other iatrogenic immunodeficiency-associated lymphoproliferative disorders. J Clin Exp Hematop 2019; 59:72-92. [PMID: 31257348 PMCID: PMC6661962 DOI: 10.3960/jslrt.19007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Other iatrogenic immunodeficiency-associated lymphoproliferative disorders (OIIA-LPD), a category of immunodeficiency-associated LPD according to the World Health Organization classification, is associated with immunosuppressive drugs (ISDs). Several factors, including autoimmune disease (AID) activity, Epstein-Barr virus (EBV) infection, ISD usage, and aging, influence the development of OIIA-LPD, resulting in complicated clinical courses and outcomes. Most OIIA-LPD develops in patients with rheumatoid arthritis using methotrexate (MTX-LPD). The management of MTX-LPD is based on the clinical course, i.e., with/without regression, with/without relapse/regrowth event (RRE), LPD subtype, and ISDs for AIDs after LPD development. There are three clinical courses after ISD withdrawal: regressive LPD without relapse/regrowth (R-G), regressive LPD with RRE (R/R-G), and persistent LPD (P-G). The majority of EBV+ diffuse large B-cell lymphomas are classified in R-G, whereas classic Hodgkin lymphoma is generally classified in R/R-G. Polymorphic LPD (P-LPD) in MTX-LPD develops with heterogeneous pathological features similar to monomorphic LPD. Chemotherapy for MTX-LPD is selected according to that for de novo LPD, although the strategy for aggressive P-LPD and non-specific LPD is not well established. The absolute lymphocyte count in the peripheral blood has been suggested as a candidate marker for MTX-LPD development and RRE. Several clinical issues, including correct diagnosis among overlapping clinicopathological features in MTX-LPD and clinical management of LPD by ISDs other than MTX, require further investigation.
Collapse
|
8
|
Lymphomas arising in immune-privileged sites: insights into biology, diagnosis, and pathogenesis. Virchows Arch 2019; 476:647-665. [PMID: 31863183 DOI: 10.1007/s00428-019-02698-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Session 2 of the 2018 European Association of Hematopathology/Society for Hematopathology Workshop focused on lymphomas arising in immune-privileged sites: both lymphomas arising in the traditionally described "immune sanctuary" sites of the central nervous system (CNS) and testes, as well as those arising at sites of local immune privilege. Primary CNS large B cell lymphoma and primary testicular large B cell lymphoma were discussed, and the biology of these unique tumors was highlighted by several cases showing the classic mutation profile including MYD88 L265P and CD79B. The tendency of these tumors to involve both the CNS and testis was also reinforced by several cases. Four cases of low-grade B cell lymphomas (LGBCL) of the CNS were discussed. Two were classic Bing-Neel syndrome associated with LPL, and two were LGBCL with plasmacytic differentiation and amyloid deposition without systemic disease. Rare examples of systemic T and NK cell lymphomas involving the CNS were also discussed. Several cases of breast implant-associated anaplastic large cell lymphoma (BI-ALCL) were submitted showing the typical clinicopathologic features. These cases were discussed along with a case with analogous features arising in a patient with a gastric band implant, as well as large B cell lymphomas arising alongside foreign materials. Finally, large B cell lymphomas arising in effusions or localized sites of chronic inflammation (fibrin-associated diffuse large B cell lymphoma [DLBCL] and DLBCL associated with chronic inflammation) were described. The pathogenesis of all of these lymphomas is believed to be related to decreased immune surveillance, either innate to the physiology of the organ or acquired at a local site.
Collapse
|
9
|
Liu F, Zheng JP, Wang L, Zhao DH, Li MY, Wang YM, Liu Y, Ma J, Zeng NY, Liu HX, Liang R, Guo SP, Wang Z, Yan QG. Activation of the NF-κB Pathway and Heterozygous Deletion of TNFAIP3 (A20) Confer Superior Survival in Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type. Am J Clin Pathol 2019; 152:243-252. [PMID: 31140551 DOI: 10.1093/ajcp/aqz041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To investigate the role of TNFAIP3 deletions and NF-κB activation in extranodal natural killer/T-cell lymphoma (ENKTCL), nasal type. METHODS In total, 138 patients with ENKTCL were included. Activation of NF-κB pathway and expression of TNFAIP3 (A20) were examined by immunohistochemistry. TNFAIP3 was analyzed for deletions using FICTION (fluorescence immunophenotyping and interphase cytogenetics as a tool for investigating neoplasms), for mutations using Sanger sequencing, and for promoter methylation using methylation-specific sequencing. RESULTS NF-κB pathway activation was observed in 31.2% of cases (43/138), TNFAIP3 expression was negative in 15.2% of cases (21/138), and heterozygous TNFAIP3 deletion was observed in 35% of cases (35/100). TNFAIP3 exons 2 to 9 mutations and promoter methylation were not observed. Kaplan-Meier analysis showed patients with NF-κB pathway activation or TNFAIP3 heterozygous deletion to have a longer overall survival. CONCLUSIONS Our study demonstrated that NF-κB activation and TNFAIP3 heterozygous deletion confer superior survival in patients with ENKTCL.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Jun-Ping Zheng
- Department of Ultrasound Diagnosis, 12th Hospital of The People’s Liberation Army, Xinjiang, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dan-Hui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ming-Yang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ying-Mei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Nai-Yan Zeng
- Department of Pathology and Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Xiang Liu
- Molecular Malignancy Laboratory, Haematopathology and Oncology Diagnostic Service, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rong Liang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuang-Ping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qing-Guo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Dong X, Liu L, Wang Y, Yang X, Wang W, Lin L, Sun B, Hou J, Ying W, Hui X, Zhou Q, Liu D, Yao H, Sun J, Wang X. Novel Heterogeneous Mutation of TNFAIP3 in a Chinese Patient with Behçet-Like Phenotype and Persistent EBV Viremia. J Clin Immunol 2019; 39:188-194. [PMID: 30810840 DOI: 10.1007/s10875-019-00604-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) is a negative regulator of the nuclear factor-κB (NF-κB) pathway. It has recently been recognized that TNFAIP3 deficiency leads to early onset of autoinflammatory and autoimmune syndrome resembling Behçet's disease. Here, we report a novel mutation in TNFAIP3 in a Chinese patient, who had Behçet-like phenotype and persistent Epstein-Barr virus (EBV) viremia. METHODS The clinical data were collected. Immunological function was detected. Gene mutation was detected by whole-exome sequencing (WES) and confirmed by Sanger sequencing. mRNA and protein levels were detected in the patient under lipopolysaccharide (LPS) stimulation by real-time PCR and Western blot. RESULTS The patient is a 13-year-old boy, presenting with intermittent fever for 5 months, who also experienced diffuse lymphadenopathy, arthritis, and recurrent multiple gastrointestinal ulcers. EBV DNA was detected in the serum and peripheral blood mononuclear cells of the patient. The immunological phenotype showed increased proportion of double-negative T cells (CD3+CD4-CD8-). A novel missense mutation (c.1428G > A) locating at the zinc fingers 2 (ZF2) domain of TNFAIP3 inherited from his mother was confirmed. Compared with age-matched healthy controls, decrease expression of A20 was observed in the patient. The NF-κB pathway was found to be overactivated, and the synthesis of TNF-α was upregulated in the patient-derived cells. However, cells from the mother showed a milder response to LPS than cells from the patient. CONCLUSIONS The present research indicated that the TNFAIP3 mutation of c.1428G > A (p.M476I) leads to the reduced suppression of NF-κB activation and accounted for the autoinflammatory phenotype and persistent EBV viremia in the patient.
Collapse
Affiliation(s)
- Xiaolong Dong
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaotao Yang
- Kunming Children's Hospital Affiliated to Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Li Lin
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
11
|
DNAJA4 deficiency enhances NF-kappa B-related growth arrest induced by hyperthermia in human keratinocytes. J Dermatol Sci 2018; 91:256-267. [PMID: 29807809 DOI: 10.1016/j.jdermsci.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hyperthermia is an effective treatment against cancer and human papillomavirus (HPV) infection. Previous studies have shown that heat shock proteins are crucial to the action of hyperthermia. OBJECTIVES To examine the effects of hyperthermia in combination with DNAJA4-deficiency on human keratinocytes and Condyloma acumunatum (CA) tissues. METHODS HaCaT cells were subjected to 44°C (compared to 37°C) waterbath for 30min for stimulation. Foreskin or CA tissues obtained from patients undergoing circumcision or pathological examination were bisected and subjected to similar treatments. DNAJA4-knockout (KO) HaCaT cells were generated with CRISPR/Cas9 technology. mRNA and protein expressions were determined using rt-qPCR and western-blotting. Cell cycle distribution, apoptosis and senescence were analyzed by flow cytometry. RESULTS DNAJA4 was induced in HaCaT cells, foreskin and CA tissues subjected to hyperthermia at both transcriptional and translational levels. NF-kB,3 was activated by hyperthermia in HaCaT cells, and further enhanced by DNAJA4-deficiency. Transcription of TNF-α4; IL-1B,5 TNFAIP36 and IL-87 were induced in HaCaT cells subjected to hyperthermia. DNAJA4-knockout promoted transcriptions of TNF-α and IL-1B, whereas decreased that of TNFAIP3 and IL-8. Reduced cell survival, proliferation and viability were demonstrated using flow cytometry and MTS assays. Furthermore, NF-kB inhibitors reversed most of the phenotypes observed. CONCLUSIONS Hyperthermia reduced HaCaT cell proliferation and promoted cytokine expressions responsible for anti-viral activity, mainly through a NF-kB dependent pathway. DNAJA4-deficiency enhanced the activation of NF-kB by hyperthermia in HaCaT cells, indicating that DNAJA4 may be a promising therapeutic target for use in the treatment of cutaneous HPV infections.
Collapse
|
12
|
Yoon H, Ko YH. LMP1+SLAMF1high cells are associated with drug resistance in Epstein-Barr virus-positive Farage cells. Oncotarget 2018; 8:24621-24634. [PMID: 28445949 PMCID: PMC5421874 DOI: 10.18632/oncotarget.15600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
How Epstein-Barr virus (EBV) affects the clinical outcome of EBV-positive diffuse large B-cell lymphoma (DLBCL) remains largely unknown. The viral oncogene LMP1 is at the crux of tumorigenesis and cell survival. Therefore, we examined the association between LMP1high cells drug resistance. We first assessed SLAMF1 as a surrogate marker for LMP1high cells. LMP1 and its target gene CCL22 were highly expressed in SLAMF1high Farage cells. These cells survived longer following treatment with a combination of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). Genes associated with interferon-alpha, allograft rejection, NF-κB and STAT3 were also overexpressed in the surviving Farage cells. Specifically, CHOP treatment increased IL10, LMP1 and pSTAT3 expression levels in a dose-dependent fashion. Addition of exogenous IL4 greatly increased the levels of LMP1 and pSTAT3, which rendered the Farage cells more resistant to CHOP by up-regulating the anti-apoptotic genes BCL-XL and MCL1. The Farage cells were sensitive to Velcade and STAT3, 5, and 6 inhibitors. Inhibition of NF-κB and STAT3, in combination with CHOP, decreased LMP1 levels and effectively induced cell death in the Farage cells. We suggest that LMP1high cells are responsible for the poor drug response of EBV+ DLBCL and that perturbation of the NF-κB and STAT signaling pathways increases toxicity in these cells.
Collapse
Affiliation(s)
- Heejei Yoon
- Clinical Research Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Abstract
The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.
Collapse
|
14
|
Kapadia B, Nanaji NM, Bhalla K, Bhandary B, Lapidus R, Beheshti A, Evens AM, Gartenhaus RB. Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun 2018; 9:829. [PMID: 29483509 PMCID: PMC5827760 DOI: 10.1038/s41467-018-03028-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/15/2018] [Indexed: 01/29/2023] Open
Abstract
Altered lipid metabolism and aberrant protein translation are strongly associated with cancerous outgrowth; however, the inter-regulation of these key processes is still underexplored in diffuse large B-cell lymphoma (DLBCL). Although fatty acid synthase (FASN) activity is reported to positively correlate with PI3K-Akt-mTOR pathway that can modulate protein synthesis, the precise impact of FASN inhibition on this process is still unknown. Herein, we demonstrate that attenuating FASN expression or its activity significantly reduces eIF4B (eukaryotic initiation factor 4B) levels and consequently overall protein translation. Through biochemical studies, we identified eIF4B as a bonafide substrate of USP11, which stabilizes and enhances eIF4B activity. Employing both pharmacological and genetic approaches, we establish that FASN-induced PI3K-S6Kinase signaling phosphorylates USP11 enhancing its interaction with eIF4B and thereby promoting oncogenic translation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Eukaryotic Initiation Factors/genetics
- Eukaryotic Initiation Factors/metabolism
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lipid Metabolism/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Binding
- Protein Biosynthesis
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Ribosomal Protein S6 Kinases/genetics
- Ribosomal Protein S6 Kinases/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiolester Hydrolases/genetics
- Thiolester Hydrolases/metabolism
Collapse
Affiliation(s)
- Bandish Kapadia
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Nahid M Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, MD 21201, USA
- University of Maryland Medical Center, Baltimore, MD, 21201, USA
| | - Kavita Bhalla
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Binny Bhandary
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Rena Lapidus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Afshin Beheshti
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Andrew M Evens
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Ronald B Gartenhaus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
- Veterans Administration Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Ahn H, Yang JM, Jeon YK, Paik JH. Clinicopathologic implications of TNFAIP3/A20 deletions in extranodal NK/T-cell lymphoma. Genes Chromosomes Cancer 2018; 57:231-239. [DOI: 10.1002/gcc.22524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hyein Ahn
- Department of Pathology; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Korea
| | - Jeong Mi Yang
- Department of Pathology; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Korea
| | - Yoon Kyung Jeon
- Department of Pathology; Seoul National University Hospital, Seoul National University College of Medicine; Seoul Korea
| | - Jin Ho Paik
- Department of Pathology; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Korea
| |
Collapse
|
16
|
Noujima-Harada M, Takata K, Miyata-Takata T, Sakurai H, Igarashi K, Ito E, Nagakita K, Taniguchi K, Ohnishi N, Omote S, Tabata T, Sato Y, Yoshino T. Frequent downregulation of BTB and CNC homology 2 expression in Epstein-Barr virus-positive diffuse large B-cell lymphoma. Cancer Sci 2017; 108:1071-1079. [PMID: 28256087 PMCID: PMC5448608 DOI: 10.1111/cas.13213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Diffuse large B‐cell lymphoma (DLBCL) is the most common B‐cell lymphoma subtype, and the Epstein–Barr virus (EBV)‐positive subtype of DLBCL is known to show a more aggressive clinical behavior than the EBV‐negative one. BTB and CNC homology 2 (BACH2) has been highlighted as a tumor suppressor in hematopoietic malignancies; however, the role of BACH2 in EBV‐positive DLBCL is unclear. In the present study, BACH2 expression and its significance were studied in 23 EBV‐positive and 43 EBV‐negative patient samples. Immunohistochemistry revealed BACH2 downregulation in EBV‐positive cases (P < 0.0001), although biallelic deletion of BACH2 was not detected by FISH. Next, we analyzed the contribution of BACH2 negativity to aggressiveness in EBV‐positive B‐cell lymphomas using FL‐18 (EBV‐negative) and FL‐18‐EB cells (FL‐18 sister cell line, EBV‐positive). In BACH2‐transfected FL‐18‐EB cells, downregulation of phosphorylated transforming growth factor‐β‐activated kinase 1 (pTAK1) and suppression in p65 nuclear fractions were observed by Western blot analysis contrary to non‐transfected FL‐18‐EB cells. In patient samples, pTAK1 expression and significant nuclear p65, p50, and p52 localization were detected immunohistochemically in BACH2‐negative DLBCL (P < 0.0001, P = 0.006, and P = 0.001, respectively), suggesting that BACH2 downregulation contributes to constitutive activation of the nuclear factor‐κB pathway through TAK1 phosphorylation in BACH2‐negative DLBCL (most EBV‐positive cases). Although further molecular and pathological studies are warranted to clarify the detailed mechanisms, downregulation of BACH2 may contribute to constitutive activation of the nuclear factor‐κB pathway through TAK1 activation.
Collapse
Affiliation(s)
- Mai Noujima-Harada
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyoshi Takata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miyata-Takata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, Toyama University, Toyama, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Keina Nagakita
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Taniguchi
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiko Ohnishi
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shizuma Omote
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Tabata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuharu Sato
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
Liu P, Wang L, Kwang J, Yue GH, Wong SM. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. FISH & SHELLFISH IMMUNOLOGY 2016; 54:342-52. [PMID: 27109582 DOI: 10.1016/j.fsi.2016.04.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 05/07/2023]
Abstract
Asian seabass is an important food fish in Southeast Asia. Viral nervous necrosis (VNN) disease, triggered by nervous necrosis virus (NNV) infection, has caused mass mortality of Asian seabass larvae, resulting in enormous economic losses in the Asian seabass industry. In order to better understand the complex molecular interaction between Asian seabass and NNV, we investigated the transcriptome profiles of Asian seabass epithelial cells, which play an essential role in immune regulation, after NNV infection. Using the next generation sequencing (NGS) technology, we sequenced mRNA from eight samples (6, 12, 24, 48 h post-inoculation) of mock and NNV-infected Asian seabass epithelial cell line, respectively. Clean reads were de novo assembled into a transcriptome consisting of 89026 transcripts with a N50 of 2617 bp. Furthermore, 251 differentially expressed genes (DEGs) in response to NNV infection were identified. Top DEGs include protein asteroid homolog 1-like (ASTE1), receptor-transporting protein 3 (RTP3), heat shock proteins 30 (HSP30) and 70 (HSP70), Viperin, interferon regulatory factor 3 (IRF3) and other genes related to innate immunity. Our data suggest that abundant and diverse genes corresponding to NNV infection. The results of this study could also offer vital information not only for identification of novel genes involved in Asian seabass-NNV interaction, but also for our understanding of the molecular mechanism of Asian seabass' response to viral infection. In addition, 24807 simple sequence repeats (SSRs) were detected in the assembled transcriptome, providing valuable resources for studying genetic variations and accelerating quantitative trait loci (QTL) mapping for disease resistance in Asian seabass in the future.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Jimmy Kwang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Gen Hua Yue
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
18
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with considerable heterogeneity reflected in the 2008 World Health Organization classification. In recent years, genome-wide assessment of genetic and epigenetic alterations has shed light upon distinct molecular subsets linked to dysregulation of specific genes or pathways. Besides fostering our knowledge regarding the molecular complexity of DLBCL types, these studies have unraveled previously unappreciated genetic lesions, which may be exploited for prognostic and therapeutic purposes. Following the last World Health Organization classification, we have witnessed the emergence of new variants of specific DLBCL entities, such as CD30 DLBCL, human immunodeficiency virus-related and age-related variants of plasmablastic lymphoma, and EBV DLBCL arising in young patients. In this review, we will present an update on the clinical, pathologic, and molecular features of DLBCL incorporating recently gained information with respect to their pathobiology and prognosis. We will emphasize the distinctive features of newly described or emerging variants and highlight advances in our understanding of entities presenting a diagnostic challenge, such as T-cell/histiocyte-rich large B-cell lmphoma and unclassifiable large B-cell lymphomas. Furthermore, we will discuss recent advances in the genomic characterization of DLBCL, as they may relate to prognostication and tailored therapeutic intervention. The information presented in this review derives from English language publications appearing in PubMed throughout December 2015. For a complete outline of this paper, please visit: http://links.lww.com/PAP/A12.
Collapse
|
19
|
Piccaluga PP, Navari M, De Falco G, Ambrosio MR, Lazzi S, Fuligni F, Bellan C, Rossi M, Sapienza MR, Laginestra MA, Etebari M, Rogena EA, Tumwine L, Tripodo C, Gibellini D, Consiglio J, Croce CM, Pileri SA, Leoncini L. Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget 2016; 7:224-240. [PMID: 26325594 PMCID: PMC4807994 DOI: 10.18632/oncotarget.4399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/20/2015] [Indexed: 01/28/2023] Open
Abstract
Burkitt lymphoma (BL) is an aggressive neoplasm characterized by consistent morphology and phenotype, typical clinical behavior and distinctive molecular profile. The latter is mostly driven by the MYC over-expression associated with the characteristic translocation (8;14) (q24; q32) or with variant lesions. Additional genetic events can contribute to Burkitt Lymphoma pathobiology and retain clinical significance. A pathogenetic role for Epstein-Barr virus infection in Burkitt lymphomagenesis has been suggested; however, the exact function of the virus is largely unknown.In this study, we investigated the molecular profiles (genes and microRNAs) of Epstein-Barr virus-positive and -negative BL, to identify specific patterns relying on the differential expression and role of Epstein-Barr virus-encoded microRNAs.First, we found significant differences in the expression of viral microRNAs and in selected target genes. Among others, we identified LIN28B, CGNL1, GCET2, MRAS, PLCD4, SEL1L, SXX1, and the tyrosine kinases encoding STK10/STK33, all provided with potential pathogenetic significance. GCET2, also validated by immunohistochemistry, appeared to be a useful marker for distinguishing EBV-positive and EBV-negative cases. Further, we provided solid evidences that the EBV-encoded microRNAs (e.g. BART6) significantly mold the transcriptional landscape of Burkitt Lymphoma clones.In conclusion, our data indicated significant differences in the transcriptional profiles of EBV-positive and EBV-negative BL and highlight the role of virus encoded miRNA.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Mohsen Navari
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Giulia De Falco
- Department of Medical Biotechnology, University of Siena, Siena, Italy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Fabio Fuligni
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Maura Rossi
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maria Rosaria Sapienza
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maria Antonella Laginestra
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Maryam Etebari
- Hematopathology Section, Department of Experimental, Diagnostic, and Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
| | - Emily A. Rogena
- Department of Pathology, University of Nairobi, Nairobi, Kenya
| | | | - Claudio Tripodo
- Tumour Immunology Unit, Department of Health Science, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Davide Gibellini
- Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Jessica Consiglio
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Stefano A. Pileri
- Diagnostic Hematopathology Unit, European Institute of Oncology, Milan, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
20
|
A20 suppresses hepatocellular carcinoma proliferation and metastasis through inhibition of Twist1 expression. Mol Cancer 2015; 14:186. [PMID: 26538215 PMCID: PMC4634191 DOI: 10.1186/s12943-015-0454-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 12/29/2022] Open
Abstract
Background Aberrant expression of A20 has been reported in several human malignancies including hepatocellular carcinoma (HCC). However, its clinical relevance and potential role in HCC remain unknown. Methods Quantitative PCR, Western blots and immunohistochemistry analyses were used to quantify A20 expression in HCC samples and cell lines. The correlation of A20 expression with clinicopathologic features was analyzed in a cohort containing 143 patients with primary HCC. Kaplan-Meier curves were used to evaluate the association between A20 expression and patient survival. Functional studies were performed to determine the effects of A20 on proliferation and metastasis of HCC cells in vitro and in vivo. Results Expression of A20 was increased in HCC tissues and cell lines. Increased expression of A20 was negatively correlated with the tumor size, TNM stage, tumor thrombus formation, capsular invasion and serum AFP levels. Patients with higher A20 expression had a prolonged disease-free survival and overall survival than those with lower A20 expression. Forced expression of A20 significantly inhibited the proliferative and invasive properties of HCC cells both in vitro and in vivo, whereas knockdown of A20 expression showed the opposite effects. Further studies revealed that expression of A20 was inversely correlated with Twist1 levels and NF-κB activity in HCC tissues and cell lines. A20-induced suppression of proliferation and migration of HCC cells were mainly mediated through inhibition of Twist1 expression that was regulated at least partly by A20-induced attenuation of NF-κB activity. Conclusions Our results demonstrate that A20 plays a negative role in the development and progression of HCC probably through inhibiting Twist1 expression. A20 may serve as a novel prognostic biomarker and potential therapeutic target for HCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0454-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Ambrosio MR, Navari M, Di Lisio L, Leon EA, Onnis A, Gazaneo S, Mundo L, Ulivieri C, Gomez G, Lazzi S, Piris MA, Leoncini L, De Falco G. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 2014; 9:12. [PMID: 24731550 PMCID: PMC4005456 DOI: 10.1186/1750-9378-9-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/15/2022] Open
Abstract
Background Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Methods Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. Results We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Conclusions Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology.
Collapse
Affiliation(s)
- Maria Raffaella Ambrosio
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Mohsen Navari
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Lorena Di Lisio
- Department of Pathology, Hospital Universitario Marques de Valdecilla, IFIMAV, Santander, Spain
| | - Eduardo Andres Leon
- Bioinformatics Unit (UBio), Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anna Onnis
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Sara Gazaneo
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Lucia Mundo
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | | | - Gonzalo Gomez
- Department of Pathology, Hospital Universitario Marques de Valdecilla, IFIMAV, Santander, Spain
| | - Stefano Lazzi
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Miguel Angel Piris
- Department of Pathology, Hospital Universitario Marques de Valdecilla, IFIMAV, Santander, Spain
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Giulia De Falco
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| |
Collapse
|
22
|
New developments in the pathology of malignant lymphoma: a review of the literature published from January 2013 to April 2013. J Hematop 2013. [DOI: 10.1007/s12308-013-0185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|