1
|
Heider A, Wedde M, Weinheimer V, Döllinger S, Monazahian M, Dürrwald R, Wolff T, Schweiger B. Characteristics of two zoonotic swine influenza A(H1N1) viruses isolated in Germany from diseased patients. Int J Med Microbiol 2024; 314:151609. [PMID: 38286065 DOI: 10.1016/j.ijmm.2024.151609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Interspecies transmission of influenza A viruses (IAV) from pigs to humans is a concerning event as porcine IAV represent a reservoir of potentially pandemic IAV. We conducted a comprehensive analysis of two porcine A(H1N1)v viruses isolated from human cases by evaluating their genetic, antigenic and virological characteristics. The HA genes of those human isolates belonged to clades 1C.2.1 and 1C.2.2, respectively, of the A(H1N1) Eurasian avian-like swine influenza lineage. Antigenic profiling revealed substantial cross-reactivity between the two zoonotic H1N1 viruses and human A(H1N1)pdm09 virus and some swine viruses, but did not reveal cross-reactivity to H1N2 and earlier human seasonal A(H1N1) viruses. The solid-phase direct receptor binding assay analysis of both A(H1N1)v showed a predominant binding to α2-6-sialylated glycans similar to human-adapted IAV. Investigation of the replicative potential revealed that both A(H1N1)v viruses grow in human bronchial epithelial cells to similar high titers as the human A(H1N1)pdm09 virus. Cytokine induction was studied in human alveolar epithelial cells A549 and showed that both swine viruses isolated from human cases induced higher amounts of type I and type III IFN, as well as IL6 compared to a seasonal A(H1N1) or a A(H1N1)pdm09 virus. In summary, we demonstrate a remarkable adaptation of both zoonotic viruses to propagate in human cells. Our data emphasize the needs for continuous monitoring of people and regions at increased risk of such trans-species transmissions, as well as systematic studies to quantify the frequency of these events and to identify viral molecular determinants enhancing the zoonotic potential of porcine IAV.
Collapse
Affiliation(s)
- Alla Heider
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany.
| | - Marianne Wedde
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Viola Weinheimer
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Stephanie Döllinger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | | | - Ralf Dürrwald
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| |
Collapse
|
2
|
Pushan SS, Samantaray M, Rajagopalan M, Ramaswamy A. Structural dynamics of influenza A (H1N1) hemagglutinin protein: a comparative study of Indian (2018) isolate with its evolutionary neighbor, Californian (2009) strain. J Biomol Struct Dyn 2024:1-14. [PMID: 38379377 DOI: 10.1080/07391102.2024.2317985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This work highlights the structure and dynamics of two trimeric HA proteins of the H1N1 virus from different origins, the pandemic Californian (HACal) and its closest Indian neighbor (HAInd), reported in 2009 and 2018, respectively. Because of mutation, HAInd acquires new N-glycosylation and epitope binding sites along with mutations at RBD, which might trigger an altered viral-host interaction mechanism. Molecular dynamics simulations performed on HA trimers for a period of 250 ns reveal the highly dynamic nature of HACal trimers inherited by the flexibility of HA monomers. In the trimer, the dynamics of one monomer are more pronounced compared to others, and the enhanced dynamics of RBD especially gain attention as they plays a key role during fusion. Conversely, the mutant HAInd trimer effectively establishes more H-bond interactions, and accordingly, the trimer undergoes more stabilized dynamics with a relatively lower amplitude of RBD dynamics, as endorsed by the reduced RMSD, Rg, and SASA variations. The cooperative and anti-cooperative motions dissected for the subdomains of both strains also reveal a prominent anticorrelative motion of RBD against other subdomains. In agreement, the free energy landscape of stable HAInd is also characterized by a single lowest wide energy basin instead of the two minimum energy basins of the HACal trimer. In essence, the mutant HAInd acquires a highly stable conformation with novel functional features, which calls for (i) further investigation on the emerging mutation-mediated variation in viral-host binding mechanism and (ii) the need for further design of site-specific potential inhibitors to face future challenges.
Collapse
Affiliation(s)
- Shilpa Sri Pushan
- Department of Bioinformatics, Pondicherry University (A Central University), Kalapet, Puducherry, India
| | - Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University (A Central University), Kalapet, Puducherry, India
| | - Muthukumaran Rajagopalan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University (A Central University), Kalapet, Puducherry, India
| |
Collapse
|
3
|
Kolosova NP, Boldyrev ND, Svyatchenko SV, Danilenko AV, Goncharova NI, Shadrinova KN, Danilenko EI, Onkhonova GS, Kosenko MN, Antonets ME, Susloparov IM, Ilyicheva TN, Marchenko VY, Ryzhikov AB. An Investigation of Severe Influenza Cases in Russia during the 2022-2023 Epidemic Season and an Analysis of HA-D222G/N Polymorphism in Newly Emerged and Dominant Clade 6B.1A.5a.2a A(H1N1)pdm09 Viruses. Pathogens 2023; 13:1. [PMID: 38276147 PMCID: PMC10819184 DOI: 10.3390/pathogens13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
In Russia, during the COVID-19 pandemic, a decrease in influenza circulation was initially observed. Influenza circulation re-emerged with the dominance of new clades of A(H3N2) viruses in 2021-2022 and A(H1N1)pdm09 viruses in 2022-2023. In this study, we aimed to characterize influenza viruses during the 2022-2023 season in Russia, as well as investigate A(H1N1)pdm09 HA-D222G/N polymorphism associated with increased disease severity. PCR testing of 780 clinical specimens showed 72.2% of them to be positive for A(H1N1)pdm09, 2.8% for A(H3N2), and 25% for influenza B viruses. The majority of A(H1N1)pdm09 viruses analyzed belonged to the newly emerged 6B.1A.5a.2a clade. The intra-sample predominance of HA-D222G/N virus variants was observed in 29% of the specimens from A(H1N1)pdm09 fatal cases. The D222N polymorphic variant was registered more frequently than D222G. All the B/Victoria viruses analyzed belonged to the V1A.3a.2 clade. Several identified A(H3N2) viruses belonged to one of the four subclades (2a.1b, 2a.3a.1, 2a.3b, 2b) within the 3C.2a1b.2a.2 group. The majority of antigenically characterized viruses bore similarities to the corresponding 2022-2023 NH vaccine strains. Only one influenza A(H1N1)pdm09 virus showed reduced inhibition by neuraminidase inhibitors. None of the influenza viruses analyzed had genetic markers of reduced susceptibility to baloxavir.
Collapse
|
4
|
Rabalski L, Kosinski M, Cybulski P, Stadejek T, Lepek K. Genetic Diversity of Type A Influenza Viruses Found in Swine Herds in Northwestern Poland from 2017 to 2019: The One Health Perspective. Viruses 2023; 15:1893. [PMID: 37766299 PMCID: PMC10536349 DOI: 10.3390/v15091893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A viruses (IAV) are still a cause of concern for public health and veterinary services worldwide. With (-) RNA-segmented genome architecture, influenza viruses are prone to reassortment and can generate a great variety of strains, some capable of crossing interspecies barriers. Seasonal IAV strains continuously spread from humans to pigs, leading to multiple reassortation events with strains endemic to swine. Due to its high adaptability to humans, a reassortant strain based on "human-like" genes could potentially be a carrier of avian origin segments responsible for high virulence, and hence become the next pandemic strain with unseen pathogenicity. The rapid evolution of sequencing methods has provided a fast and cost-efficient way to assess the genetic diversity of IAV. In this study, we investigated the genetic diversity of swine influenza viruses (swIAVs) collected from Polish farms. A total of 376 samples were collected from 11 farms. The infection was confirmed in 112 cases. The isolates were subjected to next-generation sequencing (NGS), resulting in 93 full genome sequences. Phylogenetic analysis classified 59 isolates as genotype T (H1avN2g) and 34 isolates as genotype P (H1pdmN1pdm), all of which had an internal gene cassette (IGC) derived from the H1N1pdm09-like strain. These data are consistent with evolutionary trends in European swIAVs. The applied methodology proved to be useful in monitoring the genetic diversity of IAV at the human-animal interface.
Collapse
Affiliation(s)
- Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Pulawy, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Krzysztof Lepek
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
5
|
Van Poelvoorde L, Vanneste K, De Keersmaecker SCJ, Thomas I, Van Goethem N, Van Gucht S, Saelens X, Roosens NHC. Whole-Genome Sequence Approach and Phylogenomic Stratification Improve the Association Analysis of Mutations With Patient Data in Influenza Surveillance. Front Microbiol 2022; 13:809887. [PMID: 35516436 PMCID: PMC9063638 DOI: 10.3389/fmicb.2022.809887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Each year, seasonal influenza results in high mortality and morbidity. The current classification of circulating influenza viruses is mainly focused on the hemagglutinin gene. Whole-genome sequencing (WGS) enables tracking mutations across all influenza segments allowing a better understanding of the epidemiological effects of intra- and inter-seasonal evolutionary dynamics, and exploring potential associations between mutations across the viral genome and patient’s clinical data. In this study, mutations were identified in 253 Influenza A (H3N2) clinical isolates from the 2016-2017 influenza season in Belgium. As a proof of concept, available patient data were integrated with this genomic data, resulting in statistically significant associations that could be relevant to improve the vaccine and clinical management of infected patients. Several mutations were significantly associated with the sampling period. A new approach was proposed for exploring mutational effects in highly diverse Influenza A (H3N2) strains through considering the viral genetic background by using phylogenetic classification to stratify the samples. This resulted in several mutations that were significantly associated with patients suffering from renal insufficiency. This study demonstrates the usefulness of using WGS data for tracking mutations across the complete genome and linking these to patient data, and illustrates the importance of accounting for the viral genetic background in association studies. A limitation of this association study, especially when analyzing stratified groups, relates to the number of samples, especially in the context of national surveillance of small countries. Therefore, we investigated if international databases like GISAID may help to verify whether observed associations in the Belgium A (H3N2) samples, could be extrapolated to a global level. This work highlights the need to construct international databases with both information of viral genome sequences and patient data.
Collapse
Affiliation(s)
- Laura Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- National Influenza Centre, Sciensano, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Nina Van Goethem
- Public Health and Genome, Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- *Correspondence: Nancy H. C. Roosens,
| |
Collapse
|
6
|
Kuzmanovska M, Boshevska G, Janchevska E, Buzharova T, Simova M, Peshnacka A, Nikolovska G, Kochinski D, Ilioska RS, Stavridis K, Mikikj V, Kuzmanovska G, Memeti S, Gjorgoski I. A Comprehensive Molecular and Epidemiological Characterization of Influenza Viruses Circulating 2016-2020 in North Macedonia. Front Microbiol 2021; 12:713408. [PMID: 34745027 PMCID: PMC8567633 DOI: 10.3389/fmicb.2021.713408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses know no boundaries, representing an example of rapid virus evolution combined with pressure exerted by the host’s immune system. Seasonal influenza causes 4–50 million symptomatic cases in the EU/EEA each year, with a global death toll reaching 650,000 deaths. That being the case, in 2014 North Macedonia introduced the sentinel surveillance in addition to the existing influenza surveillance in order to obtain more precise data on the burden of disease, circulating viruses and to implement timely preventive measures. The aims of this study were to give a comprehensive virological and epidemiological overview of four influenza seasons (2016–2020), assess the frequency and distribution of influenza circulating in North Macedonia and to carry out molecular and phylogenetic analyses of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A(H1N1)pdm09, A(H3N2) from ILI and SARI patients. Our results showed that out of 1,632 tested samples, 46.4% were influenza positive, with influenza A(H1N1)pdm09 accounting for the majority of cases (44%), followed by influenza B (32%) and A(H3N2) (17%). By comparing the sentinel surveillance system to the routine surveillance system, we showed that the newly applied system works efficiently and gives great results in the selection of cases. Statistically significant differences (p = < 0.0000001) were observed when comparing the number of reported ILI cases among patients aged 0–4, 5–14, 15–29, and 30–64 years to the reference age group. The phylogenetic analysis of the HA sequences unveiled the resemblance of mutations circulating seasonally worldwide, with a vast majority of circulating viruses belonging to subclade 6B.1A. The PROVEAN analysis showed that the D187A substitution in the receptor binding site (RBS) of the A(H1N1)pdm09 HA has a deleterious effect on the its function. The A(H3N2) viruses fell into the 3C.2a and 3C.3a throughout the analyzed seasons. Molecular characterization revealed that various substitutions in the A(H3N2) viruses gradually replaced the parental variant in subsequent seasons before becoming the dominant variant. With the introduction of sentinel surveillance, accompanied by the advances made in whole-genome sequencing and vaccine therapeutics, public health officials can now modify their approach in disease management and intervene effectively and in a timely manner to prevent major morbidity and mortality from influenza.
Collapse
Affiliation(s)
- Maja Kuzmanovska
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | | | | | - Teodora Buzharova
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | - Milica Simova
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | - Aneta Peshnacka
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | - Gordana Nikolovska
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | - Dragan Kochinski
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | | | - Kristina Stavridis
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | - Vladimir Mikikj
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | | | - Shaban Memeti
- Laboratory of Virology, Institute of Public Health, Skopje, North Macedonia
| | - Icko Gjorgoski
- Faculty of Natural Sciences and Mathematics, Skopje, North Macedonia
| |
Collapse
|
7
|
Van Goethem N, Serrien B, Vandromme M, Wyndham-Thomas C, Catteau L, Brondeel R, Klamer S, Meurisse M, Cuypers L, André E, Blot K, Van Oyen H. Conceptual causal framework to assess the effect of SARS-CoV-2 variants on COVID-19 disease severity among hospitalized patients. Arch Public Health 2021; 79:185. [PMID: 34696806 PMCID: PMC8543112 DOI: 10.1186/s13690-021-00709-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND SARS-CoV-2 strains evolve continuously and accumulate mutations in their genomes over the course of the pandemic. The severity of a SARS-CoV-2 infection could partly depend on these viral genetic characteristics. Here, we present a general conceptual framework that allows to study the effect of SARS-CoV-2 variants on COVID-19 disease severity among hospitalized patients. METHODS A causal model is defined and visualized using a Directed Acyclic Graph (DAG), in which assumptions on the relationship between (confounding) variables are made explicit. Various DAGs are presented to explore specific study design options and the risk for selection bias. Next, the data infrastructure specific to the COVID-19 surveillance in Belgium is described, along with its strengths and weaknesses for the study of clinical impact of variants. DISCUSSION A well-established framework that provides a complete view on COVID-19 disease severity among hospitalized patients by combining information from different sources on host factors, viral factors, and healthcare-related factors, will enable to assess the clinical impact of emerging SARS-CoV-2 variants and answer questions that will be raised in the future. The framework shows the complexity related to causal research, the corresponding data requirements, and it underlines important limitations, such as unmeasured confounders or selection bias, inherent to repurposing existing routine COVID-19 data registries. TRIAL REGISTRATION Each individual research project within the current conceptual framework will be prospectively registered in Open Science Framework (OSF identifier: https://doi.org/10.17605/OSF.IO/UEF29 ). OSF project created on 18 May 2021.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium.
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200, Woluwe-Saint-Lambert, Belgium.
| | - Ben Serrien
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Mathil Vandromme
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Chloé Wyndham-Thomas
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Lucy Catteau
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Ruben Brondeel
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Sofieke Klamer
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Marjan Meurisse
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Lize Cuypers
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, BE-3000, Leuven, Belgium
| | - Emmanuel André
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, BE-3000, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory Clinical Bacteriology and Mycology, Herestraat 49, box 1040, BE-3000, Leuven, Belgium
| | - Koen Blot
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| |
Collapse
|
8
|
Van Goethem N, Robert A, Bossuyt N, Van Poelvoorde LAE, Quoilin S, De Keersmaecker SCJ, Devleesschauwer B, Thomas I, Vanneste K, Roosens NHC, Van Oyen H. Evaluation of the added value of viral genomic information for predicting severity of influenza infection. BMC Infect Dis 2021; 21:785. [PMID: 34376182 PMCID: PMC8353062 DOI: 10.1186/s12879-021-06510-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The severity of an influenza infection is influenced by both host and viral characteristics. This study aims to assess the relevance of viral genomic data for the prediction of severe influenza A(H3N2) infections among patients hospitalized for severe acute respiratory infection (SARI), in view of risk assessment and patient management. METHODS 160 A(H3N2) influenza positive samples from the 2016-2017 season originating from the Belgian SARI surveillance were selected for whole genome sequencing. Predictor variables for severity were selected using a penalized elastic net logistic regression model from a combined host and genomic dataset, including patient information and nucleotide mutations identified in the viral genome. The goodness-of-fit of the model combining host and genomic data was compared using a likelihood-ratio test with the model including host data only. Internal validation of model discrimination was conducted by calculating the optimism-adjusted area under the Receiver Operating Characteristic curve (AUC) for both models. RESULTS The model including viral mutations in addition to the host characteristics had an improved fit ([Formula: see text]=12.03, df = 3, p = 0.007). The optimism-adjusted AUC increased from 0.671 to 0.732. CONCLUSIONS Adding genomic data (selected season-specific mutations in the viral genome) to the model containing host characteristics improved the prediction of severe influenza infection among hospitalized SARI patients, thereby offering the potential for translation into a prospective strategy to perform early season risk assessment or to guide individual patient management.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium.
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200, Woluwe-Saint-Lambert, Belgium.
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200, Woluwe-Saint-Lambert, Belgium
| | - Nathalie Bossuyt
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Laura A E Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Sophie Quoilin
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | | | - Brecht Devleesschauwer
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Isabelle Thomas
- National Reference Center Influenza, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Department of Public Health and Primary Care, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Oh DY, Buda S, Biere B, Reiche J, Schlosser F, Duwe S, Wedde M, von Kleist M, Mielke M, Wolff T, Dürrwald R. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: Analysis of national surveillance data. THE LANCET REGIONAL HEALTH. EUROPE 2021; 6:100112. [PMID: 34124707 PMCID: PMC8183189 DOI: 10.1016/j.lanepe.2021.100112] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND During the initial COVID-19 response, Germany's Federal Government implemented several nonpharmaceutical interventions (NPIs) that were instrumental in suppressing early exponential spread of SARS-CoV-2. NPI effect on the transmission of other respiratory viruses has not been examined at the national level thus far. METHODS Upper respiratory tract specimens from 3580 patients with acute respiratory infection (ARI), collected within the nationwide German ARI Sentinel, underwent RT-PCR diagnostics for multiple respiratory viruses. The observation period (weeks 1-38 of 2020) included the time before, during and after a far-reaching contact ban. Detection rates for different viruses were compared to 2017-2019 sentinel data (15350 samples; week 1-38, 11823 samples). FINDINGS The March 2020 contact ban, which was followed by a mask mandate, was associated with an unprecedented and sustained decline of multiple respiratory viruses. Among these, rhinovirus was the single agent that resurged to levels equalling those of previous years. Rhinovirus rebound was first observed in children, after schools and daycares had reopened. By contrast, other nonenveloped viruses (i.e. gastroenteritis viruses reported at the national level) suppressed after the shutdown did not rebound. INTERPRETATION Contact restrictions with a subsequent mask mandate in spring may substantially reduce respiratory virus circulation. This reduction appears sustained for most viruses, indicating that the activity of influenza and other respiratory viruses during the subsequent winter season might be low,whereas rhinovirus resurgence, potentially driven by transmission in educational institutions in a setting of waning population immunity, might signal predominance of rhinovirus-related ARIs. FUNDING Robert Koch-Institute and German Ministry of Health.
Collapse
Affiliation(s)
- Djin-Ye Oh
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
- The Rockefeller University, New York, NY, United States
| | - Silke Buda
- Department of Infectious Diseases Epidemiology, Robert-Koch Institute, Germany
| | - Barbara Biere
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
| | - Janine Reiche
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
| | - Frank Schlosser
- Computational Epidemiology (P4), Robert Koch-Institute, Germany
- Institute for Theoretical Biology, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Susanne Duwe
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
| | - Marianne Wedde
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
| | - Max von Kleist
- Systems Medicine of Infectious Disease (P5), Robert Koch-Institute, Germany
| | - Martin Mielke
- Department of Infectious Diseases, Robert Koch-Institute, Germany
| | - Thorsten Wolff
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
| | - Ralf Dürrwald
- Unit 17: Influenza and Other Respiratory Viruses | German National Influenza Center, Department of Infectious Diseases, Robert Koch-Institute, D-13353 Berlin, Germany
| |
Collapse
|
10
|
Danilenko AV, Kolosova NP, Shvalov AN, Ilyicheva TN, Svyatchenko SV, Durymanov AG, Bulanovich JA, Goncharova NI, Susloparov IM, Marchenko VY, Tregubchak TV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Evaluation of HA-D222G/N polymorphism using targeted NGS analysis in A(H1N1)pdm09 influenza virus in Russia in 2018-2019. PLoS One 2021; 16:e0251019. [PMID: 33914831 PMCID: PMC8084186 DOI: 10.1371/journal.pone.0251019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Outbreaks of influenza, which is a contagious respiratory disease, occur throughout the world annually, affecting millions of people with many fatal cases. The D222G/N mutations in the hemagglutinin (HA) gene of A(H1N1)pdm09 are associated with severe and fatal human influenza cases. These mutations lead to increased virus replication in the lower respiratory tract (LRT) and may result in life-threatening pneumonia. Targeted NGS analysis revealed the presence of mutations in major and minor variants in 57% of fatal cases, with the proportion of viral variants with mutations varying from 1% to 98% in each individual sample in the epidemic season 2018-2019 in Russia. Co-occurrence of the mutations D222G and D222N was detected in a substantial number of the studied fatal cases (41%). The D222G/N mutations were detected at a low frequency (less than 1%) in the rest of the studied samples from fatal and nonfatal cases of influenza. The presence of HA D222Y/V/A mutations was detected in a few fatal cases. The high rate of occurrence of HA D222G/N mutations in A(H1N1)pdm09 viruses, their increased ability to replicate in the LRT and their association with fatal outcomes points to the importance of monitoring the mutations in circulating A(H1N1)pdm09 viruses for the evaluation of their epidemiological significance and for the consideration of disease prevention and treatment options.
Collapse
Affiliation(s)
- Alexey V. Danilenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Natalia P. Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Alexander N. Shvalov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Tatyana N. Ilyicheva
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana V. Svyatchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Alexander G. Durymanov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Julia A. Bulanovich
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Natalia I. Goncharova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Ivan M. Susloparov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Vasiliy Y. Marchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Tatyana V. Tregubchak
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Elena V. Gavrilova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Rinat A. Maksyutov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Alexander B. Ryzhikov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
11
|
Dürrwald R, Wedde M, Biere B, Oh DY, Heßler-Klee M, Geidel C, Volmer R, Hauri AM, Gerst K, Thürmer A, Appelt S, Reiche J, Duwe S, Buda S, Wolff T, Haas W. Zoonotic infection with swine A/H1 avN1 influenza virus in a child, Germany, June 2020. ACTA ACUST UNITED AC 2021; 25. [PMID: 33094718 PMCID: PMC7651875 DOI: 10.2807/1560-7917.es.2020.25.42.2001638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A zoonotic A/sw/H1avN1 1C.2.2 influenza virus infection was detected in a German child that presented with influenza-like illness, including high fever. There was a history of close contact with pigs 3 days before symptom onset. The child recovered within 3 days. No other transmissions were observed. Serological investigations of the virus isolate revealed cross-reactions with ferret antisera against influenza A(H1N1)pdm09 virus, indicating a closer antigenic relationship with A(H1N1)pdm09 than with the former seasonal H1N1 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renate Volmer
- Landesbetrieb Hessisches Landeslabor (LHL), Fachgebiet II.4 Tiergesundheitsdienste, Gießen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Severe cases of seasonal influenza and detection of seasonal A(H1N2) in Russia in 2018-2019. Arch Virol 2020; 165:2045-2051. [PMID: 32524262 DOI: 10.1007/s00705-020-04699-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Data obtained from monitoring cases of severe influenza, cases of vaccinated individuals, and unique cases were used to describe influenza viruses that circulated in Russia in the 2018-2019 epidemic season. A high proportion of the mutations D222G/N in A(H1N1)pdm09 HA was detected in fatal cases. Viruses of the B/Victoria lineage with deletions in HA were detected in Russia, and a reassortant seasonal influenza A(H1N2) virus was identified. A C-terminal truncation in the NS1 protein was detected in a substantial proportion of A(H3N2) viruses.
Collapse
|
13
|
Comparison of the Pathogenicity in Mice of A(H1N1)pdm09 Viruses Isolated between 2009 and 2015 in Japan. Viruses 2020; 12:v12020155. [PMID: 32013144 PMCID: PMC7077310 DOI: 10.3390/v12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The A(H1N1)pdm09 virus emerged in 2009 and continues to circulate in human populations. Recent A(H1N1)pdm09 viruses, that is, A(H1N1)pdm09 viruses circulating in the post-pandemic era, can cause more or less severe infections than those caused by the initial pandemic viruses. To evaluate the changes in pathogenicity of the A(H1N1)pdm09 viruses during their continued circulation in humans, we compared the nucleotide and amino acid sequences of ten A(H1N1)pdm09 viruses isolated in Japan between 2009 and 2015, and experimentally infected mice with each virus. The severity of infection caused by these Japanese isolates ranged from milder to more severe than that caused by the prototypic pandemic strain A/California/04/2009 (CA04/09); however, specific mutations responsible for their pathogenicity have not yet been identified.
Collapse
|
14
|
Antigenic Site Variation in the Hemagglutinin of Pandemic Influenza A(H1N1)pdm09 Viruses between 2009-2017 in Ukraine. Pathogens 2019; 8:pathogens8040194. [PMID: 31635227 PMCID: PMC6963832 DOI: 10.3390/pathogens8040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
The hemagglutinin (HA) is a major influenza virus antigen, which, once recognized by antibodies and substitutions in HA genes, helps virus in escaping the human immune response. It is therefore critical to perform genetic and phylogenetic analysis of HA in circulating influenza viruses. We performed phylogenetic and genetic analysis of isolates from Ukraine, the vaccine strain and reference strains were used to phylogenetically identify trends in mutation locations and substitutions. Ukrainian isolates were collected between 2009–2017 and clustered in the influenza genetic groups 2, 6, 7, and 8. Genetic changes were observed in each of the antigenic sites: Sa – S162T, K163Q, K163I; Sb – S185T, A186T, S190G, S190R; Ca1 – S203T, R205K, E235V, E235D, S236P; Ca2 – P137H, H138R, A141T, D222G, D222N; Cb – A73S, S74R, S74N. In spite of detected mutations in antigenic sites, Ukrainian isolates retained similarity to the vaccine strain A/California/07/09 circulated during 2009–2017. However, WHO recommended a new vaccine strain A/Michigan/45/2015 for the Southern Hemisphere after the emergence of the new genetic groups 6B.1 and 6B.2. Our study demonstrated genetic variability of HA protein of A(H1N1)pdm09 viruses isolated in 2009–2017 in Ukraine. Influenza surveillance is very important for understanding epidemiological situations.
Collapse
|
15
|
Piralla A, Pariani E, Giardina F, Galli C, Sapia D, Pellegrinelli L, Novazzi F, Anselmi G, Rovida F, Mojoli F, Cereda D, Senatore S, Baldanti F. Molecular Characterization of Influenza Strains in Patients Admitted to Intensive Care Units during the 2017-2018 Season. Int J Mol Sci 2019; 20:ijms20112664. [PMID: 31151205 PMCID: PMC6600310 DOI: 10.3390/ijms20112664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023] Open
Abstract
This study aimed at assessing the frequency and the distribution of influenza virus types/subtypes in 172 laboratory-confirmed influenza-positive patients admitted to intensive care units (ICUs) during the 2017–2018 season in the Lombardy region (Northern Italy), and to investigate the presence of molecular pathogenicity markers. A total of 102/172 (59.3%) patients had influenza A infections (83 A/H1N1pdm09, 2 H3N2 and 17 were untyped), while the remaining 70/172 (40.7%) patients had influenza B infections. The 222G/N mutation in the hemagglutinin gene was identified in 33.3% (3/9) of A/H1N1pdm09 strains detected in the lower respiratory tract (LRT) samples and was also associated with more severe infections, whereas no peculiar mutations were observed for influenza B strains. A single-point evolution was observed in site 222 of A/H1N1pdm09 viruses, which might advantage viral evolution by favouring virus binding and replication in the lungs. Data from 17 paired upper respiratory tract (URT) and LRT samples showed that viral load in LRT samples was mostly higher than that detected in URT samples. Of note, influenza viruses were undetectable in 35% of paired URT samples. In conclusion, LRT samples appear to provide more accurate clinical information than URT samples, thus ensuring correct diagnosis and appropriate treatment of patients with severe respiratory infections requiring ICU admission.
Collapse
Affiliation(s)
- Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Federica Giardina
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Davide Sapia
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Federica Novazzi
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Giovanni Anselmi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Francesco Mojoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy.
- Anesthesia and Intensive Care, Emergency Department, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Danilo Cereda
- DG Welfare, UO Prevenzione, Lombardy Region, 20124 Milan, Italy.
| | - Sabrina Senatore
- DG Welfare, UO Prevenzione, Lombardy Region, 20124 Milan, Italy.
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Whole Genome Sequencing of A(H3N2) Influenza Viruses Reveals Variants Associated with Severity during the 2016⁻2017 Season. Viruses 2019; 11:v11020108. [PMID: 30695992 PMCID: PMC6410005 DOI: 10.3390/v11020108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza viruses cause a remarkable disease burden and significant morbidity and mortality worldwide, and these impacts vary between seasons. To understand the mechanisms associated with these differences, a comprehensive approach is needed to characterize the impact of influenza genomic traits on the burden of disease. During 2016–2017, a year with severe A(H3N2), we sequenced 176 A(H3N2) influenza genomes using next generation sequencing (NGS) for routine surveillance of circulating influenza viruses collected via the French national influenza community-based surveillance network or from patients hospitalized in the intensive care units of the University Hospitals of Lyon, France. Taking into account confounding factors, sequencing and clinical data were used to identify genomic variants and quasispecies associated with influenza severity or vaccine failure. Several amino acid substitutions significantly associated with clinical traits were found, including NA V263I and NS1 K196E which were associated with severity and co-occurred only in viruses from the 3c.2a1 clade. Additionally, we observed that intra-host diversity as a whole and on a specific set of gene segments increased with severity. These results support the use of whole genome sequencing as a tool for the identification of genetic traits associated with severe influenza in the context of influenza surveillance.
Collapse
|
17
|
Gambaryan AS, Lomakina NF, Boravleva EY, Mochalova LV, Sadykova GK, Prilipov AG, Matrosovich TY, Matrosovich MN. Mutations in Hemagglutinin and Polymerase Alter the Virulence of Pandemic A(H1N1) Influenza Virus. Mol Biol 2018. [DOI: 10.1134/s0026893318040052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sahu M, Singh N, Shukla MK, Potdar VA, Sharma RK, Sahare LK, Ukey MJ, Barde PV. Molecular and epidemiological analysis of pandemic and post-pandemic influenza A(H1N1)pdm09 virus from central India. J Med Virol 2017; 90:447-455. [PMID: 29073730 DOI: 10.1002/jmv.24982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/24/2017] [Indexed: 02/05/2023]
Abstract
Influenza A(H1N1)pdm09 virus pandemic struck India in 2009 and continues to cause outbreaks in its post-pandemic phase. Diminutive information is available about influenza A(H1N1)pdm09 from central India. This observational study presents epidemiological and molecular findings for the period of 6 years. Throat swab samples referred from districts of Madhya Pradesh were subjected to diagnosis of influenza A(H1N1)pdm09 following WHO guidelines. Clinical and epidemiological data were recorded and analyzed. Hemagglutinin (HA) gene sequencing and phylogenetic analysis were performed. The H275Y mutation responsible for antiviral resistance was tested using allelic real-time RT-PCR. Out of 7365 tested samples, 2406 (32.7%) were positive for influenza A(H1N1)pdm09, of which 363 (15.08%) succumbed to infection. Significant trends were observed in positivity (χ2 = 50.8; P < 0.001) and mortality (χ2 = 24.4; P < 0.001) with increasing age. Mutations having clinical and epidemiological importance were detected. Phylogenetic analysis of HA gene sequences revealed that clade 7, 6A, and 6B viruses were in circulation. Oseltamivir resistance was detected in three fatal cases. Influenza A(H1N1)pdm09 viruses having genetic diversity were detected from central India and continues to be a concern for public health. This study highlights the need of year-round monitoring by establishment of strong molecular and clinical surveillance program.
Collapse
Affiliation(s)
- Mahima Sahu
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| | - Neeru Singh
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| | - Mohan K Shukla
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| | | | - Ravendra K Sharma
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| | - Lalit Kumar Sahare
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| | - Mahendra J Ukey
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| | - Pradip V Barde
- National Institute for Research in Tribal Health (NIRTH), ICMR, Jabalpur, Madhya Prdesh, India
| |
Collapse
|
19
|
Piralla A, Rovida F, Girello A, Premoli M, Mojoli F, Belliato M, Braschi A, Iotti G, Pariani E, Bubba L, Zanetti AR, Baldanti F. Frequency of respiratory virus infections and next-generation analysis of influenza A/H1N1pdm09 dynamics in the lower respiratory tract of patients admitted to the ICU. PLoS One 2017; 12:e0178926. [PMID: 28591230 PMCID: PMC5462403 DOI: 10.1371/journal.pone.0178926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Recent molecular diagnostic methods have significantly improved the diagnosis of viral pneumonia in intensive care units (ICUs). It has been observed that 222G/N changes in the HA gene of H1N1pdm09 are associated with increased lower respiratory tract (LRT) replication and worse clinical outcome. In the present study, the frequency of respiratory viruses was assessed in respiratory samples from 88 patients admitted to 16 ICUs during the 2014–2015 winter-spring season in Lombardy. Sixty-nine out of 88 (78.4%) patients were positive for a respiratory viral infection at admission. Of these, 57/69 (82.6%) were positive for influenza A (41 A/H1N1pdm09 and 15 A/H3N2), 8/69 (11.6%) for HRV, 2/69 (2.9%) for RSV and 2/69 (2.9%) for influenza B. Phylogenetic analysis of influenza A/H1N1pdm09 strains from 28/41 ICU-patients and 21 patients with mild respiratory syndrome not requiring hospitalization, showed the clear predominance of subgroup 6B strains. The median influenza A load in LRT samples of ICU patients was higher than that observed in the upper respiratory tract (URT) (p<0.05). Overall, a greater number of H1N1pdm09 virus variants were observed using next generation sequencing on partial HA sequences (codons 180–286) in clinical samples from the LRT as compared to URT. In addition, 222G/N/A mutations were observed in 30% of LRT samples from ICU patients. Finally, intra-host evolution analysis showed the presence of different dynamics of viral population in LRT of patients hospitalized in ICU with a severe influenza infection.
Collapse
Affiliation(s)
- Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessia Girello
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Premoli
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Mojoli
- Section of Surgery and Anesthesiology, Unit of Anesthesia, Intensive Care and Pain Therapy, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
| | - Mirko Belliato
- Department of Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Braschi
- Section of Surgery and Anesthesiology, Unit of Anesthesia, Intensive Care and Pain Therapy, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
| | - Giorgio Iotti
- Section of Surgery and Anesthesiology, Unit of Anesthesia, Intensive Care and Pain Therapy, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
- Department of Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Laura Bubba
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- * E-mail: ,
| |
Collapse
|
20
|
Reduction of Neuraminidase Activity Exacerbates Disease in 2009 Pandemic Influenza Virus-Infected Mice. J Virol 2016; 90:9931-9941. [PMID: 27558428 DOI: 10.1128/jvi.01188-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
During the first wave of the 2009 pandemic, caused by a H1N1 influenza virus (pH1N1) of swine origin, antivirals were the only form of therapeutic available to control the proliferation of disease until the conventional strain-matched vaccine was produced. Oseltamivir is an antiviral that inhibits the sialidase activity of the viral neuraminidase (NA) protein and was shown to be effective against pH1N1 viruses in ferrets. Furthermore, it was used in humans to treat infections during the pandemic and is still used for current infections without reported complication or exacerbation of illness. However, in an evaluation of the effectiveness of oseltamivir against pH1N1 infection, we unexpectedly observed an exacerbation of disease in virus-infected mice treated with oseltamivir, transforming an otherwise mild illness into one with high morbidity and mortality. In contrast, an identical treatment regime alleviated all signs of illness in mice infected with the pathogenic mouse-adapted virus A/WSN/33 (H1N1). The worsened clinical outcome with pH1N1 viruses occurred over a range of oseltamivir doses and treatment schedules and was directly linked to a reduction in NA enzymatic activity. Our results suggest that the suppression of NA activity with antivirals may exacerbate disease in a host-dependent manner by increasing replicative fitness in viruses that are not optimally adapted for replication in that host. IMPORTANCE Here, we report that treatment of pH1N1-infected mice with oseltamivir enhanced disease progression, transforming a mild illness into a lethal infection. This raises a potential pitfall of using the mouse model for evaluation of the therapeutic efficacy of neuraminidase inhibitors. We show that antiviral efficacy determined in a single animal species may not represent treatment in humans and that caution should be used when interpreting the outcome. Furthermore, increased virulence due to oseltamivir treatment was the effect of a shift in the hemagglutinin (HA) and neuraminidase (NA) activity balance. This is the first study that has demonstrated that altering the HA/NA activity balance by reduction in NA activity can result in an increase in virulence in any animal model from nonpathogenic to lethal and the first to demonstrate a situation in which treatment with a NA activity inhibitor has an effect opposite to the intended therapeutic effect of ameliorating the infection.
Collapse
|
21
|
Krasnoslobodtsev KG, Lvov DK, Alkhovsky SV, Burtseva EI, Fedyakina IT, Kolobukhina LV, Kirillova ES, Trushakova SV, Oskerko TA, Shchelkanov MY, Deryabin PG. Amino acid polymorphism at residue 222 of the receptor-binding site of the hemagglutinin of the pandemic influenza A(H1N1)pdm09 from patients 166 with lethal virus pneumonia in 2012-2014. Vopr Virusol 2016; 61:166-171. [PMID: 36494964 DOI: 10.18821/0507-4088-2016-61-4-166-171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Survey data from autopsy specimens from patients who died from pneumonia caused by the influenza A(H1N1) pdm09 in 2012-2014 and mutant forms of influenza virus in these patients (position 222 in the receptor-binding region of hemagglutinin) were presented. In total, according to aggregate data, obtained with three different methods (sequencing, next-generation sequencing (NGS), virus isolation) mutant viruses were detected in 17 (41%) from 41 patients. The proportion of the mutant forms in viral populations ranged from 1% to 69.2%. The most frequent mixture was the wild type (D222) and mutant (D222G), with proportion of mutant type ranged from 3.3% to 69.2% in the viral population. Mutation D222N (from 1.1% to 5.5%) was found rarely. Composition of the viral population from one patient is extremely heterogeneous: in left lung there was only wild type D222, meantime in right lung - mixture of mutant forms 222D/N/G (65.4/32.5/1.1%), in trachea - mixture 222D/G/Y/A (61.8/35.6/1.2/1.4%, respectively), and in bronchi compound of 222D/G/N/A (64.3/33.7/1/1%, respectively) were detected. The obtained data indicate that the process of adaptation of the virus in the lower respiratory tract is coupled with the appearance of different virus variants with mutations in the receptor-binding region. Mutant forms of the virus are observed in the lower respiratory tract of the majority of patients with lethal viral pneumonia. However, if they are a minor part of the population, they cannot be detected by the method of conventional sequencing. They can be identified using the NGS methods.
Collapse
Affiliation(s)
- K G Krasnoslobodtsev
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - D K Lvov
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - S V Alkhovsky
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - E I Burtseva
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - I T Fedyakina
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - L V Kolobukhina
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - E S Kirillova
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - S V Trushakova
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - T A Oskerko
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - M Y Shchelkanov
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| | - P G Deryabin
- «Federal Research Centre of Epidemilogy and Microbiology named after the honorary academician N.F. Gamaleya»
| |
Collapse
|
22
|
Manchanda H, Seidel N, Blaess MF, Claus RA, Linde J, Slevogt H, Sauerbrei A, Guthke R, Schmidtke M. Differential Biphasic Transcriptional Host Response Associated with Coevolution of Hemagglutinin Quasispecies of Influenza A Virus. Front Microbiol 2016; 7:1167. [PMID: 27536272 PMCID: PMC4971777 DOI: 10.3389/fmicb.2016.01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/13/2016] [Indexed: 01/20/2023] Open
Abstract
Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity.
Collapse
Affiliation(s)
- Himanshu Manchanda
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany; Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Nora Seidel
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Markus F Blaess
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Ralf A Claus
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Joerg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Hortense Slevogt
- Centre of Innovation Competence (ZIK) Septomics, Jena University Hospital Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| |
Collapse
|
23
|
Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Sci Rep 2016; 6:27067. [PMID: 27252023 PMCID: PMC4890009 DOI: 10.1038/srep27067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
Given the present extensive co-circulation in pigs of Eurasian avian-like (EA) swine H1N1 and 2009 pandemic (pdm/09) H1N1 viruses, reassortment between them is highly plausible but largely uncharacterized. Here, experimentally co-infected pigs with a representative EA virus and a pdm/09 virus yielded 55 novel reassortant viruses that could be categorized into 17 genotypes from Gt1 to Gt17 based on segment segregation. Majority of novel reassortants were isolated from the lower respiratory tract. Most of reassortant viruses were more pathogenic and contagious than the parental EA viruses in mice and guinea pigs. The most transmissible reassortant genotypes demonstrated in guinea pigs (Gt2, Gt3, Gt7, Gt10 and Gt13) were also the most lethal in mice. Notably, nearly all these highly virulent reassortants (all except Gt13) were characterized with possession of EA H1 and full complement of pdm/09 ribonucleoprotein genes. Compositionally, we demonstrated that EA H1-222G contributed to virulence by its ability to bind avian-type sialic acid receptors, and that pdm/09 RNP conferred the most robust polymerase activity to reassortants. The present study revealed high reassortment compatibility between EA and pdm/09 viruses in pigs, which could give rise to progeny reassortant viruses with enhanced virulence and transmissibility in mice and guinea pig models.
Collapse
|
24
|
Caglioti C, Selleri M, Rozera G, Giombini E, Zaccaro P, Valli MB, Capobianchi MR. In-Depth Analysis of HA and NS1 Genes in A(H1N1)pdm09 Infected Patients. PLoS One 2016; 11:e0155661. [PMID: 27186639 PMCID: PMC4871468 DOI: 10.1371/journal.pone.0155661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/02/2016] [Indexed: 12/16/2022] Open
Abstract
In March/April 2009, a new pandemic influenza A virus (A(H1N1)pdm09) emerged and spread rapidly via human-to-human transmission, giving rise to the first pandemic of the 21th century. Influenza virus may be present in the infected host as a mixture of variants, referred to as quasi-species, on which natural and immune-driven selection operates. Since hemagglutinin (HA) and non-structural 1 (NS1) proteins are relevant in respect of adaptive and innate immune responses, the present study was aimed at establishing the intra-host genetic heterogeneity of HA and NS1 genes, applying ultra-deep pyrosequencing (UDPS) to nasopharyngeal swabs (NPS) from patients with confirmed influenza A(H1N1)pdm09 infection. The intra-patient nucleotide diversity of HA was significantly higher than that of NS1 (median (IQR): 37.9 (32.8–42.3) X 10−4 vs 30.6 (27.4–33.6) X 10−4 substitutions/site, p = 0.024); no significant correlation for nucleotide diversity of NS1 and HA was observed (r = 0.319, p = 0.29). Furthermore, a strong inverse correlation between nucleotide diversity of NS1 and viral load was observed (r = - 0.74, p = 0.004). For both HA and NS1, the variants appeared scattered along the genes, thus indicating no privileged mutation site. Known polymorphisms, S203T (HA) and I123V (NS1), were observed as dominant variants (>98%) in almost all patients; three HA and two NS1 further variants were observed at frequency >40%; a number of additional variants were detected at frequency <6% (minority variants), of which three HA and four NS1 variants were novel. In few patients multiple variants were observed at HA residues 203 and 222. According to the FLUSURVER tool, some of these variants may affect immune recognition and host range; however, these inferences are based on H5N1, and their extension to A(H1N1)pdm09 requires caution. More studies are necessary to address the significance of the composite nature of influenza virus quasi-species within infected patients.
Collapse
Affiliation(s)
- Claudia Caglioti
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
| | - Marina Selleri
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
| | - Gabriella Rozera
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
| | - Emanuela Giombini
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
| | - Paola Zaccaro
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
| | - Maria Beatrice Valli
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases “L. Spallanzani”, I.R.C.C.S., Rome, Italy
- * E-mail:
| |
Collapse
|
25
|
Shang C, Whittleston CS, Sutherland-Cash KH, Wales DJ. Analysis of the Contrasting Pathogenicities Induced by the D222G Mutation in 1918 and 2009 Pandemic Influenza A Viruses. J Chem Theory Comput 2015; 11:2307-14. [PMID: 26321885 PMCID: PMC4547735 DOI: 10.1021/ct5010565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/28/2022]
Abstract
In 2009, the D222G mutation in the hemagglutinin (HA) glycoprotein of pandemic H1N1 influenza A virus was found to correlate with fatal and severe human infections. Previous static structural analysis suggested that, unlike the H1N1 viruses prevalent in 1918, the mutation did not compromise binding to human α2,6-linked glycan receptors, allowing it to transmit efficiently. Here we investigate the interconversion mechanism between two predicted binding modes in both 2009 and 1918 HAs, introducing a highly parallel intermediate network search scheme to construct kinetically relevant pathways efficiently. Accumulated mutations at positions 183 and 224 that alter the size of the binding pocket are identified with the fitness of the 2009 pandemic virus carrying the D222G mutation. This result suggests that the pandemic H1N1 viruses could gain binding affinity to the α2,3-linked glycan receptors in the lungs, usually associated with highly pathogenic avian influenza, without compromising viability.
Collapse
Affiliation(s)
- Cheng Shang
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | | | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
26
|
Oliveira MJC, Motta FDC, Siqueira MM, Resende PC, Born PDS, Souza TML, Mesquita M, Oliveira MDLA, Carney S, Mello WAD, Magalhães V. Molecular findings from influenza A(H1N1)pdm09 detected in patients from a Brazilian equatorial region during the pandemic period. Mem Inst Oswaldo Cruz 2014; 109:912-7. [PMID: 25410995 PMCID: PMC4296496 DOI: 10.1590/0074-0276140210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022] Open
Abstract
After the World Health Organization officially declared the end of the first pandemic
of the XXI century in August 2010, the influenza A(H1N1)pdm09 virus has been
disseminated in the human population. In spite of its sustained circulation, very
little on phylogenetic data or oseltamivir (OST) resistance is available for the
virus in equatorial regions of South America. In order to shed more light on this
topic, we analysed the haemagglutinin (HA) and neuraminidase (NA) genes of influenza
A(H1N1)pdm09 positive samples collected during the pandemic period in the Pernambuco
(PE), a northeastern Brazilian state. Complete HA sequences were compared and amino
acid changes were related to clinical outcome. In addition, the H275Y substitution in
NA, associated with OST resistance, was investigated by pyrosequencing. Samples from
PE were grouped in phylogenetic clades 6 and 7, being clustered together with
sequences from South and Southeast Brazil. The D222N/G HA gene mutation, associated
with severity, was found in one deceased patient that was pregnant. Additionally, the
HA mutation K308E, which appeared in Brazil in 2010 and was only detected worldwide
the following year, was identified in samples from hospitalised cases. The resistance
marker H275Y was not identified in samples tested. However, broader studies are
needed to establish the real frequency of resistance in this Brazilian region.
Collapse
Affiliation(s)
| | - Fernando do Couto Motta
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Priscilla da Silva Born
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Thiago Moreno L Souza
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Milene Mesquita
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Sharon Carney
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
27
|
Castelán-Vega JA, Magaña-Hernández A, Jiménez-Alberto A, Ribas-Aparicio RM. The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability. Adv Appl Bioinform Chem 2014; 7:37-44. [PMID: 25328411 PMCID: PMC4198066 DOI: 10.2147/aabc.s68934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The last influenza A pandemic provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates since the beginning of the pandemic until date, we could monitor amino acid changes that occurred in the hemagglutinin (HA) as the virus spread worldwide and became the dominant H1N1 strain. HA is crucial to viral infection because it binds to sialidated cell-receptors and mediates fusion of cell and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. Multiple alignment analysis of sequences of the HA from isolates taken since 2009 to date allowed us to find amino acid changes that were positively selected as the pandemic progressed. We found nine changes that became prevalent: HA1 subunits D104N, K166Q, S188T, S206T, A259T, and K285E; and HA2 subunits E47K, S124N, and E172K. Most of these changes were located in areas involved in inter- and intrachain interactions, while only two (K166Q and S188T) were located in known antigenic sites. We conclude that selective pressure on HA was aimed to improve its functionality and hence virus fitness, rather than at avoidance of immune recognition.
Collapse
Affiliation(s)
- Juan A Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anastasia Magaña-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
28
|
Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 2014; 88:13269-83. [PMID: 25210166 PMCID: PMC4249111 DOI: 10.1128/jvi.01636-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation, we studied genetic changes in virus isolates from individual hospitalized patients. There were no consistent differences between these viruses and those circulating in the community, but we found multiple evolutionary changes that in combination over time increased the virus's ability to infect human cells. These adaptations may explain the remarkable ability of A(H1N1)pdm09 virus to continue to circulate despite widespread immunity and the apparent increase in severity of influenza over successive waves of infection.
Collapse
|
29
|
Seidel N, Sauerbrei A, Wutzler P, Schmidtke M. Hemagglutinin 222D/G polymorphism facilitates fast intra-host evolution of pandemic (H1N1) 2009 influenza A viruses. PLoS One 2014; 9:e104233. [PMID: 25162520 PMCID: PMC4146462 DOI: 10.1371/journal.pone.0104233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
The amino acid substitution of aspartic acid to glycine in hemagglutinin (HA) in position 222 (HA-D222G) as well as HA-222D/G polymorphism of pandemic (H1N1) 2009 influenza viruses (A(H1N1)pdm09) were frequently reported in severe influenza in humans and mice. Their impact on viral pathogenicity and the course of influenza has been discussed controversially and the underlying mechanism remained unclarified. In the present study, BALB/c mice, infected with the once mouse lung- and cell-passaged A(H1N1)pdm09 isolate A/Jena/5258/09 (mpJena/5258), developed severe pneumonia. From day 2 to 3 or 4 post infection (p.i.) symptoms (body weight loss and clinical score) continuously worsened. After a short disease stagnation or even recovery phase in most mice, severity of disease further increased on days 6 and 7 p.i. Thereafter, surviving mice recovered. A 45 times higher virus titer maximum in the lung than in the trachea on day 2 p.i. and significantly higher tracheal virus titers compared to lung on day 6 p.i. indicated changes in the organ tropism during infection. Sequence analysis revealed an HA-222D/G polymorphism. HA-D222 and HA-G222 variants co-circulated in lung and trachea. Whereas, HA-D222 variant predominated in the lung, HA-G222 became the major variant in the trachea after day 4 p.i. This was accompanied by lower neutralizing antibody titers and broader receptor recognition including terminal sialic acid α-2,3-linked galactose, which is abundant on mouse trachea epithelial cells. Plaque-purified HA-G222-mpJena/5258 virus induced severe influenza with maximum symptom on day 6 p.i. These results demonstrated for the first time that HA-222D/G quasispecies of A(H1N1)pdm09 caused severe biphasic influenza because of fast viral intra-host evolution, which enabled partial antibody escape and minor changes in receptor binding.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Base Sequence
- Evolution, Molecular
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host Specificity
- Humans
- Immune Evasion
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Polymorphism, Genetic
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Sialic Acids/chemistry
- Sialic Acids/immunology
- Trachea/immunology
- Trachea/pathology
- Trachea/virology
- Viral Tropism
Collapse
Affiliation(s)
- Nora Seidel
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Peter Wutzler
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Friedrich Schiller University Jena, Department of Virology and Antiviral Therapy, Jena, Germany
- * E-mail:
| |
Collapse
|
30
|
Goka EA, Vallely PJ, Mutton KJ, Klapper PE. Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence. Arch Virol 2014; 159:3167-83. [PMID: 25078388 DOI: 10.1007/s00705-014-2179-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Mutations in the haemagglutinin (HA), non-structural protein 1 (NS1) and polymerase basic protein 2 (PB2) of influenza viruses have been associated with virulence. This study investigated the association between mutations in these genes in influenza A(H1N1)pdm09 virus and the risk of severe or fatal disease. Searches were conducted on the MEDLINE, EMBASE and Web of Science electronic databases and the reference lists of published studies. The PRISMA and STROBE guidelines were followed in assessing the quality of studies and writing-up. Eighteen (18) studies, from all continents, were included in the systematic review (recruiting patients 0 - 77 years old). The mutation D222G was associated with a significant increase in severe disease (pooled RD: 11 %, 95 % CI: 3.0 % - 18.0 %, p = 0.004) and the risk of fatality (RD: 23 %, 95 % CI: 14.0 %-31.0 %, p = < 0.0001). No association was observed between the mutations HA-D222N, D222E, PB2-E627K and NS1-T123V and severe/fatal disease. The results suggest that no virus quasispecies bearing virulence-conferring mutations in the HA, PB2 and NS1 predominated. However issues of sampling bias, and bias due to uncontrolled confounders such as comorbidities, and viral and bacterial coinfection, should be born in mind. Influenza A viruses should continue to be monitored for the occurrence of virulence-conferring mutations in HA, PB2 and NS1. There are suggestions that respiratory virus coinfections also affect virus virulence. Studies investigating the role of genetic mutations on disease outcome should make efforts to also investigate the role of respiratory virus coinfections.
Collapse
Affiliation(s)
- E A Goka
- Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, 1st Floor Stopford building, Oxford Road, Manchester, M13 9PL, UK,
| | | | | | | |
Collapse
|
31
|
Resende PC, Motta FC, Oliveira MDLA, Gregianini TS, Fernandes SB, Cury ALF, do Carmo D. Rosa M, Souza TML, Siqueira MM. Polymorphisms at residue 222 of the hemagglutinin of pandemic influenza A(H1N1)pdm09: association of quasi-species to morbidity and mortality in different risk categories. PLoS One 2014; 9:e92789. [PMID: 24667815 PMCID: PMC3965456 DOI: 10.1371/journal.pone.0092789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
The D222G substitution in the hemagglutinin (HA) gene of the pandemic influenza A(H1N1)pdm09 virus has been identified as a potential virulence marker, because this change allows for virus invasion deeper into the respiratory tract. In this study, we analyzed D, G and N polymorphisms at residue 222 by pyrosequencing (PSQ). We initially analyzed 401 samples from Brazilian patients. These were categorized with respect to clinical conditions due to influenza infection (mild, serious or fatal) and sub-stratified by risky factors. The frequency of mixed population of virus, with more than one polymorphism at residue 222, was significantly higher in serious (10.6%) and fatal (46.7%) influenza cases, whereas those who showed mild influenza infections were all infected by D222 wild-type. Mixtures of quasi-species showed a significant association of mortality, especially for those with risk factors, in special pregnant women. These results not only reinforce the association between D222G substitution and influenza A(H1N1)pdm09-associated morbidity and mortality, but also add the perspective that a worse clinical prognosis is most likely correlated with mixtures of quasi-species at this HA residue. Therefore, quasi-species may have a critical and underestimated role in influenza-related clinical outcomes.
Collapse
Affiliation(s)
- Paola Cristina Resende
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Fernando C. Motta
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria de Lourdes A. Oliveira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana S. Gregianini
- Laboratório Central de Saúde Pública do Estado do Rio de Grande do Sul -Fundação estadual de produção e pesquisa em saúde seção de virologia, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandra B. Fernandes
- Laboratório Central de Saúde Pública do Estado de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Luisa F. Cury
- Laboratório Central de Saúde Pública do Estado de Minas Gerais/Instituto Octávio Magalhães e Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | - Thiago Moreno L. Souza
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Corcioli F, Arvia R, Pierucci F, Clausi V, Bonizzoli M, Peris A, Azzi A. HA222 polymorphism in Influenza A(H1N1) 2009 isolates from Intensive Care Units and ambulatory patients during three influenza seasons. Virus Res 2014; 180:39-42. [DOI: 10.1016/j.virusres.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
33
|
Xiong X, McCauley JW, Steinhauer DA. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr Top Microbiol Immunol 2014; 385:63-91. [PMID: 25078920 DOI: 10.1007/82_2014_423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Host cell attachment by influenza A viruses is mediated by the hemagglutinin glycoprotein (HA), and the recognition of specific types of sialic acid -containing glycan receptors constitutes one of the major determinants of viral host range and transmission properties. Structural studies have elucidated some of the viral determinants involved in receptor recognition of avian-like and human-like receptors for various subtypes of influenza A viruses, and these provide clues relating to the mechanisms by which viruses evolve to adapt to human hosts. We discuss structural aspects of receptor binding by influenza HA, as well as the biological implications of functional interplay involving HA binding, NA sialidase functions, the effects of antigenic drift, and the inhibitory properties of natural glycans present on mucosal surfaces.
Collapse
Affiliation(s)
- Xiaoli Xiong
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK,
| | | | | |
Collapse
|
34
|
Ruggiero T, De Rosa F, Cerutti F, Pagani N, Allice T, Stella ML, Milia MG, Calcagno A, Burdino E, Gregori G, Urbino R, Di Perri G, Ranieri MV, Ghisetti V. A(H1N1)pdm09 hemagglutinin D222G and D222N variants are frequently harbored by patients requiring extracorporeal membrane oxygenation and advanced respiratory assistance for severe A(H1N1)pdm09 infection. Influenza Other Respir Viruses 2013; 7:1416-26. [PMID: 23927713 PMCID: PMC4634302 DOI: 10.1111/irv.12146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 12/31/2022] Open
Abstract
Background In patients with A(H1N1)pdm09 infection, severe lung involvement requiring admission to intensive care units (ICU) has been reported. Mutations at the hemagglutinin (HA) receptor binding site (RBS) have been associated with increased virulence and disease severity, representing a potential marker of critical illness. Objectives To assess the contribution of HA‐RBS variability in critically ill patients, A(H1N1)pdm09 virus from adult patients with severe infection admitted to ICU for extracorporeal membrane oxygenation support (ECMO) during influenza season 2009–2011 in Piemonte (4·2 million inhabitants), northwestern Italy, was studied. Patients and methods We retrospectively analyzed HA‐RBS polymorphisms in ICU patients and compared with those from randomly selected inpatients with mild A(H1N1)pdm09 disease and outpatients with influenza from the local surveillance program. Results By HA‐RBS direct sequencing of respiratory specimens, D222G and D222N viral variants were identified in a higher proportion in ICU patients (n = 8/24, 33·3%) than in patients with mild disease (n = 2/34, 6%) or in outpatients (n = 0/44) (Fisher's exact test P < 0·0001; OR 38·5; CI 95% 4·494–329·9). Eleven ICU patients died (42%), three of them carrying the D222G variant, which was associated with RBS mutation S183P in two. D222G and D222N mutants were identified in upper and lower respiratory samples. Conclusions A(H1N1)pdm09 HA substitutions D222G and D222N were harbored in a significantly higher proportion by patients with acute respiratory distress for A(H1N1)pdm09 severe infection requiring ICU admission and ECMO. These data emphasize the importance of monitoring viral evolution for understanding virus–host adaptation aimed at the surveillance of strain circulation and the study of viral correlates of disease severity.
Collapse
Affiliation(s)
- Tina Ruggiero
- Department of Infectious Diseases, Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|