1
|
Murmu S, Aravinthkumar A, Singh MK, Sharma S, Das R, Jha GK, Prakash G, Rana VS, Kaushik P, Farooqi MS. Identification of potent phytochemicals against Magnaporthe oryzae through machine learning aided-virtual screening and molecular dynamics simulation approach. Comput Biol Med 2025; 188:109862. [PMID: 39965394 DOI: 10.1016/j.compbiomed.2025.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Magnaporthe oryzae stands as a notorious fungal pathogen responsible for causing devastating blast disease in cereals, leading to substantial reductions in grain production. Despite the usage of chemical fungicides to combat the pathogen, their effectiveness remains limited in controlling blast disease. Consequently, there exists a pressing need to discover a novel natural biofungicide for efficient blast disease management. To address this challenge, we combined machine learning-based bioactivity prediction with virtual screening, molecular docking, and molecular dynamics (MD) simulations to explore the molecular interactions between forty-eight plant-derived natural compounds and the effector protein, Avr-PikE, an avirulence protein from Magnaporthe oryzae. Among the evaluated phytochemicals, Calotropin, Lupeol, and Azadirachtin emerged as the top-ranking molecules based on their favourable affinity through molecular docking with the effector. MD simulations for 100 ns were conducted to ascertain the stability and reliability of these compounds. Through classical and steered MD simulations and free energy calculations, it was revealed that these selected compounds exhibit stable and favourable energies, thereby establishing strong binding interactions with Avr-PikE. These screened natural metabolites were also found to meet crucial criteria for fungicide-likeness. To support accessibility and broader applications, we also developed a bioactivity prediction app (http://login1.cabgrid.res.in:5260/), allowing users to predict bioactivity against fungi based on our model. The efficacy of one potent compound, Lupeol, was validated through in vitro experiments, confirming its significant antifungal activity against Magnaporthe oryzae. Such biofungicides hold promise for enhancing disease management strategies and mitigating the impact of blast disease on cereal crops.
Collapse
Affiliation(s)
- Sneha Murmu
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A Aravinthkumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Soumya Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Girish Kumar Jha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mohammad Samir Farooqi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| |
Collapse
|
2
|
Cazal-Martínez CC, Reyes-Caballero YM, Chávez AR, Pérez-Estigarribia PE, Kohli MM, Rojas A, Arrua AA, Moura-Mendes J, Souza-Perera R, Zúñiga Agilar JJ, Gluck-Thaler E, Lopez-Nicora H, Iehisa JCM. Pyricularia pennisetigena and Pyricularia oryzae isolates from Paraguay's wheat-growing regions and the impact on wheat. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100361. [PMID: 40104553 PMCID: PMC11919303 DOI: 10.1016/j.crmicr.2025.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The Pyricularia genus includes species causing blast disease in monocots, posing significant challenges for disease management due to their ability to infect multiple hosts. This study aimed to identify the pathogenicity and species identity of Pyricularia isolates from 11 plant species in wheat-growing regions of Paraguay and assess their capacity to infect wheat. Twenty-four monosporic isolates were analyzed based on macroscopic and microscopic and phylogenetic characteristics. Three phylogenetic clades corresponding to P. oryzae, P. grisea, and P. pennisetigena were identified through five barcoding genes. For the first time, wheat blast was reported in San Pedro Department, and blast disease was observed in weeds in Cordillera and Central Departments. In greenhouse trials, P. oryzae isolates from wheat successfully infected both susceptible and resistant wheat cultivars, whereas isolates from non-wheat hosts did not elicit symptoms. Notably, P. pennisetigena isolates derived from Cenchrus echinatus were capable of infecting wheat spikes, producing typical blast symptoms, highlighting the potential for cross-species pathogen transmission. This finding suggests P. pennisetigena may pose an emerging threat to wheat in Paraguay, as its primary host is prevalent near wheat fields. These results highlight the critical importance of integrated disease management strategies, particularly the identification of inoculum sources, to mitigate cross-species pathogen transmission. This approach aligns with the One Health paradigm by addressing interconnected risks to plant health, food security, and environmental sustainability.
Collapse
Affiliation(s)
- Cinthia Carolina Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible. Universidad de Córdoba, Córdoba, España
- Departamento de Biotecnología. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
| | - Yessica Magaliz Reyes-Caballero
- Departamento de Investigación, Cámara Paraguaya de exportadores y comercilzadores de cereales y oleaginosas, Asunción, 1207, Paraguay
- Instituto Paraguayo de Tecnología Agraria, Centro de Investigaciones Capitán Miranda. Capitán Miranda, 6990, Paraguay
| | - Alice Rocio Chávez
- Departamento de Investigación, Cámara Paraguaya de exportadores y comercilzadores de cereales y oleaginosas, Asunción, 1207, Paraguay
| | | | - Man Mohan Kohli
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Departamento de Investigación, Cámara Paraguaya de exportadores y comercilzadores de cereales y oleaginosas, Asunción, 1207, Paraguay
| | - Alcides Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
| | - Andrea Alejandra Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Departamento de Biotecnología. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
| | - Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
| | - Ramón Souza-Perera
- Unidad de Bioquímica y Biología Molecular en Plantas, Centro de Investigación Científica de Yucatán, A.C., Yucatan, 97205, Mexico
| | - José Juan Zúñiga Agilar
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Universidad Tecnológica del Usumacinta, Tabasco, 86980, Mexico
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, USA
- Wisconsin Institute for Discovery, Madison, USA
| | - Horacio Lopez-Nicora
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Department of Plant Pathology, The Ohio State University, Columbus, USA
| | - Julio Cesar Masaru Iehisa
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| |
Collapse
|
3
|
Zhang N, Li X, Ming L, Sun W, Xie X, Zhi C, Zhou X, Wen Y, Liang Z, Deng Y. Comparative Genomics and Pathogenicity Analysis of Three Fungal Isolates Causing Barnyard Grass Blast. J Fungi (Basel) 2024; 10:868. [PMID: 39728364 DOI: 10.3390/jof10120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents. Based on morphology characterization and genome sequence analyses, we confirmed that these three strains were Epicoccum sorghinum (SCAU-1), Pyricularia grisea (SCAU-2), and Exserohilum rostratum (SCAU-6). The established Avirulence (Avr) genes Avr-Pia, Avr-Pita2, and ACE1 were detected by PCR amplification in SCAU-2, but not in SCAU-1 or SCAU-6. Furthermore, the whole-genome sequence analysis helped to reveal the genetic variations and potential virulence factors relating to the host specificity of these three fungal pathogens. Based on the evolutionary analysis of single-copy orthologous proteins, we found that the genes encoding glycoside hydrolases, carbohydrate esterases, oxidoreductase, and multidrug transporters in SCAU-1 and SCAU-6 were expanded, while expansion in SCAU-2 was mainly related to carbohydrate esterases. In summary, our study provides clues to understand the pathogenic mechanisms of fungal isolates from barnyard grass with the potential to cause rice blast.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Liangping Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Wenda Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Cailing Zhi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
4
|
Sequera-Grappin I, Ventura-Zapata E, De la Cruz-Arguijo EA, Larralde-Corona CP, Narváez-Zapata JA. Pyricularia's Capability of Infecting Different Grasses in Two Regions of Mexico. J Fungi (Basel) 2023; 9:1055. [PMID: 37998861 PMCID: PMC10672002 DOI: 10.3390/jof9111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The genus Pyricularia includes species that are phytopathogenic fungi, which infect different species of Poaceae, such as rice and sorghum. However, few isolates have been genetically characterized in North America. The current study addresses this lack of information by characterizing an additional 57 strains of three grasses (Stenotaphrum secundatum, Cenchrus ciliaris and Digitaria ciliaris) from two distant regions of Mexico. A Pyricularia dataset with ITS sequences retrieved from GenBank and the studied sequences were used to build a haplotype network that allowed us to identify a few redundant haplotypes highly related to P. oryzae species. An analysis considering only the Mexican sequences allowed us to identify non-redundant haplotypes in the isolates of C. ciliaris and D. ciliaris, with a high identity with P. pennisetigena. The Pot2-TIR genomic fingerprinting technique resulted in high variability and allowed for the isolates to be grouped according to their host grass, whilst the ERIC-PCR technique was able to separate the isolates according to their host grass and their region of collection. Representative isolates from different host grasses were chosen to explore the pathogenic potential of these isolates. The selected isolates showed a differential pathogenic profile. Cross-infection with representative isolates from S. secundatum and C. ciliaris showed that these were unable to infect D. ciliaris grass and that the DY1 isolate from D. ciliaris was only able to infect its host grass. The results support the identification of pathogenic strains of Pyricularia isolates and their cross-infection potential in different grasses surrounding important crops in Mexico.
Collapse
Affiliation(s)
- Ivan Sequera-Grappin
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico; (I.S.-G.); (E.A.D.l.C.-A.); (C.P.L.-C.)
| | - Elsa Ventura-Zapata
- Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Ctra. Yautepec-Jojutla, Km.6, calle CEPROBI No. 8, Col. San Isidro, Yautepec C.P. 62731, Morelos, Mexico;
| | - Erika Alicia De la Cruz-Arguijo
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico; (I.S.-G.); (E.A.D.l.C.-A.); (C.P.L.-C.)
| | - Claudia Patricia Larralde-Corona
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico; (I.S.-G.); (E.A.D.l.C.-A.); (C.P.L.-C.)
| | - Jose Alberto Narváez-Zapata
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico; (I.S.-G.); (E.A.D.l.C.-A.); (C.P.L.-C.)
| |
Collapse
|
5
|
B J, Hosahatti R, Koti PS, Devappa VH, Ngangkham U, Devanna P, Yadav MK, Mishra KK, Aditya JP, Boraiah PK, Gaber A, Hossain A. Phenotypic and Genotypic screening of fifty-two rice (Oryza sativa L.) genotypes for desirable cultivars against blast disease. PLoS One 2023; 18:e0280762. [PMID: 36897889 PMCID: PMC10004593 DOI: 10.1371/journal.pone.0280762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/08/2023] [Indexed: 03/11/2023] Open
Abstract
Magnaporthe oryzae, the rice blast fungus, is one of the most dangerous rice pathogens, causing considerable crop losses around the world. In order to explore the rice blast-resistant sources, initially performed a large-scale screening of 277 rice accessions. In parallel with field evaluations, fifty-two rice accessions were genotyped for 25 major blast resistance genes utilizing functional/gene-based markers based on their reactivity against rice blast disease. According to the phenotypic examination, 29 (58%) and 22 (42%) entries were found to be highly resistant, 18 (36%) and 29 (57%) showed moderate resistance, and 05 (6%) and 01 (1%), respectively, were highly susceptible to leaf and neck blast. The genetic frequency of 25 major blast resistance genes ranged from 32 to 60%, with two genotypes having a maximum of 16 R-genes each. The 52 rice accessions were divided into two groups based on cluster and population structure analysis. The highly resistant and moderately resistant accessions are divided into different groups using the principal coordinate analysis. According to the analysis of molecular variance, the maximum diversity was found within the population, while the minimum diversity was found between the populations. Two markers (RM5647 and K39512), which correspond to the blast-resistant genes Pi36 and Pik, respectively, showed a significant association to the neck blast disease, whereas three markers (Pi2-i, Pita3, and k2167), which correspond to the blast-resistant genes Pi2, Pita/Pita2, and Pikm, respectively, showed a significant association to the leaf blast disease. The associated R-genes might be utilized in rice breeding programmes through marker-assisted breeding, and the identified resistant rice accessions could be used as prospective donors for the production of new resistant varieties in India and around the world.
Collapse
Affiliation(s)
- Jeevan B
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | | | - Prasanna S Koti
- The University of Trans-Disciplinary Health Sciences and Technology, Jarakabande Kaval, Bengaluru, Karnataka, India
| | | | - Umakanta Ngangkham
- ICAR- Research Complex for North- Eastern Hill Region, Manipur centre, Imphal, Manipur, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Manoj Kumar Yadav
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India
| | - Krishna Kant Mishra
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Jay Prakash Aditya
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Palanna Kaki Boraiah
- Project Coordinating Unit, ICAR-AICRP on Small Millets, UAS, GKVK, Bengaluru, Karnataka, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
6
|
Wang A, Shu X, Xu D, Jiang Y, Liang J, Yi X, Zhu J, Yang F, Jiao C, Zheng A, Yin D, Li P. Understanding the Rice Fungal Pathogen Tilletia horrida from Multiple Perspectives. RICE (NEW YORK, N.Y.) 2022; 15:64. [PMID: 36522490 PMCID: PMC9755434 DOI: 10.1186/s12284-022-00612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Rice kernel smut (RKS), caused by the fungus Tilletia horrida, has become a major disease in rice-growing areas worldwide, especially since the widespread cultivation of high-yielding hybrid rice varieties. The disease causes a significant yield loss during the production of rice male sterile lines by producing masses of dark powdery teliospores. This review mainly summarizes the pathogenic differentiation, disease cycle, and infection process of the T. horrida, as well as the decoding of the T. horrida genome, functional genomics, and effector identification. We highlight the identification and characterization of virulence-related pathways and effectors of T. horrida, which could foster a better understanding of the rice-T. horrida interaction and help to elucidate its pathogenicity molecular mechanisms. The multiple effective disease control methods for RKS are also discussed, included chemical fungicides, the mining of resistant rice germplasms/genes, and the monitoring and early warning signs of this disease in field settings.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Deze Xu
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chunhai Jiao
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China.
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Khan MA, Al Mamun Khan MA, Mahfuz AMUB, Sanjana JM, Ahsan A, Gupta DR, Hoque MN, Islam T. Highly potent natural fungicides identified in silico against the cereal killer fungus Magnaporthe oryzae. Sci Rep 2022; 12:20232. [PMID: 36418863 PMCID: PMC9684433 DOI: 10.1038/s41598-022-22217-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Magnaporthe oryzae is one of the most notorious fungal pathogens that causes blast disease in cereals, and results in enormous loss of grain production. Many chemical fungicides are being used to control the pathogen but none of them are fully effective in controlling blast disease. Therefore, there is a demand for the discovery of a new natural biofungicide to manage the blast disease efficiently. A large number of new natural products showed inhibitory activities against M. oryzae in vitro. To find out effective biofungicides, we performed in silico molecular docking analysis of some of the potent natural compounds targeting four enzymes namely, scytalone dehydratase, SDH1 (PDB ID:1STD), trihydroxynaphthalene reductase, 3HNR (PDB ID:1YBV), trehalose-6-phosphate synthase, Tps1 (PDB ID:6JBI) and isocitrate lyase, ICL1 (PDB ID:5E9G) of M. oryzae fungus that regulate melanin biosynthesis and/or appresorium formation. Thirty-nine natural compounds that were previously reported to inhibit the growth of M. oryzae were subjected to rigid and flexible molecular docking against aforementioned enzymes followed by molecular dynamic simulation. The results of virtual screening showed that out of 39, eight compounds showed good binding energy with any one of the target enzymes as compared to reference commercial fungicides, azoxystrobin and strobilurin. Among the compounds, camptothecin, GKK1032A2 and chaetoviridin-A bind with more than one target enzymes of M. oryzae. All of the compounds except tricyclazole showed good bioactivity score. Taken together, our results suggest that all of the eight compounds have the potential to develop new fungicides, and remarkably, camptothecin, GKK1032A2 and chaetoviridin-A could act as multi-site mode of action fungicides against the blast fungus M. oryzae.
Collapse
Affiliation(s)
- Md. Arif Khan
- grid.443057.10000 0004 4683 7084Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, 1209 Bangladesh
| | - Md. Abdullah Al Mamun Khan
- grid.443019.b0000 0004 0479 1356Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - A. M. U. B. Mahfuz
- grid.443057.10000 0004 4683 7084Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, 1209 Bangladesh
| | - Jannatul Maowa Sanjana
- grid.443019.b0000 0004 0479 1356Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Asif Ahsan
- grid.411511.10000 0001 2179 3896Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Dipali Rani Gupta
- grid.443108.a0000 0000 8550 5526Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706 Bangladesh
| | - M. Nazmul Hoque
- grid.443108.a0000 0000 8550 5526Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, 1706 Bangladesh
| | - Tofazzal Islam
- grid.443108.a0000 0000 8550 5526Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706 Bangladesh
| |
Collapse
|
8
|
Fu R, Chen C, Wang J, Liu Y, Zhao L, Lu D. Diversity Analysis of the Rice False Smut Pathogen Ustilaginoidea virens in Southwest China. J Fungi (Basel) 2022; 8:1204. [PMID: 36422026 PMCID: PMC9694781 DOI: 10.3390/jof8111204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 04/10/2024] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is a destructive disease in rice cropping areas of the world. The present study is focused on the morphology, pathogenicity, mating-type loci distribution, and genetic characterization of different isolates of U. virens. A total of 221 strains of U. virens were collected from 13 rice-growing regions in southwest China. The morphological features of these strains exhibited high diversity, and the pathogenicity of the smut fungus showed significant differentiation. There was no correlation between pathogenicity and sporulation. Mating-type locus (MAT) analysis revealed that all 221 isolates comprised heterothallic and homothallic forms, wherein 204 (92.31%) and 17 (7.69%) isolates belonged to heterothallic and homothallic mating types, respectively. Among 204 strains of heterothallic mating types, 62 (28.05%) contained MAT1-1-1 idiomorphs, and 142 isolates (64.25%) had the MAT1-2-1 idiomorph. Interestingly, strains isolated from the same fungus ball had different mating types. The genetic structure of the isolates was analyzed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs). All isolates were clustered into five genetic groups. The values of Nei's gene diversity (H) and Shannon's information index (I) indicated that all strains as a group had higher genetic diversity than strains from a single geographical population. The pairwise population fixation index (FST) values also indicated significant genetic differentiation among all compared geographical populations. The analysis of molecular variation (AMOVA) indicated greater genetic variation within individual populations and less genetic variation among populations. The results showed that most of the strains were not clustered according to their geographical origin, showing the rich genetic diversity and the complex and diverse genetic background of U. virens in southwest China. These results should help to better understand the biological and genetic diversity of U. virens in southwest China and provide a theoretical basis for building effective management strategies.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
9
|
Tan Z, Bai Z, Qin Y, Du J, Zhang R, Tian B, Yang Y, Yu Y, Bi C, Sun W, Fang A. Characterization of Genetic Diversity and Variation in Pathogenicity of the Rice False Smut Pathogen Ustilaginoidea virens from a Single Source. PLANT DISEASE 2022; 106:2648-2655. [PMID: 35394330 DOI: 10.1094/pdis-11-21-2546-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice false smut, caused by Ustilaginoidea virens, is one of the most destructive fungal diseases in rice-growing countries. Studies of the genetic diversity, evolution, and pathogenicity of U. virens can provide more information for disease control and cultivar breeding. Contrary to previous studies on the genetic diversity of different geographical populations of U. virens, this study analyzed the genetic variation of U. virens from different panicles of the same rice cultivar in a field in Yunnan Province using single nucleotide polymorphism molecular markers. A total of 183 polymorphic loci and five haplotypes, hap_1 to hap_5, were identified based on the 1,350-bp combined DNA fragment of 127 isolates, showing some genetic diversity. Hap_1 and hap_3 had the highest occurrence, indicating they were the dominant haplotypes in the field. Further analysis showed that most rice panicles could be coinfected by different haplotypes, and even a few spikelets could be coinfected by multiple haplotypes. The phylogeny indicated that all isolates were divided into five genetic groups. Groups I, II, and III clustered together and were distinguished from Groups IV and V. Significant genetic variations in five pairwise comparisons of panicle populations, accounting for 72.45% of the total variation, were found according to FST values. This variation might be caused by different field microenvironments and the uneven distribution of inoculum sources. An unweighted pair-group method with arithmetic means dendrogram and the population structure revealed that the genetic composition of the isolates collected from YN1, YN2, and YN4, which were dominated by the same genetic subgroup, was different from that collected from YN3. Finally, genetic recombination was found in 11 isolates; hap_2 and hap_5, probably as genetic recombination progenies produced by sexual hybridization between hap_1 and hap_3, acquired a greater virulence than their ancestors according to population structure and pathogenicity analyses. These results will help us understand the genetic diversity, evolution, and infection process of U. virens and aid in the development of more effective management strategies for rice false smut, including new cultivars with improved resistance.
Collapse
Affiliation(s)
- Ze Tan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhenxu Bai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yubao Qin
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jianhang Du
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ruixuan Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Hu J, Liu M, Zhang A, Dai Y, Chen W, Chen F, Wang W, Shen D, Telebanco-Yanoria MJ, Ren B, Zhang H, Zhou H, Zhou B, Wang P, Zhang Z. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity. MOLECULAR PLANT 2022; 15:1347-1366. [PMID: 35799449 PMCID: PMC11163382 DOI: 10.1016/j.molp.2022.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Apoplastic ascorbate oxidases (AOs) play a critical role in reactive oxygen species (ROS)-mediated innate host immunity by regulating the apoplast redox state. To date, little is known about how apoplastic effectors of the rice blast fungus Magnaporthe oryzae modulate the apoplast redox state of rice to subvert plant immunity. In this study, we demonstrated that M. oryzae MoAo1 is an AO that plays a role in virulence by modulating the apoplast redox status of rice cells. We showed that MoAo1 inhibits the activity of rice OsAO3 and OsAO4, which also regulate the apoplast redox status and plant immunity. In addition, we found that MoAo1, OsAO3, and OsAO4 all exhibit polymorphic variations whose varied interactions orchestrate pathogen virulence and rice immunity. Taken together, our results reveal a critical role for extracellular redox enzymes during rice blast infection and shed light on the importance of the apoplast redox state and its regulation in plant-pathogen interactions.
Collapse
Affiliation(s)
- Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ao Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Dai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Weizhong Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Fang Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenya Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | | | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
11
|
Khanal S, Antony-Babu S, Gaire SP, Zhou XG. Multi-Locus Sequence Analysis Reveals Diversity of the Rice Kernel Smut Populations in the United States. Front Microbiol 2022; 13:874120. [PMID: 35602055 PMCID: PMC9116506 DOI: 10.3389/fmicb.2022.874120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
Rice (Oryza sativa) is the second leading cereal crop in the world and is one of the most important field crops in the US, valued at approximately $2.5 billion. Kernel smut (Tilletia horrida Tak.), once considered as a minor disease, is now an emerging economically important disease in the US. In this study, we used multi-locus sequence analysis to investigate the genetic diversity of 63 isolates of T. horrida collected from various rice-growing areas across in the US. Three different phylogeny analyses (maximum likelihood, neighbor-joining, and minimum evolution) were conducted based on the gene sequence sets, consisting of all four genes concatenated together, two rRNA regions concatenated together, and only ITS region sequences. The results of multi-gene analyses revealed the presence of four clades in the US populations, with 59% of the isolates clustering together. The populations collected from Mississippi and Louisiana were found to be the most diverse, whereas the populations from Arkansas and California were the least diverse. Similarly, ITS region-based analysis revealed that there were three clades in the T. horrida populations, with a majority (76%) of the isolates clustering together along with the 22 Tilletia spp. from eight different countries (Australia, China, India, Korea, Pakistan, Taiwan, The US, and Vietnam) that were grouped together. Two of the three clades in the ITS region-based phylogeny consisted of the isolates reported from multiple countries, suggesting potential multiple entries of T. horrida into the US. This is the first multi-locus analysis of T. horrida populations. The results will help develop effective management strategies, especially breeding for resistant cultivars, for the control of kernel smut in rice.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Shankar P Gaire
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| |
Collapse
|
12
|
Chittaragi A, Pramesh D, Naik GR, Naik MK, Yadav MK, Ngangkham U, Siddepalli ME, Nayak A, Prasannakumar MK, Eranna C. Multilocus sequence analysis and identification of mating-type idiomorphs distribution in Magnaporthe oryzae population of Karnataka state of India. J Appl Microbiol 2022; 132:4413-4429. [PMID: 35332630 DOI: 10.1111/jam.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the genetic diversity, population structure, and mating-type distribution among the eco-distinct isolates of Magnaporthe oryzae from Karnataka, India. METHODS AND RESULTS A set of 38 isolates of M. oryzae associated with leaf blast disease of rice were collected from different rice ecosystems of Karnataka, India, and analyzed for their diversity at actin, β-tubulin, calmodulin, translation elongation factor 1-α (TEF-1-α), and internal transcribed spacer (ITS) genes/region. The isolates were grouped into two clusters based on the multilocus sequence diversity, the majority being in cluster-IA (n=37), and only one isolate formed cluster-IB. Population structure was analyzed using 123 SNP data to understand the genetic relationship. Based on K=2 and ancestry threshold of >70%, blast strains were classified into two subgroups (SG1 and SG2) whereas, based on K=4 and ancestry threshold of >70%, blast strains were classified into four subgroups (SG1, SG2, SG3, and SG4). We have identified 13 haplotype groups where haplotype-group-2 was predominant (n=20) in the population. The Tajima's and Fu's Fs neutrality tests exhibited many rare alleles. Further, the mating-type analysis was also performed using MAT1 gene-specific primers to find the potentiality of sexual reproduction in different ecosystems. The majority of the isolates (54.5%) had MAT1-2 idiomorph, whereas 45.5 per cent of the isolates possessed MAT1-1 idiomorph. CONCLUSIONS The present study found the genetically homogenous population of M. oryzae by multilocus sequence analysis. Both mating types, MAT1-1 and MAT1-2, were found within the M. oryzae population of Karnataka. SIGNIFICANCE AND IMPACT OF STUDY The study on the population structure and sexual mating behavior of M. oryzae is important in developing region-specific blast-resistant rice cultivars. This is the first report of MAT1 idiomorphs distribution in the M. oryzae population in any Southern state of India.
Collapse
Affiliation(s)
- Amoghavarsha Chittaragi
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India.,Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Karnataka, India
| | - Devanna Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Karnataka, India
| | - Ganesha R Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Manjunath K Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Manoj K Yadav
- ICAR-National Rice Research Institute, Cuttack, India
| | - Umakanta Ngangkham
- ICAR-Research Complex for North-Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Manjunatha E Siddepalli
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Karnataka, India
| | - Anusha Nayak
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Karnataka, India
| | - M K Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - Chidanandappa Eranna
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Karnataka, India
| |
Collapse
|
13
|
Pendergast TH, Qi P, Odeny DA, Dida MM, Devos KM. A high-density linkage map of finger millet provides QTL for blast resistance and other agronomic traits. THE PLANT GENOME 2022; 15:e20175. [PMID: 34904374 DOI: 10.1002/tpg2.20175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Finger millet [Eleusine coracana (L.) Gaertn.] is a critical subsistence crop in eastern Africa and southern Asia but has few genomic resources and modern breeding programs. To aid in the understanding of finger millet genomic organization and genes underlying disease resistance and agronomically important traits, we generated a F2:3 population from a cross between E. coracana (L.) Gaertn. subsp. coracana accession ACC 100007 and E. coracana (L.) Gaertn. subsp. africana , accession GBK 030647. Phenotypic data on morphology, yield, and blast (Magnaporthe oryzae) resistance traits were taken on a subset of the F2:3 population in a Kenyan field trial. The F2:3 population was genotyped via genotyping-by-sequencing (GBS) and the UGbS-Flex pipeline was used for sequence alignment, nucleotide polymorphism calling, and genetic map construction. An 18-linkage-group genetic map consisting of 5,422 markers was generated that enabled comparative genomic analyses with rice (Oryza sativa L.), foxtail millet [Setaria italica (L.) P. Beauv.], and sorghum [Sorghum bicolor (L.) Moench]. Notably, we identified conserved acrocentric homoeologous chromosomes (4A and 4B in finger millet) across all species. Significant quantitative trait loci (QTL) were discovered for flowering date, plant height, panicle number, and blast incidence and severity. Sixteen putative candidate genes that may underlie trait variation were identified. Seven LEUCINE-RICH REPEAT-CONTAINING PROTEIN genes, with homology to nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance proteins, were found on three chromosomes under blast resistance QTL. This high-marker-density genetic map provides an important tool for plant breeding programs and identifies genomic regions and genes of critical interest for agronomic traits and blast resistance.
Collapse
Affiliation(s)
- Thomas H Pendergast
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Peng Qi
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics-Eastern and Southern Africa, Nairobi, Kenya
| | - Mathews M Dida
- Dep. of Applied Sciences, Maseno Univ., Private Bag-40105, Maseno, Kenya
| | - Katrien M Devos
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
Fang A, Fu Z, Wang Z, Fu Y, Qin Y, Bai Z, Tan Z, Cai J, Yang Y, Yu Y, Sun W, Bi C. Genetic Diversity and Population Structure of the Rice False Smut Pathogen Ustilaginoidea virens in the Sichuan-Chongqing Region. PLANT DISEASE 2022; 106:93-100. [PMID: 34340563 DOI: 10.1094/pdis-04-21-0750-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most devastating fungal diseases of rice panicles worldwide. In this study, two novel molecular markers derived from single nucleotide polymorphism-rich genomic DNA fragments and a previously reported molecular marker were used for analyzing the genetic diversity and population structure of 167 U. virens isolates collected from nine areas in the Sichuan-Chongqing region, China. A total of 62 haplotypes were identified, and a few haplotypes with high frequency were found and distributed in two to three areas, suggesting gene flow among different geographical populations. All isolates were divided into six genetic groups. Groups I and VI were the largest, with 61 and 48 isolates, respectively. The pairwise FST values showed significant genetic differentiation among all compared geographical populations. Analysis of molecular variance showed that intergroup genetic variation accounted for 40.17% of the total genetic variation, while 59.83% of genetic variation came from intragroup genetic variation. The unweighted pair-group method with arithmetic means dendrogram and population structure revealed that the genetic composition of isolates collected from Santai, Nanchong, Yongchuan, and Wansheng dominated by the same genetic subgroup was different from those collected from other areas. In addition, genetic recombination was found in a few isolates. These findings will help to improve the strategies for rice false smut management and resistance breeding, such as evaluating breeding lines with different isolates or haplotypes at different elevations and landforms.
Collapse
Affiliation(s)
- Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhuangyuan Fu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zexiong Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuhang Fu
- Sericulture Station of Chongqing, Chongqing 400020, China
| | - Yubao Qin
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zhenxu Bai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ze Tan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Junsong Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Sheoran N, Ganesan P, Mughal NM, Yadav IS, Kumar A. Genome assisted molecular typing and pathotyping of rice blast pathogen, Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity. Fungal Biol 2021; 125:733-747. [PMID: 34420700 DOI: 10.1016/j.funbio.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Genome sequence-driven molecular typing tools have the potential to uncover the population biology and genetic diversity of rapidly evolving plant pathogens like Magnaporthe oryzae. Here, we report a new molecular typing technique -a digitally portable tool for population genetic analysis of M. oryzae to decipher the genetic diversity. Our genotyping tool exploiting allelic variations in housekeeping and virulence genes coupled with pathotyping revealed a prevalence of genetically homogenous populations within a single-field and plant niches such as leaf and panicle. The M. oryzae inciting leaf-blast and panicle-blast were confirmed to be genetically identical with no or minor nucleotide polymorphism in 17 genomic loci analyzed. Genetic loci such as Mlc1, Mpg1, Mps1, Slp1, Cal, Ef-Tu, Pfk, and Pgk were highly polymorphic as indicated by the haplotype-diversity, the number of polymorphic sites, and the number of mutations. The genetically homogenous single field population showed high virulence variability or diversity on monogenic rice differentials. The study indicated that the genetic similarity displayed by the isolates collected from a particular geographical location had no consequence on their virulence pattern on rice differentials carrying single/multiple resistance genes. The data on virulence diversity showed by the identical Sequence Types (STs) is indicative of no congruence between polymorphic virulence genes-based pathotyping and conserved housekeeping genes-based genotyping.
Collapse
Affiliation(s)
- Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Najeeb M Mughal
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, India.
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
16
|
Singh PK, Gahtyari NC, Roy C, Roy KK, He X, Tembo B, Xu K, Juliana P, Sonder K, Kabir MR, Chawade A. Wheat Blast: A Disease Spreading by Intercontinental Jumps and Its Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:710707. [PMID: 34367228 PMCID: PMC8343232 DOI: 10.3389/fpls.2021.710707] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 05/26/2023]
Abstract
Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.
Collapse
Affiliation(s)
- Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Navin C. Gahtyari
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India
| | - Chandan Roy
- Department of Plant Breeding and Genetics, BAC, Bihar Agricultural University, Sabour, India
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - B. Tembo
- Zambia Agricultural Research Institute (ZARI), Chilanga, Zambia
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
17
|
Du Y, Qi Z, Liang D, Yu J, Yu M, Zhang R, Cao H, Yong M, Pan X, Yin X, Qiao J, Liu Y, Chen Z, Song T, Liu W, Zhang Z, Liu Y. Pyricularia sp. jiangsuensis, a new cryptic rice panicle blast pathogen from rice fields in Jiangsu Province, China. Environ Microbiol 2021; 23:5463-5480. [PMID: 34288342 DOI: 10.1111/1462-2920.15678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Pyricularia oryzae is a multi-host pathogen causing cereal disease, including the devastating rice blast. Panicle blast is a serious stage, leading to severe yield loss. Thirty-one isolates (average 4.1%) were collected from the rice panicle lesions at nine locations covering Jiangsu province from 2010 to 2017. These isolates were characterized as Pyricularia sp. jiangsuensis distinct from known Pyricularia species. The representative strain 18-2 can infect rice panicle, root and five kinds of grasses. Intriguingly, strain 18-2 can co-infect rice leaf with P. oryzae Guy11. The whole genome of P. sp. jiangsuensis 18-2 was sequenced. Nine effectors were distributed in translocation or inversion region, which may link to the rapid evolution of effectors. Twenty-one homologues of known blast-effectors were identified in strain 18-2, seven effectors including the homologues of SLP1, BAS2, BAS113, CDIP2/3, MoHEG16 and Avr-Pi54, were upregulated in the sample of inoculated panicle with strain 18-2 at 24 hpi compared with inoculation at 8 hpi. Our results provide evidences that P. sp. jiangsuensis represents an addition to the mycobiota of blast disease. This study advances our understanding of the pathogenicity of P. sp. jiangsuensis to hosts, which sheds new light on the adaptability in the co-evolution of pathogen and host.
Collapse
Affiliation(s)
- Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dong Liang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wende Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,International Rice Research Institute, Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, 210014, China
| |
Collapse
|
18
|
Hosahatti R, Jeevan B, Mishra KK, Subbanna ARNS, Kant L. Blast Disease: Historical Importance, Distribution, and Host Infectivity Across Cereal Crops. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wang Q, Li J, Lu L, He C, Li C. Novel Variation and Evolution of AvrPiz-t of Magnaporthe oryzae in Field Isolates. Front Genet 2020; 11:746. [PMID: 33005166 PMCID: PMC7484972 DOI: 10.3389/fgene.2020.00746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
The product of the avirulence (Avr) gene of Magnaporthe oryzae can be detected by the product of the corresponding resistance (R) gene of rice and activates immunity to rice mediated by the R gene. The high degree of variability of M. oryzae isolates in pathogenicity makes the control of rice blast difficult. That resistance of the R gene in rice has been lost has been ascribed to the instability of the Avr gene in M. oryzae. Further study on the variation of the Avr genes in M. oryze field isolates may yield valuable information on the durable and effective deployment of R genes in rice production areas. AvrPiz-t and Piz-t are a pair of valuable genes in the Rice-Magnaporthe pathosystem. AvrPiz-t is detectable by Piz-t and determines the effectiveness of Piz-t. To effectively deploy the R gene Piz-t, the distribution, variation, and evolution of the corresponding Avr gene AvrPiz-t were found among 312 M. oryzae isolates collected from Yunnan rice production areas of China. PCR amplification and pathogenicity assays of AvrPiz-t showed that 202 isolates (64.7%) held AvrPiz-t alleles and were avirulent to IRBLzt-T (holding Piz-t). There were 42.3–83.3% avirulent isolates containing AvrPiz-t among seven regions in Yunnan Province. Meanwhile, 11 haplotypes of AvrPiz-t encoding three novel AvrPiz-t variants were identified among 100 isolates. A 198 bps insertion homologous to solo-LTR of the retrotransposon inago2 in the promoter region of AvrPiz-t in one isolate and a frameshift mutation of CDS in another isolate were identified among 100 isolates, and those two isolates had evolved to virulent from avirulent. Synonymous mutation and non-AUG-initiated N-terminal extensions keeps the AvrPiz-t gene avirulence function in M. oryzae field isolates in Yunnan. A haplotype network showed that H3 was an ancestral haplotype. Structure variance for absence (28.2%) or partial fragment loss (71.8%) of AvrPiz-t was found among 39 virulent isolates and may cause the AvrPiz-t avirulence function to be lost. Overall, AvrPiz-t evolved to virulent from avirulent forms via point mutation, retrotransposon, shift mutation, and structure variance under field conditions.
Collapse
Affiliation(s)
- Qun Wang
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinbin Li
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengxing He
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Chung H, Goh J, Han SS, Roh JH, Kim Y, Heu S, Shim HK, Jeong DG, Kang IJ, Yang JW. Comparative Pathogenicity and Host Ranges of Magnaporthe oryzae and Related Species. THE PLANT PATHOLOGY JOURNAL 2020; 36:305-313. [PMID: 32788889 PMCID: PMC7403518 DOI: 10.5423/ppj.ft.04.2020.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Host shifting and host expansion of fungal plant pathogens increases the rate of emergence of new pathogens and the incidence of disease in various crops, which threaten global food security. Magnaporthe species cause serious disease in rice, namely rice blast disease, as well as in many alternative hosts, including wheat, barley, and millet. A severe outbreak of wheat blast due to Magnaporthe oryzae occurred recently in Bangladesh, after the fungus was introduced from South America, causing great loss of yield. This outbreak of wheat blast is of growing concern, because it might spread to adjacent wheat-producing areas. Therefore, it is important to understand the host range and population structure of M. oryzae and related species for determining the evolutionary relationships among Magnaporthe species and for managing blast disease in the field. Here, we collected isolates of M. oryzae and related species from various Poaceae species, including crops and weeds surrounding rice fields, in Korea and determined their phylogenetic relationships and host species specificity. Internal transcribed spacer-mediated phylogenetic analysis revealed that M. oryzae and related species are classified into four groups primarily including isolates from rice, crabgrass, millet and tall fescue. Based on pathogenicity assays, M. oryzae and related species can infect different Poaceae hosts and move among hosts, suggesting the potential for host shifting and host expansion in nature. These results provide important information on the diversification of M. oryzae and related species with a broad range of Poaceae as hosts in crop fields.
Collapse
Affiliation(s)
- Hyunjung Chung
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jaeduk Goh
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Seong-Sook Han
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jae-Hwan Roh
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Korea
| | - Yangseon Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Hyeong-Kwon Shim
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Da Gyeong Jeong
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - In Jeong Kang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jung-Wook Yang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|
21
|
Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH. Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Front Microbiol 2019; 10:2575. [PMID: 31781071 PMCID: PMC6851232 DOI: 10.3389/fmicb.2019.02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Magnaporthe oryzae infects rice, wheat, and many grass species in the Poaceae family by secreting protein effectors. Here, we analyzed the distribution, sequence variation, and genomic context of effector candidate (EFC) genes in 31 isolates that represent five pathotypes of M. oryzae, three isolates of M. grisea, a sister species of M. oryzae, and one strain each for eight species in the family Magnaporthaceae to investigate how the host range expansion of M. oryzae has likely affected the evolution of effectors. We used the EFC genes of M. oryzae strain 70-15, whose genome has served as a reference for many comparative genomics analyses, to identify their homologs in these strains. We also analyzed the previously characterized avirulence (AVR) genes and single-copy orthologous (SCO) genes in these strains, which showed that the EFC and AVR genes evolved faster than the SCO genes. The EFC and AVR repertoires among M. oryzae pathotypes varied widely probably because adaptation to individual hosts exerted different types of selection pressure. Repetitive DNA elements appeared to have caused the variation of some EFC genes. Lastly, we analyzed expression patterns of the AVR and EFC genes to test the hypothesis that such genes are preferentially expressed during host infection. This comprehensive dataset serves as a foundation for future studies on the genetic basis of the evolution and host specialization in M. oryzae.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA, United States
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Aucique‐Pérez CE, Moreira SI, Croll D, Alves E, de Carvalho G, Maciel JLN, McDonald BA. Wheat blast: from its origins in South America to its emergence as a global threat. MOLECULAR PLANT PATHOLOGY 2019; 20:155-172. [PMID: 30187616 PMCID: PMC6637873 DOI: 10.1111/mpp.12747] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat blast was first reported in Brazil in 1985. It spread rapidly across the wheat cropping areas of Brazil to become the most important biotic constraint on wheat production in the region. The alarming appearance of wheat blast in Bangladesh in 2016 greatly increased the urgency to understand this disease, including its causes and consequences. Here, we summarize the current state of knowledge of wheat blast and aim to identify the most important gaps in our understanding of the disease. We also propose a research agenda that aims to improve the management of wheat blast and limit its threat to global wheat production.
Collapse
Affiliation(s)
- Paulo Cezar Ceresini
- Department of Crop Protection, Agricultural Engineering, and SoilsUNESP University of São Paulo StateIlha Solteira CampusSão PauloBrazil15385-000
| | - Vanina Lilián Castroagudín
- Department of Crop Protection, Agricultural Engineering, and SoilsUNESP University of São Paulo StateIlha Solteira CampusSão PauloBrazil15385-000
- Present address:
Department of Plant PathologyUniversity of ArkansasARUSA
| | - Fabrício Ávila Rodrigues
- Department of Plant Pathology, Lab. of Host‐Parasite InteractionUFV Federal University of ViçosaViçosaMinas GeraisBrazil36570-000
| | - Jonas Alberto Rios
- Department of Plant Pathology, Lab. of Host‐Parasite InteractionUFV Federal University of ViçosaViçosaMinas GeraisBrazil36570-000
| | - Carlos Eduardo Aucique‐Pérez
- Department of Plant Pathology, Lab. of Host‐Parasite InteractionUFV Federal University of ViçosaViçosaMinas GeraisBrazil36570-000
| | - Silvino Intra Moreira
- Department of Plant PathologyUFLA Federal University of LavrasLavrasMinas GeraisBrazil37200-000
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerlandCH-2000
| | - Eduardo Alves
- Department of Plant PathologyUFLA Federal University of LavrasLavrasMinas GeraisBrazil37200-000
| | - Giselle de Carvalho
- Department of Crop Protection, Agricultural Engineering, and SoilsUNESP University of São Paulo StateIlha Solteira CampusSão PauloBrazil15385-000
| | - João Leodato Nunes Maciel
- Brazilian Agriculture Research Corporation, Embrapa Wheat (Embrapa Trigo)Passo FundoRio Grande do SulBrazil99050-970
| | - Bruce Alan McDonald
- Plant Pathology Group, Institute of Integrative BiologySwiss Federal Institute of Technology, ETH ZurichZurichSwitzerlandCH-8092
| |
Collapse
|
23
|
Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Eduardo Aucique-Pérez C, Moreira SI, Alves E, Croll D, Maciel JLN. Wheat Blast: Past, Present, and Future. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:427-456. [PMID: 29975608 DOI: 10.1146/annurev-phyto-080417-050036] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The devastating wheat blast disease first emerged in Brazil in 1985. The disease was restricted to South America until 2016, when a series of grain imports from Brazil led to a wheat blast outbreak in Bangladesh. Wheat blast is caused by Pyricularia graminis-tritici ( Pygt), a species genetically distinct from the Pyricularia oryzae species that causes rice blast. Pygt has high genetic and phenotypic diversity and a broad host range that enables it to move back and forth between wheat and other grass hosts. Recombination is thought to occur mainly on the other grass hosts, giving rise to the highly diverse Pygt population observed in wheat fields. This review brings together past and current knowledge about the history, etiology, epidemiology, physiology, and genetics of wheat blast and discusses the future need for integrated management strategies. The most urgent current need is to strengthen quarantine and biosafety regulations to avoid additional spread of the pathogen to disease-free countries. International breeding efforts will be needed to develop wheat varieties with more durable resistance.
Collapse
Affiliation(s)
- Paulo Cezar Ceresini
- Department of Crop Protection, Agricultural Engineering, and Soils, São Paulo State University, 15385-000, Ilha Solteira, São Paulo, Brazil;
| | - Vanina Lilián Castroagudín
- Department of Crop Protection, Agricultural Engineering, and Soils, São Paulo State University, 15385-000, Ilha Solteira, São Paulo, Brazil;
| | - Fabrício Ávila Rodrigues
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jonas Alberto Rios
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Carlos Eduardo Aucique-Pérez
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Silvino Intra Moreira
- Department of Plant Pathology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - João Leodato Nunes Maciel
- Embrapa Wheat (Embrapa Trigo), Brazilian Agricultural Research Corporation, Passo 99050-970, Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Ortega SF, Tomlinson J, Hodgetts J, Spadaro D, Gullino ML, Boonham N. Development of Loop-Mediated Isothermal Amplification Assays for the Detection of Seedborne Fungal Pathogens Fusarium fujikuroi and Magnaporthe oryzae in Rice Seed. PLANT DISEASE 2018; 102:1549-1558. [PMID: 30673431 DOI: 10.1094/pdis-08-17-1307-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bakanae disease (caused by Fusarium fujikuroi) and rice blast (caused by Magnaporthe oryzae) are two of the most important seedborne pathogens of rice. The detection of both pathogens in rice seed is necessary to maintain high quality standards and avoid production losses. Currently, blotter tests are used followed by morphological identification of the developing pathogens to provide an incidence of infection in seed lots. Two loop-mediated isothermal amplification assays were developed with primers designed to target the elongation factor 1-α sequence of F. fujikuroi and the calmodulin sequence of M. oryzae. The specificity, sensitivity, selectivity, repeatability, and reproducibility for each assay was assessed in line with the international validation standard published by the European and Mediterranean Plant Protection Organization (PM7/98). The results showed a limit of detection of 100 to 999 fg of DNA of F. fujikuroi and 10 to 99 pg of M. oryzae DNA. When combined with a commercial DNA extraction kit, the assays were demonstrated to be effective for use in detection of the pathogens in commercial batches of infected rice seed of different cultivars, giving results equivalent to the blotter method, thus demonstrating the reliability of the method for the surveillance of F. fujikuroi and M. oryzae in seed-testing laboratories.
Collapse
Affiliation(s)
- Sara Franco Ortega
- Centre of Competence for the Innovation in the Agro-Environmental Sector-Agroinnova, and Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Turin, I-10095 Grugliasco, TO, Italy
| | | | | | - Davide Spadaro
- Centre of Competence for the Innovation in the Agro-environmental Sector-Agroinnova, and DiSAFA, University of Turin
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-environmental Sector-Agroinnova, and DiSAFA, University of Turin
| | - Neil Boonham
- FERA, and IAFRI, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
25
|
Fang WW, Liu CC, Zhang HW, Xu H, Zhou S, Fang KX, Peng YL, Zhao WS. Selection of Differential Isolates of Magnaporthe oryzae for Postulation of Blast Resistance Genes. PHYTOPATHOLOGY 2018; 108:878-884. [PMID: 29384446 DOI: 10.1094/phyto-09-17-0333-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A set of differential isolates of Magnaporthe oryzae is needed for the postulation of blast resistance genes in numerous rice varieties and breeding materials. In this study, the pathotypes of 1,377 M. oryzae isolates from different regions of China were determined by inoculating detached rice leaves of 24 monogenic lines. Among them, 25 isolates were selected as differential isolates based on the following characteristics: they had distinct responses on the monogenic lines, contained the minimum number of avirulence genes, were stable in pathogenicity and conidiation during consecutive culture, were consistent colony growth rate, and, together, could differentiate combinations of the 24 major blast resistance genes. Seedlings of rice cultivars were inoculated with this differential set of isolates to postulate whether they contain 1 or more than 1 of the 24 blast resistance genes. The results were consistent with those from polymerase chain reaction analysis of target resistance genes. Establishment of a standard set of differential isolates will facilitate breeding for blast resistance and improved management of rice blast disease.
Collapse
Affiliation(s)
- W W Fang
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - C C Liu
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - H W Zhang
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - H Xu
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - S Zhou
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - K X Fang
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Y L Peng
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - W S Zhao
- First, second, third, fifth, sixth, seventh, and eighth authors: State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China; and fourth author: Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
26
|
Liang Y, Han Y, Wang C, Jiang C, Xu JR. Targeted Deletion of the USTA and UvSLT2 Genes Efficiently in Ustilaginoidea virens With the CRISPR-Cas9 System. FRONTIERS IN PLANT SCIENCE 2018; 9:699. [PMID: 29881395 PMCID: PMC5976777 DOI: 10.3389/fpls.2018.00699] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 05/21/2023]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, one of the major fungal diseases of rice. However, there are only limited molecular studies with this important pathogen due to the lack of efficient approaches for generating targeted gene disruption mutants. In this study, we used the CRISPR-Cas9 system to efficiently generate mutants deleted of the USTA ustiloxin and UvSLT2 MAP kinase genes. Three gRNA spacers of USTA, UA01, UA13, and UA21, were expressed with the RNAP III promoter of Gln-tRNA. For all of them, the homologous gene replacement frequency was higher when the Cas9 and gRNA constructs were transformed into U. virens on the same vector than sequentially. UA01, the spacer with the highest on-target score, had the highest knockout frequency of 90%, which was over 200 times higher than that of Agrobacterium tumefaciens-mediated transformation (ATMT) for generating ustA mutants. None of these USTA spacers had predicted off-targets with 1 or 2-nt variations. For predicted off-targets with 3 or 4-nt variations, mutations were not detected in 10 ustA mutants generated with spacer UA13 or UA21, indicating a relatively low frequency of off-target mutations in U. virens. For UvSLT2, the homologous gene replacement frequency was 50% with CRISPR-Cas9, which also was significantly higher than that of ATMT. Whereas ustA mutants had no detectable phenotypes, Uvslt2 mutants were slightly reduced in growth rate and reduced over 70% in conidiation. Deletion of UvSLT2 also increased sensitivity to cell wall stresses but tolerance to hyperosmotic or oxidative stresses. Taken together, our results showed that the CRISPR-Cas9 system can be used as an efficient gene replacement or editing approach in U. virens and the UvSlt2 MAP kinase pathway has a conserved role in cell wall integrity.
Collapse
Affiliation(s)
- Yafeng Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Jin-Rong Xu,
| |
Collapse
|
27
|
|
28
|
Sadat MA, Choi J. Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production. THE PLANT PATHOLOGY JOURNAL 2017; 33:103-108. [PMID: 28381956 PMCID: PMC5378430 DOI: 10.5423/ppj.rw.09.2016.0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 05/11/2023]
Abstract
World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world's largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time.
Collapse
Affiliation(s)
| | - Jaehyuk Choi
- Corresponding author: Phone) +82-32-835-8242, FAX) +82-32-835-0754, E-mail)
| |
Collapse
|
29
|
Shamim M, Kumar P, Kumar RR, Kumar M, Kumar RR, Singh KN. Assessing Fungal Biodiversity Using Molecular Markers. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale. Appl Environ Microbiol 2016; 82:6317-6325. [PMID: 27542936 DOI: 10.1128/aem.01708-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 01/17/2023] Open
Abstract
Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species.
Collapse
|
31
|
Shirke MD, Mahesh HB, Gowda M. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements. PLoS One 2016; 11:e0162458. [PMID: 27658241 PMCID: PMC5033516 DOI: 10.1371/journal.pone.0162458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck), finger millet (leaf and neck), foxtail millet (leaf) and buffel grass (leaf). Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors.
Collapse
Affiliation(s)
- Meghana Deepak Shirke
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru-560065, India
- Manipal University, Manipal-576104, India
| | - H. B. Mahesh
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru-560065, India
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru- 560065, India
| | - Malali Gowda
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru-560065, India
- Genomics Discovery Program, School of Conservation, Life Science and Health Sciences, TransDisciplinary University, Foundation of Revitalization of Local Health Traditions, Bengaluru- 560064, India
- * E-mail:
| |
Collapse
|
32
|
Zhang H, Zheng X, Zhang Z. The Magnaporthe grisea species complex and plant pathogenesis. MOLECULAR PLANT PATHOLOGY 2016; 17:796-804. [PMID: 26575082 PMCID: PMC6638432 DOI: 10.1111/mpp.12342] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Magnaporthales; Family Pyriculariaceae (anamorph)/Magnaporthaceae (teleomorph); Genus Pyricularia (anamorph)/Magnaporthe (teleomorph); Species P. grisea (anamorph)/M. grisea (teleomorph). HOST RANGE Very broad at the species level, including rice, wheat, barley, millet and other species of the Poaceae (Gramineae). DISEASE SYMPTOMS Can be found on all parts of the plant, including leaves, leaf collars, necks, panicles, pedicels, seeds and even the roots. Initial symptoms are white to grey-green lesions or spots with darker borders, whereas older lesions are elliptical or spindle-shaped and whitish to grey with necrotic borders. Lesions may enlarge and coalesce to eventually destroy the entire leaf. DISEASE CONTROL Includes cultural strategies, genetic resistance and the application of chemical fungicides. GEOGRAPHICAL DISTRIBUTION Widespread throughout the rice-growing regions of the globe and has been reported in more than 85 countries. GENOMIC STRUCTURE Different isolates possess similar genomic sizes and overall genomic structures. For the laboratory strain 70-15: assembly size, 40.98 Mb; number of chromosomes, seven; number of predicted genes, 13 032; G + C composition, 51.6%; average gene contains 451.6 amino acids; mitochondrion genome size, 34.87 kb. USEFUL WEBSITE http://www.broadinstitute.org/annotation/genome/magnaporthe_comparative/MultiHome.html.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
33
|
Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Persoonia - Molecular Phylogeny and Evolution of Fungi 2016; 37:199-216. [PMID: 28232765 PMCID: PMC5315288 DOI: 10.3767/003158516x692149] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/08/2016] [Indexed: 11/26/2022]
Abstract
Pyricularia oryzae is a species complex that causes blast disease on more than 50 species of poaceous plants. Pyricularia oryzae has a worldwide distribution as a rice pathogen and in the last 30 years emerged as an important wheat pathogen in southern Brazil. We conducted phylogenetic analyses using 10 housekeeping loci for 128 isolates of P. oryzae sampled from sympatric populations of wheat, rice, and grasses growing in or near wheat fields. Phylogenetic analyses grouped the isolates into three major clades. Clade 1 comprised isolates associated only with rice and corresponds to the previously described rice blast pathogen P. oryzae pathotype Oryza (PoO). Clade 2 comprised isolates associated almost exclusively with wheat and corresponds to the previously described wheat blast pathogen P. oryzae pathotype Triticum (PoT). Clade 3 contained isolates obtained from wheat as well as other Poaceae hosts. We found that Clade 3 is distinct from P. oryzae and represents a new species, Pyricularia graminis-tritici (Pgt). No morphological differences were observed among these species, but a distinctive pathogenicity spectrum was observed. Pgt and PoT were pathogenic and highly aggressive on Triticum aestivum (wheat), Hordeum vulgare (barley), Urochloa brizantha (signal grass), and Avena sativa (oats). PoO was highly virulent on the original rice host (Oryza sativa), and also on wheat, barley, and oats, but not on signal grass. We conclude that blast disease on wheat and its associated Poaceae hosts in Brazil is caused by multiple Pyricularia species. Pyricularia graminis-tritici was recently found causing wheat blast in Bangladesh. This indicates that P. graminis-tritici represents a serious threat to wheat cultivation globally.
Collapse
|
34
|
Zhong Z, Norvienyeku J, Chen M, Bao J, Lin L, Chen L, Lin Y, Wu X, Cai Z, Zhang Q, Lin X, Hong Y, Huang J, Xu L, Zhang H, Chen L, Tang W, Zheng H, Chen X, Wang Y, Lian B, Zhang L, Tang H, Lu G, Ebbole DJ, Wang B, Wang Z. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species. Sci Rep 2016; 6:25591. [PMID: 27151494 PMCID: PMC4858695 DOI: 10.1038/srep25591] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.
Collapse
Affiliation(s)
- Zhenhui Zhong
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Justice Norvienyeku
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meilian Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiandong Bao
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyu Lin
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liqiong Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yahong Lin
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoxian Wu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zena Cai
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qi Zhang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoye Lin
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yonghe Hong
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Huang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linghong Xu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Honghong Zhang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Tang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huakun Zheng
- Haixia Institute of Science and Technology (HIST), Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bi Lian
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangsheng Zhang
- Haixia Institute of Science and Technology (HIST), Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibao Tang
- Haixia Institute of Science and Technology (HIST), Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guodong Lu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel J. Ebbole
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Baohua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
35
|
Castroagudín VL, Ceresini PC, de Oliveira SC, Reges JTA, Maciel JLN, Bonato ALV, Dorigan AF, McDonald BA. Resistance to QoI Fungicides Is Widespread in Brazilian Populations of the Wheat Blast Pathogen Magnaporthe oryzae. PHYTOPATHOLOGY 2015; 105:284-94. [PMID: 25226525 DOI: 10.1094/phyto-06-14-0184-r] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wheat blast, caused by Magnaporthe oryzae, is an important disease across central and southern Brazil. Control has relied mainly on strobilurin fungicides (quinone-outside inhibitors [QoIs]). Here, we report the widespread distribution of QoI resistance in M. oryzae populations sampled from wheat fields and poaceous hosts across central and southern Brazil and the evolution of the cytochrome b (cyt b) gene. Sequence analysis of the cyt b gene distinguished nine haplotypes, with four haplotypes carrying the G143A mutation associated with QoI resistance and two haplotypes shared between isolates sampled from wheat and other poaceous hosts. The frequency of the G143A mutation in the wheat-infecting population increased from 36% in 2005 to 90% in 2012. The G143A mutation was found in many different nuclear genetic backgrounds of M. oryzae. Our findings indicate an urgent need to reexamine the use of strobilurins to manage fungal wheat diseases in Brazil.
Collapse
|
36
|
Yu M, Yu J, Hu J, Huang L, Wang Y, Yin X, Nie Y, Meng X, Wang W, Liu Y. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genet Biol 2015; 76:10-9. [DOI: 10.1016/j.fgb.2015.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
37
|
Klaubauf S, Tharreau D, Fournier E, Groenewald J, Crous P, de Vries R, Lebrun MH. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol 2014; 79:85-120. [PMID: 25492987 PMCID: PMC4255532 DOI: 10.1016/j.simyco.2014.09.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii, M. poae and M. rhizophila produce asexual spores that differ from those of Pyricularia sensu stricto that has pyriform, 2-septate conidia produced on conidiophores with sympodial proliferation. Magnaporthe salvinii was recently allocated to Nakataea, while M. poae and M. rhizophila were placed in Magnaporthiopsis. To clarify the taxonomic relationships among species that are magnaporthe- or pyricularia-like in morphology, we analysed phylogenetic relationships among isolates representing a wide range of host plants by using partial DNA sequences of multiple genes such as LSU, ITS, RPB1, actin and calmodulin. Species of Pyricularia s. str. belong to a monophyletic clade that includes all P. oryzae/P. grisea isolates tested, defining the Pyriculariaceae, which is sister to the Ophioceraceae, representing two novel families. These clades are clearly distinct from species belonging to the Gaeumannomyces pro parte/Magnaporthiopsis/Nakataea generic complex that are monophyletic and define the Magnaporthaceae. A few magnaporthe- and pyricularia-like species are unrelated to Magnaporthaceae and Pyriculariaceae. Pyricularia oryzae/P. grisea isolates cluster into two related clades. Host plants such as Eleusine, Oryza, Setaria or Triticum were exclusively infected by isolates from P. oryzae, while some host plant such as Cenchrus, Echinochloa, Lolium, Pennisetum or Zingiber were infected by different Pyricularia species. This demonstrates that host range cannot be used as taxonomic criterion without extensive pathotyping. Our results also show that the typical pyriform, 2-septate conidium morphology of P. grisea/P. oryzae is restricted to Pyricularia and Neopyricularia, while most other genera have obclavate to more ellipsoid 2-septate conidia. Some related genera (Deightoniella, Macgarvieomyces) have evolved 1-septate conidia. Therefore, conidium morphology cannot be used as taxonomic criterion at generic level without phylogenetic data. We also identified 10 novel genera, and seven novel species. A re-evaluation of generic and species concepts within Pyriculariaceae is presented, and novelties are proposed based on morphological and phylogenetic data.
Collapse
Affiliation(s)
- S. Klaubauf
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - D. Tharreau
- UMR BGPI, CIRAD, Campus International de Baillarguet, F-34398 Montpellier, France
| | - E. Fournier
- UMR BGPI, INRA, Campus International de Baillarguet, F-34398 Montpellier, France
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - R.P. de Vries
- CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - M.-H. Lebrun
- UR1290 INRA BIOGER-CPP, Campus AgroParisTech, F-78850 Thiverval-Grignon, France
| |
Collapse
|
38
|
Sun X, Kang S, Zhang Y, Tan X, Yu Y, He H, Zhang X, Liu Y, Wang S, Sun W, Cai L, Li S. Genetic diversity and population structure of rice pathogen Ustilaginoidea virens in China. PLoS One 2013; 8:e76879. [PMID: 24098811 PMCID: PMC3786968 DOI: 10.1371/journal.pone.0076879] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023] Open
Abstract
Rice false smut caused by the fungal pathogen Ustilaginoidea virens is becoming a destructive disease throughout major rice-growing countries. Information about its genetic diversity and population structure is essential for rice breeding and efficient control of the disease. This study compared the genome sequences of two U. virens isolates. Three SNP-rich genomic regions were identified as molecular markers that could be used to analyze the genetic diversity and population structure of U. virens in China. A total of 56 multilocus sequence types (haplotypes) were identified out of 162 representative isolates from 15 provinces covering five major rice-growing areas in China. However, the phylogeny, based on sequences at individual SNP-rich regions, strongly conflicted with each other and there were significant genetic differences between different geographical populations. Gene flow between the different geographical populations and genetic differentiation within each geographical population were also detected. In addition, genetic recombination and genetic isolation resulting from geographic separation was also found.
Collapse
Affiliation(s)
- Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shu Kang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yongjie Zhang
- School of Life Sciences, Shanxi University, Taiyuan, P. R. China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Science, Changsha, P. R. China
| | - Yufei Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Haiyong He
- Guizhou Institute of Plant Protection, Guiyang, P. R. China
| | - Xinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, P. R. China
| | - Shu Wang
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang, P. R. China
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|