1
|
Mthethwa L, Parboosing R, Msomi N. MicroRNA levels in patients with chronic hepatitis B virus and HIV coinfection in a high-prevalence setting; KwaZulu-Natal, South Africa. BMC Infect Dis 2024; 24:833. [PMID: 39148016 PMCID: PMC11328411 DOI: 10.1186/s12879-024-09715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) co-infection are significant public health issues, despite the availability of an effective HBV vaccine for nearly three decades and the great progress that has been made in preventing and treating HIV. HBV and HIV both modulate micro-ribonucleic acids (microRNA) expression to support viral replication. The aim of this study was to describe the pattern of microRNA expression in patients coinfected with chronic HBV and HIV with varying disease severity, as indicated by Hepatitis B e antigen (HBeAg) status, HBV viral load, alanine transaminase (ALT) levels, and HIV viral load. METHODS Plasma microRNAs, specific to HBV, were measured by quantitative real-time polymerase chain reaction (qRT-PCR) in HBV and HIV-negative healthy controls (n = 23) and patients coinfected with chronic HBV-HIV (n = 50). MicroRNA expression levels were compared between patients with high vs low HBV viral load, HBeAg positive vs HBeAg negative, high vs low ALT levels, and high vs low HIV viral load. Additionally, HBV viral load, ALT levels, and HIV viral load were correlated with microRNA expression levels. RESULTS Significantly higher expression levels of selected microRNAs were observed in chronic HBV-HIV coinfected patients compared to healthy controls. Significantly higher expression levels of hsa-miR-122-5p, hsa-miR-192-5p, and hsa-miR-193b-3p were observed in patients with high HBV viral load compared with low HBV viral load patients, and the levels of these microRNAs were correlated with HBV viral load levels. Significantly higher levels of hsa-miR-15b-5p and hsa-miR-181b-5p were observed in HBeAg-negative patients. CONCLUSION This study demonstrates the potential use of hsa-miR-15b-5p, hsa-miR-122-5p, hsa-miR-181b-5p, hsa-miR-192-5p and hsa-miR-193b-3p as additional diagnostic biomarkers in chronic HBV disease progression.
Collapse
Affiliation(s)
- Lulama Mthethwa
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa.
| | - Raveen Parboosing
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nokukhanya Msomi
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| |
Collapse
|
2
|
Manea M, Mărunțelu I, Constantinescu I. An In-Depth Approach to the Associations between MicroRNAs and Viral Load in Patients with Chronic Hepatitis B-A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:8410. [PMID: 39125978 PMCID: PMC11313658 DOI: 10.3390/ijms25158410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Scientists study the molecular activities of the hepatitis B virus (HBV). However, in vivo experiments are scarce. Some microRNAs are HBV-related, but their exact mechanisms are unknown. Our study provides an up-to-date view of the associations between microRNAs and HBV-DNA levels in chronically infected individuals. We conducted this large-scale research on five databases according to PRISMA guidance. Joanna Briggs Institute tools and Newcastle Ottawa Quality Assessment scores helped with quality evaluations. R 4.2.2 performed statistical computations for the meta-analysis. DIANA-microT 2023 and g:Profiler enriched the predictions of liver genes associated with miR-122 and miR-192-5p. From the 1313 records, we eliminated those irrelevant to our theme, non-article methodologies, non-English entries, and duplicates. We assessed associations between microRNAs and HBV-DNA levels. Overall, the pooled correlations favoured the general idea of the connection between non-coding molecules and viremia levels. MiR-122 and miR-192-5p were the most researched microRNAs, significantly associated with HBV-DNA levels. The connections between miR-122, miR-192-5p, let-7, miR-215, miR-320, and viral loads need further in vivo assessment. To conclude, this study evaluates systematically, for the first time, the correlations between non-coding molecules and viremia levels in patients. Our meta-analysis emphasizes potentially important pathways toward new inhibitors of the viral replication cycle.
Collapse
Affiliation(s)
- Marina Manea
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Ion Mărunțelu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
3
|
Li F, Deng Y, Zhang S, Zhu B, Wang J, Wang J, Wang X, Zhao Z, Deng W, Mao R, Shen Z, Chen J, Broering R, Lin Y, Lu M, Zhang J. Human hepatocyte-enriched miRNA-192-3p promotes HBV replication through inhibiting Akt/mTOR signalling by targeting ZNF143 in hepatic cell lines. Emerg Microbes Infect 2022; 11:616-628. [PMID: 35109781 PMCID: PMC8865105 DOI: 10.1080/22221751.2022.2037393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/05/2023]
Abstract
Previous studies have revealed multiple tissue- or cell-specific or enriched miRNA profiles. However, miRNA profiles enriched in hepatic cell types and their effect on HBV replication have not been well elucidated. In this study, primary human hepatocytes (PHHs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) were prepared from liver specimens of non-HBV-infected patients. Four hepatic cell type-enriched miRNA profiles were identified from purified liver cells miRNA microarray assay. The results revealed that 12 miRNAs, including miR-122-5p and miR-192-3p were PHH-enriched; 9 miRNAs, including miR-142-5p and miR-155-5p were KC-enriched; 6 miRNAs, including miR-126-3p and miR-222-3p were LSEC-enriched; and 14 miRNAs, including miR-214-3p and miR-199a-3p were HSC-enriched. By testing the effect of 11 PHH-enriched miRNAs on HBV production, we observed that miR-192-3p had the greatest pro-virus effect in hepatic cell lines. Moreover, we further found that miR-192-3p promoted HBV replication and gene expression through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in HepG2.2.15 cells. Additionally, the serum and hepatic miR-192-3p expression levels were significantly higher in chronic hepatitis B patients than in healthy controls and serum miR-192-3p positively correlated with the serum levels of HBV DNA and HBsAg. Collectively, we identified miRNA profiles enriched in four hepatic cell types and revealed that PHH-enriched miR-192-3p promoted HBV replication through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in hepatic cell lines. Our study provides a specific perspective for the role of hepatic cell type-enriched miRNA in interaction with viral replication and various liver pathogenesis.
Collapse
Affiliation(s)
- Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Beidi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jun Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xueyu Wang
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wanyu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Periwal N, Rathod SB, Sarma S, Johar GS, Jain A, Barnwal RP, Srivastava KR, Kaur B, Arora P, Sood V. Time Series Analysis of SARS-CoV-2 Genomes and Correlations among Highly Prevalent Mutations. Microbiol Spectr 2022; 10:e0121922. [PMID: 36069583 PMCID: PMC9603882 DOI: 10.1128/spectrum.01219-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022] Open
Abstract
The efforts of the scientific community to tame the recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seem to have been diluted by the emergence of new viral strains. Therefore, it is imperative to understand the effect of mutations on viral evolution. We performed a time series analysis on 59,541 SARS-CoV-2 genomic sequences from around the world to gain insights into the kinetics of the mutations arising in the viral genomes. These 59,541 genomes were grouped according to month (January 2020 to March 2021) based on the collection date. Meta-analysis of these data led us to identify significant mutations in viral genomes. Pearson correlation of these mutations led us to the identification of 16 comutations. Among these comutations, some of the individual mutations have been shown to contribute to viral replication and fitness, suggesting a possible role of other unexplored mutations in viral evolution. We observed that the mutations 241C>T in the 5' untranslated region (UTR), 3037C>T in nsp3, 14408C>T in the RNA-dependent RNA polymerase (RdRp), and 23403A>G in spike are correlated with each other and were grouped in a single cluster by hierarchical clustering. These mutations have replaced the wild-type nucleotides in SARS-CoV-2 sequences. Additionally, we employed a suite of computational tools to investigate the effects of T85I (1059C>T), P323L (14408C>T), and Q57H (25563G>T) mutations in nsp2, RdRp, and the ORF3a protein of SARS-CoV-2, respectively. We observed that the mutations T85I and Q57H tend to be deleterious and destabilize the respective wild-type protein, whereas P323L in RdRp tends to be neutral and has a stabilizing effect. IMPORTANCE We performed a meta-analysis on SARS-CoV-2 genomes categorized by collection month and identified several significant mutations. Pearson correlation analysis of these significant mutations identified 16 comutations having absolute correlation coefficients of >0.4 and a frequency of >30% in the genomes used in this study. The correlation results were further validated by another statistical tool called hierarchical clustering, where mutations were grouped in clusters on the basis of their similarity. We identified several positive and negative correlations among comutations in SARS-CoV-2 isolates from around the world which might contribute to viral pathogenesis. The negative correlations among some of the mutations in SARS-CoV-2 identified in this study warrant further investigations. Further analysis of mutations such as T85I in nsp2 and Q57H in ORF3a protein revealed that these mutations tend to destabilize the protein relative to the wild type, whereas P323L in RdRp is neutral and has a stabilizing effect. Thus, we have identified several comutations which can be further characterized to gain insights into SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
| | - Shravan B. Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat, India
| | - Sankritya Sarma
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, India
| | | | - Avantika Jain
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, Delhi, India
| | - Ravi P. Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, New Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, New Delhi, India
| | - Vikas Sood
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Riazalhosseini B, Mohamed R, Devi Apalasamy Y, Mohamed Z. Association of deleted in liver cancer-1 gene polymorphism with increased risk of chronicity of disease among Malaysian patients with hepatitis B infection. Pharmacogenet Genomics 2021; 31:185-190. [PMID: 34320605 DOI: 10.1097/fpc.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study is to examine the association between genetic variations in deleted in liver cancer 1 (DLC1) gene with progression of the hepatitis B virus (HBV) infection. METHODS A total of 623 subjects were included in this study, of whom, 423 were chronic hepatitis B (CHB) patients without liver cirrhosis or hepatocellular carcinoma (HCC), 103 CHB with either liver cirrhosis ± HCC and 97 individuals who had resolved HBV. Two single-nucleotide polymorphisms rs3739298 and rs532841 of DLC1 gene were genotyped using the Sequenom MassARRAY platform. RESULTS Our results indicated significant differences between the chronic HBV and resolved HBV groups in genotype and allele frequencies of DLC1-rs3739298 [odds ratio (OR) = 2.23; 95% confidence interval (CI): 1.24-3.99; P = 0.007] and (OR = 1.54; 95% CI: 1.07-2.22; P = 0.021), respectively. Moreover, haplotype analysis revealed significant associations between chronicity of HBV with TG and GA haplotypes (P = 0.041 and P = 0.042), respectively. CONCLUSION A significant association exists between the rs3739298 variant and susceptibility to CHB infection.
Collapse
Affiliation(s)
| | | | - Yamunah Devi Apalasamy
- Social Wellbeing Research Centre, Faculty of Economics and Administration, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
6
|
Nagasaka M, Uddin MH, Al-Hallak MN, Rahman S, Balasubramanian S, Sukari A, Azmi AS. Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol Cancer 2021; 20:82. [PMID: 34074295 PMCID: PMC8170728 DOI: 10.1186/s12943-021-01371-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy is now considered a valuable diagnostic tool for advanced metastatic non-small cell lung cancer (NSCLC). In NSCLC, circulating tumor DNA (ctDNA) analysis has been shown to increase the chances of identifying the presence of targetable mutations and has been adopted by many clinicians owing to its low risk. Serial monitoring of ctDNA may also help assess the treatment response or for monitoring relapse. As the presence of detectable plasma ctDNA post-surgery likely indicates residual tumor burden, studies have been performed to quantify plasma ctDNA to assess minimal residual disease (MRD) in early-stage resected NSCLC. Most data on utilizing liquid biopsy for monitoring MRD in early-stage NSCLC are from small-scale studies using ctDNA. Here, we review the recent research on liquid biopsy in NSCLC, not limited to ctDNA, and focus on novel methods such as micro RNAs (miRNA) and long non-coding (lncRNA).
Collapse
Affiliation(s)
- Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Mohammed Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sarah Rahman
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Suresh Balasubramanian
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Dong Y, Li M, Zhu S, Gao X, Zhao P. De novo combination antiviral therapy in e antigen-negative chronic hepatitis B virus-infected paediatric patients with advanced fibrosis. J Viral Hepat 2020; 27:1338-1343. [PMID: 32810891 DOI: 10.1111/jvh.13372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023]
Abstract
To date, studies that focus on treatment of e antigen-negative chronic hepatitis B virus-infected children with advanced fibrosis are extremely limited. This puts these patients at risk of rapid disease progression. Our study aimed to investigate the efficacy of combination antiviral therapy in this population. We prospectively enrolled treatment-naı̈ve paediatric patients between 1 year and 12 years of age who had e antigen-negative chronic hepatitis B and histologically proven advanced fibrosis. All patients received de novo combination therapy with lamivudine (LAM) and interferon-α (IFN) for 12 months and then were clinically followed up. The main outcome measure was rate of serum hepatitis B surface antigen (HBsAg) loss at month 12 of treatment. A total of 14 paediatric patients were enrolled, including 9 boys and 5 girls. All patients achieved undetectable HBV DNA levels at month 9 of treatment. A total of 5 patients (35.7%) achieved HBsAg loss at month 12 and finally developed HBsAg seroconversion. Four patients who did not clear HBsAg underwent second liver biopsy, and histological evaluation revealed significant improvements in all of them. As a serum fibrosis marker, aspartate aminotransferase-to-platelet ratio index after 12-month treatment in the 14 patients showed a significant improvement compared with that at baseline (P = .0021). No serious adverse events were observed during the study. Combination antiviral therapy is beneficial to e antigen-negative chronic hepatitis B virus-infected paediatric patients with advanced fibrosis. Further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Meina Li
- Department of Health Service, Second Military Medical University, Shanghai, China
| | - Shishu Zhu
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Xue Gao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Hosseini Rad SM A, McLellan AD. Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting. Int J Mol Sci 2020; 21:E4807. [PMID: 32645951 PMCID: PMC7370282 DOI: 10.3390/ijms21134807] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus is a recently-emerged zoonotic pathogen already well adapted to transmission and replication in humans. Although the mutation rate is limited, recently introduced mutations in SARS-CoV-2 have the potential to alter viral fitness. In addition to amino acid changes, mutations could affect RNA secondary structure critical to viral life cycle, or interfere with sequences targeted by host miRNAs. We have analysed subsets of genomes from SARS-CoV-2 isolates from around the globe and show that several mutations introduce changes in Watson-Crick pairing, with resultant changes in predicted secondary structure. Filtering to targets matching miRNAs expressed in SARS-CoV-2-permissive host cells, we identified ten separate target sequences in the SARS-CoV-2 genome; three of these targets have been lost through conserved mutations. A genomic site targeted by the highly abundant miR-197-5p, overexpressed in patients with cardiovascular disease, is lost by a conserved mutation. Our results are compatible with a model that SARS-CoV-2 replication within the human host is constrained by host miRNA defences. The impact of these and further mutations on secondary structures, miRNA targets or potential splice sites offers a new context in which to view future SARS-CoV-2 evolution, and a potential platform for engineering conditional attenuation to vaccine development, as well as providing a better understanding of viral tropism and pathogenesis.
Collapse
Affiliation(s)
- Ali Hosseini Rad SM
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| |
Collapse
|
9
|
Hao QQ, Wang QH, Xia W, Qian HZ. Circulating miRNA expression profile and bioinformatics analysis in patients with occult hepatitis B virus infection. J Med Virol 2019; 92:191-200. [PMID: 31513283 DOI: 10.1002/jmv.25594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022]
Abstract
Emerging suggest that microRNAs (miRNAs) play vital roles in the occurrence and development of hepatitis B virus (HBV) infectious disease. However, miRNAs in occult hepatitis B virus infection (OBI), a special stage of HBV infection, remain largely unknown. Herein, we conducted this study to identify differentially expressed miRNAs and then to investigate the potential roles of these miRNAs in OBI. Plasma miRNA expression profiles of three OBI patients and three healthy controls were analyzed with high through-put miRNA sequencing technology. Altered expression of miRNAs was further confirmed with reverse transcription quantitative polymerase chain reaction (qRT-PCR). Finally, bioinformatics analysis was conducted to investigate the involved pathways and target genes for these differentially expressed miRNAs. Totally, 32 differentially expressed miRNAs were identified between OBI and healthy controls by miRNA sequencing (fold change ≥ 1.5, P < .1, and counts per million reads ≥ 1), including 16 downregulated and 16 upregulated miRNAs. Differential expression of hsa-miR-486-5p, -25-3p, and -92a-3p and -1-3p was further validated by qRT-PCR analysis, which was consistent with miRNA sequencing analysis. Moreover, these four miRNAs might distinguish OBI from HCs efficiently. Bioinformatics analyses indicated that the differentially expressed miRNAs were primarily involved in various biological processes related to gene expression and transcription, cell development and metabolism, protein modification and kinase activity regulation, as well as multiple signaling pathways such as PI3K/Akt signaling pathway. This study provided a global view of miRNA expression in plasma from OBI patients. These differentially expressed miRNAs might play important roles in the development of OBI, which provided intriguing insights into the screening and molecular mechanism of OBI.
Collapse
Affiliation(s)
- Qing-Qin Hao
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, Jiangsu, China
| | - Qing-Hui Wang
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, Jiangsu, China
| | - Wei Xia
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, Jiangsu, China
| | - Hui-Zhong Qian
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, Jiangsu, China
| |
Collapse
|
10
|
Calvopina DA, Chatfield MD, Weis A, Coleman MA, Fernandez-Rojo MA, Noble C, Ramm LE, Leung DH, Lewindon PJ, Ramm GA. MicroRNA Sequencing Identifies a Serum MicroRNA Panel, Which Combined With Aspartate Aminotransferase to Platelet Ratio Index Can Detect and Monitor Liver Disease in Pediatric Cystic Fibrosis. Hepatology 2018; 68:2301-2316. [PMID: 30014495 DOI: 10.1002/hep.30156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF)-associated liver disease (CFLD) is a hepatobiliary complication of CF. Current diagnostic modalities rely on nonspecific assessments, whereas liver biopsy is the gold standard to assess severity of fibrosis. MicroRNAs (miRNAs) regulate liver disease pathogenesis and are proposed as diagnostic biomarkers. We investigated the combined use of serum miRNAs and aspartate aminotransferase (AST) to platelet ratio (APRI) to diagnose and assess CFLD severity. This was a cross-sectional cohort study of the circulatory miRNA signature of 124 children grouped by clinical, biochemical, and imaging assessments as follows: CFLD (n = 44), CF patients with no evidence of liver disease (CFnoLD; n = 40), and healthy controls (n = 40). Serum miRNAs were analyzed using miRNA sequencing (miRNA-Seq). Selected differentially expressed serum miRNA candidates were further validated by qRT-PCR and statistical analysis performed to evaluate utility to predict CFLD and fibrosis severity validated by liver biopsy, alone or in combination with APRI. Serum miR-122-5p, miR-365a-3p, and miR-34a-5p levels were elevated in CFLD compared to CFnoLD, whereas miR-142-3p and let-7g-5p were down-regulated in CFLD compared to CFnoLD. Logistic regression analysis combining miR-365a-3p, miR-142-3p, and let-7g-5p with APRI showed 21 times greater odds of accurately predicting liver disease in CF with an area under the receiver operating characteristics curve (AUROC) = 0.91 (sensitivity = 83%, specificity = 92%; P < 0.0001). Expression levels of serum miR-18a-5p were correlated with increasing hepatic fibrosis (HF) stage in CFLD (rs = 0.56; P < 0.0001), showing good diagnostic accuracy for distinguishing severe (F3-F4) from mild/moderate fibrosis (F0-F2). A unit increase of miR-18a-5p showed a 7-fold increased odds of having severe fibrosis with an AUROC = 0.82 (sensitivity = 93%, specificity = 73%; P = 0.004), indicating its potential to predict fibrosis severity. Conclusion: We identified a distinct circulatory miRNA profile in pediatric CFLD with potential to accurately discriminate liver disease and fibrosis severity in children with CF.
Collapse
Affiliation(s)
- Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mark D Chatfield
- QIMR Berghofer Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Charlton Noble
- Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, South Brisbane, QLD, Australia
| | - Louise E Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Daniel H Leung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX.,Division of Pediatric Gastroenterology, Hepatology, Nutrition, Texas Children's Liver Center, Houston, TX
| | - Peter J Lewindon
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, South Brisbane, QLD, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Serum miRNAs Predicting Sustained HBs Antigen Reduction 48 Weeks after Pegylated Interferon Therapy in HBe Antigen-Negative Patients. Int J Mol Sci 2018; 19:ijms19071940. [PMID: 30004437 PMCID: PMC6073286 DOI: 10.3390/ijms19071940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic goal for hepatitis B virus (HBV) infection is HBs antigen (HBsAg) seroclearance, which is achieved through 48-week pegylated interferon (Peg-IFN) therapy. This study aimed to identify predictive biomarkers for sustained HBsAg reduction by analyzing serum microRNAs. Twenty-two consecutive chronic HBV infection patients negative for HBe antigen (HBeAg) with HBV-DNA levels <5 log copies/mL, alanine aminotransferase (ALT) <100 U/L, and compensated liver functions, were enrolled. The patients were subcutaneously injected with Peg-IFNα-2a weekly for 48 weeks (treatment period), followed by the 48-week observation period. HBsAg 1-log drop relative to baseline levels recorded at the end of the observation period was considered effective. Sera were obtained at weeks 0 and 24 during the treatment period analyzed for microRNAs. The microRNA (miRNA) antiviral activity was evaluated in vitro using Huh7/sodium taurocholate cotransporting polypeptide (NTCP) cells. As a result, six patients achieved the HBsAg 1-log drop after the observation periods. Comparison of serum microRNA levels demonstrated that high miR-6126 levels at week 24 predicted HBsAg 1-log drop. Furthermore, miR-6126 reduced HBsAg in culture medium supernatants and intracellular HBV-DNA quantities in Huh7/NTCP cells. In conclusion, high serum miR-6126 levels during Peg-IFN therapy predicted the HBsAg 1-log drop 48 weeks after the completion of therapy. In vitro assays revealed that miR-6126 was able to suppress HBsAg production and HBV replication.
Collapse
|
12
|
Samal J, Kandpal M, Vivekanandan P. HBeAg-induced miR-106b promotes cell growth by targeting the retinoblastoma gene. Sci Rep 2017; 7:14371. [PMID: 29085029 PMCID: PMC5662563 DOI: 10.1038/s41598-017-14652-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC). The association between hepatitis B "e" antigen (HBeAg) and HCC is well-established by epidemiological studies. Nonetheless, the biological role of HBeAg in HCC remains enigmatic. We investigate the role of HBeAg in HBV-related HCC. Our findings suggest that HBeAg enhances cell proliferation and accelerates progression from G0/G1 phase to the S phase of the cell cycle in Huh7 cells. Examination of host gene expression and miRNA expression profiles reveals a total of 21 host genes and 12 host miRNAs that were differentially regulated in cells expressing HBeAg. Importantly, HBeAg induced the expression of miR-106b, an oncogenic miRNA. Interestingly, HBeAg-expression results in a significant reduction in the expression of retinoblastoma (Rb) gene, an experimentally validated target of miR-106b. Inhibition of miR-106b significantly increased the expression of the Rb gene, resulting in reduced cell proliferation and slowing of cell cycle progression from the G0/G1 phase to S phase. These observations suggest that the up-regulation of miR-106b by HBeAg contributes to the pathogenesis of HBV-related HCC by down-regulating the Rb gene. Our results highlight a role for HBeAg in HCC and provide a novel perspective on the molecular mechanisms underlying HBV-related HCC.
Collapse
Affiliation(s)
- Jasmine Samal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Manish Kandpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
13
|
do Amaral AE, Cisilotto J, Creczynski-Pasa TB, de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol Res 2017; 128:274-287. [PMID: 29037479 DOI: 10.1016/j.phrs.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
In recent years, there has been increasing interest in finding new biomarkers for diagnosis and prognostication of liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules involved in the regulation of gene expression and have been studied in relation to several conditions, including liver disease. Mature miRNAs can reach the bloodstream by passive release or by incorporation into lipoprotein complexes or microvesicles, and have stable and reproducible concentrations among individuals. In this review, we summarize studies involving circulating miRNAs sourced from the serum or plasma of patients with nontumoral liver diseases in attempt to bring insights in the use of miRNAs as biomarkers for diagnosis, as well as for prognosis of such diseases. In addition, we present pre-analytical aspects involving miRNA analysis and strategies for normalization of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data related to the studies evaluated.
Collapse
Affiliation(s)
- Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Maria Flora Pausewang Street, 88036-800 Florianopolis, SC, Brazil.
| |
Collapse
|
14
|
Baldassarre A, Felli C, Prantera G, Masotti A. Circulating microRNAs and Bioinformatics Tools to Discover Novel Diagnostic Biomarkers of Pediatric Diseases. Genes (Basel) 2017; 8:genes8090234. [PMID: 28925938 PMCID: PMC5615367 DOI: 10.3390/genes8090234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Current studies have shown that miRNAs are also present in extracellular spaces, packaged into various membrane-bound vesicles, or associated with RNA-binding proteins. Circulating miRNAs are highly stable and can act as intercellular messengers to affect many physiological processes. MicroRNAs circulating in body fluids have generated strong interest in their potential use as clinical biomarkers. In fact, their remarkable stability and the relative ease of detection make circulating miRNAs ideal tools for rapid and non-invasive diagnosis. This review summarizes recent insights about the origin, functions and diagnostic potential of extracellular miRNAs by especially focusing on pediatric diseases in order to explore the feasibility of alternative sampling sources for the development of non-invasive pediatric diagnostics. We will also discuss specific bioinformatics tools and databases for circulating miRNAs focused on the identification and discovery of novel diagnostic biomarkers of pediatric diseases.
Collapse
Affiliation(s)
| | - Cristina Felli
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| | - Giorgio Prantera
- Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| |
Collapse
|
15
|
Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A, Mueller MD, Ferretti E, Benedetti Panici P. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumour Biol 2017; 39:1010428317695525. [PMID: 28459207 DOI: 10.1177/1010428317695525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and ovarian cancer is the most lethal gynecological malignancy. Women carrying a BRCA1/2 mutation have a very high lifetime risk of developing breast and ovarian cancer. The only effective risk-reducing strategy in BRCA-mutated women is a prophylactic surgery with bilateral mastectomy and bilateral salpingo-oophorectomy. However, many women are reluctant to undergo these prophylactic surgeries due to a consequent mutilated body perception, unfulfilled family planning, and precocious menopause. In these patients, an effective screening strategy is available only for breast cancer, but it only consists in close radiological exams with a significant burden for the health system and a significant distress to the patients. No biomarkers have been shown to effectively detect breast and ovarian cancer at an early stage. MicroRNAs (miRNAs) are key regulatory molecules operating in a post-transcriptional regulation of gene expression. Aberrant expression of miRNAs has been documented in several pathological conditions, including solid tumors, suggesting their involvement in tumorigenesis. miRNAs can be detected in blood and urine and could be used as biomarkers in solid tumors. Encouraging results are emerging in gynecological malignancy as well, and suggest a different pattern of expression of miRNAs in biological fluids of breast and ovarian cancer patients as compared to healthy control. Aim of this study is to highlight the role of the urinary miRNAs which are specifically associated with cancer and to investigate their role in early diagnosis and in determining the prognosis in breast and ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy.,2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Assunta Casorelli
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Erlisa Bardhi
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Aris Raad Besharat
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Delia Savone
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ilary Ruscito
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ammad Ahmad Farooqi
- 3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Andrea Papadia
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Michael David Mueller
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Elisabetta Ferretti
- 4 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,5 Neuromed Institute, Pozzilli, Italy
| | | |
Collapse
|
16
|
Zhang J, Ma J, Wang H, Guo L, Li J. Serum microRNA-30c levels are correlated with disease progression in Xinjiang Uygur patients with chronic hepatitis B. ACTA ACUST UNITED AC 2017; 50:e6050. [PMID: 28492809 PMCID: PMC5441278 DOI: 10.1590/1414-431x20176050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
We aimed to investigate the potential role and mechanism of microRNA-30c (miR-30c) in the pathological development of chronic hepatitis B (CHB). The serum levels of miR-30c in hepatitis B virus (HBV) carrier Xinjiang Uygur patients with inactive, low-replicative, high-replicative and HBe antigen-positive CHB were investigated. HepG2 cells were co-transfected with pHBV1.3 and miR-30c mimic or inhibitor or scramble RNA. The effects of miR-30c dysregulation on HBV replication and gene expression, cell proliferation and cell cycle were then investigated. miR-30c was down-regulated in Xinjiang Uygur patients with CHB compared to healthy controls and its expression level discriminated HBV carrier patients with inactive, low-replicative, high-replicative and HBe antigen-positive risk for disease progression. Overexpression of miR-30c significantly inhibited HBV replication and the expressions of HBV pgRNA, capsid-associated virus DNA and Hbx in hepatoma cells. Moreover, overexpression of miR-30c significantly inhibited cell proliferation and delayed G1/S phase transition in hepatoma cells. Opposite effects were obtained after suppression of miR-30c. Our results indicate that miR-30c was down-regulated in Xinjiang Uygur patients with CHB, and miR-30c levels could serve as a marker for risk stratification of HBV infection. Down-regulation of miR-30c may result in the progression of CHB via promoting HBV replication and cell proliferation.
Collapse
Affiliation(s)
- J Zhang
- Department of Emergency, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - J Ma
- Department of Emergency, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - H Wang
- Department of Emergency, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - L Guo
- Department of Emergency, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - J Li
- Department of Emergency, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Kang W, Bang-Berthelsen CH, Holm A, Houben AJS, Müller AH, Thymann T, Pociot F, Estivill X, Friedländer MR. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA (NEW YORK, N.Y.) 2017; 23:433-445. [PMID: 28062594 PMCID: PMC5340907 DOI: 10.1261/rna.059725.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/05/2023]
Abstract
miRNAs are small 22-nucleotide RNAs that can post-transcriptionally regulate gene expression. It has been proposed that dietary plant miRNAs can enter the human bloodstream and regulate host transcripts; however, these findings have been widely disputed. We here conduct the first comprehensive meta-study in the field, surveying the presence and abundances of cross-species miRNAs (xenomiRs) in 824 sequencing data sets from various human tissues and body fluids. We find that xenomiRs are commonly present in tissues (17%) and body fluids (69%); however, the abundances are low, comprising 0.001% of host human miRNA counts. Further, we do not detect a significant enrichment of xenomiRs in sequencing data originating from tissues and body fluids that are exposed to dietary intake (such as liver). Likewise, there is no significant depletion of xenomiRs in tissues and body fluids that are relatively separated from the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are a rare human dietary contribution but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomiR compositions, suggesting technical batch effects. Last, we performed carefully designed and controlled animal feeding studies, in which we detected no transfer of plant miRNAs into rat blood, or bovine milk sequences into piglet blood. In summary, our comprehensive computational and experimental results indicate that xenomiRs originate from technical artifacts rather than dietary intake.
Collapse
Affiliation(s)
- Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claus Heiner Bang-Berthelsen
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Diabetes Biology, Novo Nordisk, 2760 Måløv, Denmark
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anja Holm
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | - Anna J S Houben
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Anne Holt Müller
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Flemming Pociot
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Paediatrics, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
18
|
Deng W, Zhang X, Ma Z, Lin Y, Lu M. MicroRNA-125b-5p mediates post-transcriptional regulation of hepatitis B virus replication via the LIN28B/let-7 axis. RNA Biol 2017; 14:1389-1398. [PMID: 28267418 DOI: 10.1080/15476286.2017.1293770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MicroRNAs (miRNAs) are able to modulate hepatitis B virus (HBV) replication and play an important role in the pathogenesis of HBV infection. Recently, we have identified that serum miR-125b-5p levels correlated with HBV DNA levels and liver necroinflammation. In the present study, we addressed how miR-125b-5p regulated HBV replication at the different steps, inclduing viral transcription, assembly, and virion production and investigated the underlying mechanisms. We found that miR-125b-5p overexpression increased HBV replication without altering HBV transcription. This is the first demonstration of post-transcriptional miRNA regulation of HBV replication. In contrast, transfection of miR-125b-5p inhibitor resulted in downregulation of HBV replication in hepatoma cells. Further, miR-125b-5p inhibited the phosphorylation of retinoblastoma protein and blocked cell cycle progression at the G1/S phase in hepatoma cell lines. Our results indicate that certain miRNAs are able to arrest the cell cycle at G1 phase and may increase HBV replication. RNA sequencing revealed several liver-specific metabolic pathways regulated by miR-125b-5p, which was also found to suppress LIN28B and induce let-7 family members. Additional data demonstrated that miR-125b-5p targeted the LIN28B/let-7 axis to stimulate HBV replication at a post-transcriptional step.
Collapse
Affiliation(s)
- Wanyu Deng
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany.,b College of Life Science, Shangrao Normal University , Shangrao , China
| | - Xiaoyong Zhang
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Zhiyong Ma
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Yong Lin
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Mengji Lu
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
19
|
Correia CN, Nalpas NC, McLoughlin KE, Browne JA, Gordon SV, MacHugh DE, Shaughnessy RG. Circulating microRNAs as Potential Biomarkers of Infectious Disease. Front Immunol 2017; 8:118. [PMID: 28261201 PMCID: PMC5311051 DOI: 10.3389/fimmu.2017.00118] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease.
Collapse
Affiliation(s)
- Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland; University College Dublin, UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; University College Dublin, UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Ronan G Shaughnessy
- UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| |
Collapse
|
20
|
Abstract
Virology is probably the most rapidly developing field within clinical laboratory medicine. Adequate diagnostic methods exist for the diagnostics of most acute viral infections. However, emergence of pathogenic viruses or virus strains and new disease associations of known viruses require the establishment of new diagnostic methods, sometimes very rapidly. In the field of chronic or persistent viral diseases, particularly those involving potential of malignant or fatal development, there is a constant need for improved differential diagnostics, monitoring, prognosis and risk assessment. Increasing understanding of disease pathogenesis also enables better patient management and personalized medicine, where companion diagnostics can offer precise and specific tools for individual care. Very often the new tools are offered by molecular diagnostic techniques, and this includes the detection of microRNAs (miRNAs). miRNAs are small regulatory RNA molecules, which regulate the expression of their target genes. They are encoded both by viruses and their host, and both can target either viral or cellular gene expression. In this review the diagnostic possibilities offered by miRNA will be discussed. The focus will be on selected viral and human miRNAs in viral diseases, and examples of miRNAs of putative diagnostic potential will be presented.
Collapse
Affiliation(s)
- Eeva Auvinen
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, POB 21, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Gardiner AS, Gutierrez HL, Luo L, Davies S, Savage DD, Bakhireva LN, Perrone-Bizzozero NI. Alcohol Use During Pregnancy is Associated with Specific Alterations in MicroRNA Levels in Maternal Serum. Alcohol Clin Exp Res 2016; 40:826-37. [PMID: 27038596 PMCID: PMC4825401 DOI: 10.1111/acer.13026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022]
Abstract
Background Given the challenges of confirming prenatal alcohol exposure (PAE) during pregnancy using currently established biomarkers of alcohol consumption, we examined whether serum microRNAs (miRNAs) may serve as stable biomarkers for PAE. Alterations in the levels of specific circulating miRNAs have been associated with various disease states and in animal models of fetal alcohol spectrum disorder. Methods Pregnant women in this prospective study were recruited from substance abuse and general maternity clinics affiliated with the University of New Mexico. Serum was collected at the time of admission for delivery from 14 subjects who reported ≥1 binge‐drinking episode or ≥3 drinks/wk during pregnancy and 16 subjects who reported abstinence during pregnancy and tested negative for 5 ethanol biomarkers. Total RNA was isolated from serum and used for microarray analysis. Results False discovery rate‐corrected analyses of covariance revealed that 55 miRNAs were significantly altered between the 2 groups. Hierarchical clustering using only the significantly altered miRNAs grouped samples into alcohol‐consuming and non‐alcohol‐consuming individuals. Discriminant analysis then identified miRs‐122*, ‐126, ‐216b, ‐221*, ‐3119, ‐3942‐5p, ‐4704‐3p, ‐4743, ‐514‐5p, and ‐602 as the top 10 discriminators between the 2 groups. Ingenuity Pathway Analysis of putative miRNA targets illustrated that miRNAs identified in this study are involved in biological pathways that mediate the effects of alcohol, such as brain‐derived neurotrophic factor, ERK1/2, and PI3K/AKT signaling. Conclusions This is the first report of alterations in serum miRNA expression that are associated with alcohol use during human pregnancy. These results suggest that serum miRNAs could be useful as biomarkers of alcohol exposure.
Collapse
Affiliation(s)
- Amy S Gardiner
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Hilda L Gutierrez
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Li Luo
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Department of Family and Community Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
22
|
The role of microRNAs in hepatocyte metabolism and hepatitis B virus replication. Virol Sin 2016; 31:472-479. [PMID: 28063013 DOI: 10.1007/s12250-016-3924-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Though efficient vaccines against hepatitis B virus (HBV) and antiviral therapies are available, chronic HBV infection is still a global health problem. The process of HBV infection and HBV life cycle are extensively studied in last decades, however, the mechanisms of HBV-induced alterations of host cell metabolisms and host factors involved in modulating of viral replication are not fully understood. Thus, it is an important issue to examine these specific HBV-host interactions for development of novel strategies for antiviral therapies. Recently, microRNAs (miRNAs), a class of post-transcriptional regulatory small RNA, seem to be the relevant fine tuning factors of various cellular activities and pathways, including cell growth, metabolism, and viral replication. In this review, we summarize the up to date knowledge concerning the virus-host interactions and emphasizing on the role of miRNAs in regulation of HBV replication and host cell metabolism.
Collapse
|
23
|
Calvopina DA, Coleman MA, Lewindon PJ, Ramm GA. Function and Regulation of MicroRNAs and Their Potential as Biomarkers in Paediatric Liver Disease. Int J Mol Sci 2016; 17:ijms17111795. [PMID: 27801781 PMCID: PMC5133796 DOI: 10.3390/ijms17111795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in biological and pathological processes of every cell type, including liver cells. Transcribed from specific genes, miRNA precursors are processed in the cytoplasm into mature miRNAs and as part of the RNA-induced silencing complex (RISC) complex binds to messenger RNA (mRNA) by imperfect complementarity. This leads to the regulation of gene expression at a post-transcriptional level. The function of a number of different miRNAs in fibrogenesis associated with the progression of chronic liver disease has recently been elucidated. Furthermore, miRNAs have been shown to be both disease-and tissue-specific and are stable in the circulation, which has led to increasing investigation on their utility as biomarkers for the diagnosis of chronic liver diseases, including those in children. Here, we review the current knowledge on the biogenesis of microRNA, the mechanisms of translational repression and the use of miRNA as circulatory biomarkers in chronic paediatric liver diseases including cystic fibrosis associated liver disease, biliary atresia and viral hepatitis B.
Collapse
Affiliation(s)
- Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Peter J Lewindon
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
24
|
Ma L, Zhang XQ, Zhou DX, Cui Y, Deng LL, Yang T, Shao Y, Ding M. Feasibility of urinary microRNA profiling detection in intrahepatic cholestasis of pregnancy and its potential as a non-invasive biomarker. Sci Rep 2016; 6:31535. [PMID: 27534581 PMCID: PMC4989235 DOI: 10.1038/srep31535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP), a pregnancy-related liver disease, leads to complications for both mother and fetus. Circulating microRNAs (miRNAs) have emerged as candidate biomarkers for many diseases. So far, the circulating miRNAs profiling of ICP has not been investigated. To assess the urinary miRNAs as non-invasive biomarkers for ICP, a differential miRNA profiling was initially analyzed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay in urinary samples from a screening set including 10 ICP and 10 healthy pregnancies. The selected candidate miRNAs were then validated by a validation set with 40 ICP and 50 healthy pregnancies using individual qRT-PCR assay. Compared with the expression in urine of healthy pregnant women, the expression levels of hsa-miR-151-3p and hsa-miR-300 were significantly down-regulated, whereas hsa-miR-671-3p and hsa-miR-369-5p were significantly up-regulated in urine from ICP patients (p < 0.05 and false discovery rate < 0.05). A binary logistic regression model was constructed using the four miRNAs. The area under the receiver operating characteristic curve was 0.913 (95% confidence interval = 0.847 to 0.980; sensitivity = 82.9%, specificity = 87.0%). Therefore, urinary microRNA profiling detection in ICP is feasible and maternal urinary miRNAs have the potential to be non-invasive biomarkers for the diagnosis of ICP.
Collapse
Affiliation(s)
- Li Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiao-Qing Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Da-Xue Zhou
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400030, P. R.China
| | - Yue Cui
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lin-Lin Deng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Ting Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Min Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
25
|
Zhou M, Hara H, Dai Y, Mou L, Cooper DKC, Wu C, Cai Z. Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation. Int J Mol Sci 2016; 17:ijms17081232. [PMID: 27490531 PMCID: PMC5000630 DOI: 10.3390/ijms17081232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Different cell types possess different miRNA expression profiles, and cell/tissue/organ-specific miRNAs (or profiles) indicate different diseases. Circulating miRNA is either actively secreted by living cells or passively released during cell death. Circulating cell/tissue/organ-specific miRNA may serve as a non-invasive biomarker for allo- or xeno-transplantation to monitor organ survival and immune rejection. In this review, we summarize the proof of concept that circulating organ-specific miRNAs serve as non-invasive biomarkers for a wide spectrum of clinical organ-specific manifestations such as liver-related disease, heart-related disease, kidney-related disease, and lung-related disease. Furthermore, we summarize how circulating organ-specific miRNAs may have advantages over conventional methods for monitoring immune rejection in organ transplantation. Finally, we discuss the implications and challenges of applying miRNA to monitor organ survival and immune rejection in allo- or xeno-transplantation.
Collapse
Affiliation(s)
- Ming Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| |
Collapse
|
26
|
Jacobsen KS, Nielsen KO, Winther TN, Glebe D, Pociot F, Hogh B. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line. BMC Res Notes 2016; 9:38. [PMID: 26801621 PMCID: PMC4724106 DOI: 10.1186/s13104-016-1848-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs are regulatory molecules and suggested as non-invasive biomarkers for molecular diagnostics and prognostics. Altered expression levels of specific microRNAs are associated with hepatitis B virus infection and hepatocellular carcinoma. We previously identified differentially expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection of hepatitis B virus expression vectors. RT-qPCR is the preferred method for microRNA studies, and a careful normalisation strategy, verifying the optimal set of reference genes, is decisive for correctly evaluating microRNA expression levels. The aim of this study was to provide valid reference genes for the human HCC-derived cell line HepG2. Results A panel of 739 microRNAs was screened to identify the most stably expressed microRNAs, followed by a PubMed search identifying microRNAs previously used as reference genes. Sixteen candidate reference genes were validated by RT-qPCR. Reference gene stabilities were calculated first by standard deviations of ΔCt values and then by geNorm and NormFinder analyses, taking into account the amplification efficiency of each microRNA primer set. The optimal set of reference genes was verified by a target analysis using RT-qPCR on miR-215-5p. Conclusion We identified miR-24-3p, miR-151a-5p, and miR-425-5p as the most valid combination of reference genes for microRNA RT-qPCR studies in our hepatitis B virus replicating HepG2 cell model. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1848-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kari Stougaard Jacobsen
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark. .,Department of Paediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Kirstine Overgaard Nielsen
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark. .,Department of Paediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Thilde Nordmann Winther
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Justus-Liebig University Giessen, Giessen, Germany.
| | - Flemming Pociot
- Department of Paediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe Hogh
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Li F, Zhou P, Deng W, Wang J, Mao R, Zhang Y, Li J, Yu J, Yang F, Huang Y, Lu M, Zhang J. Serum microRNA-125b correlates with hepatitis B viral replication and liver necroinflammation. Clin Microbiol Infect 2016; 22:384.e1-384.e10. [PMID: 26802212 DOI: 10.1016/j.cmi.2015.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) were recently reported to play an important role in hepatitis B virus (HBV) infection and related diseases. We evaluated the correlation between serum miRNA-125b, viral replication and liver necroinflammation in Chinese patients with chronic hepatitis B (CHB) infection. Serum miRNA-125b levels in samples from 211 CHB patients were determined by RT-PCR. Liver biopsies were collected from 138 patients. Serum miRNA-125b, miRNA-122 and miRNA-124 levels were determined. Correlations between serum miRNA-125b, viral replication and liver necroinflammation were analysed. The receiver operating characteristic (ROC) curve was used to assess the discriminating power of serum miRNA-125b to grade liver necroinflammation (G). HepG2.2.15 cells were transfected with miRNA-125b mimics. Intracellular viral core DNA was extracted and analysed by Southern blot. We found that serum miRNA-125b was positively correlated with the serum HBV DNA level. HBV replication capacity increased after transfection with miRNA-125b mimics. Patients with CHB with moderate-to-severe liver necroinflammation (G ≥2) showed significantly higher (p <0.001) serum miRNA-125b levels than those with G <2. In patients with alanine transaminase levels less than twice the upper limit of normal, serum miRNA-125b combined with miRNA-124 yielded an area under the ROC curve of 0.816, with 70.4% sensitivity and 84.9% specificity to discriminate the grade of liver necroinflammation (G ≥2). Hence, we concluded that miRNA-125b may enhance HBV replication. Serum miRNA-125b correlates with viral load. Serum miRNA-125b alone or combined with miRNA-124 has the potential to discriminate grades of liver necroinflammation, particularly in Chinese patients with CHB who have normal or mildly increased alanine transaminase levels.
Collapse
Affiliation(s)
- F Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - P Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - W Deng
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - J Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - R Mao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - J Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - J Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - F Yang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - M Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - J Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology of the Ministry of Education and Ministry of Health, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
29
|
Falcon-Perez JM, Royo F. Circulating RNA: looking at the liver through a frosted glass. Biomarkers 2015; 20:339-54. [DOI: 10.3109/1354750x.2015.1101785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J. M. Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain and
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - F. Royo
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain and
| |
Collapse
|
30
|
|
31
|
Xing T, Xu H, Yu W, Wang B, Zhang J. Expression profile and clinical significance of miRNAs at different stages of chronic hepatitis B virus infection. Int J Clin Exp Med 2015; 8:5611-20. [PMID: 26131144 PMCID: PMC4483863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To study the expression profile and clinical significance of microRNAs (miRNAs) at different stages of chronic hepatitis B virus (HBV) infection. METHODS The miRNA expression profiles of peripheral blood mononuclear cells (PBMCs) at different stages of chronic HBV infection were screened using miRNA microarray and validated using real-time quantitative polymerase chain reaction (qPCR). RESULTS Significant differences in miRNA expression profiles of PBMCs were observed between patients in IA and IT phases of CHB. Expression was significantly down-regulated in the former but up-regulated in the latter group. No significant differences in inactive hepatitis B surface antigen carriers were observed. Changes in expression of six miRNAs determined by real-time qPCR were consistent with those determined by microarray. Areas under the receiver operation characteristic curve of the six miRNAs distinguishing immune tolerance and clearance of chronic HBV infection were 99.4%, 98.4%, 96.7%, 100%, 100%, and 99.6%. Positive correlation was found between the levels of hsa- miR-146a and ALT (r = 0.56, P < 0.01) while negative correlation was found between the levels of hsa-miR-548ah-5p and HBV DNA (r = -0.73, P < 0.01). CONCLUSIONS Abnormal expression of miRNAs and the resulting gradual decline in the various immune states of patients with chronic HBV infection may play important roles in maintenance of the immune homeostatic mechanisms of chronic HBV infection. Hsa-miR-548ah-5p, hsa-miR-3191-5p and hsa-miR-4711-3p can be used as potential molecular markers to distinguish among different stages of chronic HBV infection.
Collapse
Affiliation(s)
- Tongjing Xing
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, Jiangsu Province, China
| | - Hongtao Xu
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, Jiangsu Province, China
| | - Wenqing Yu
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, Jiangsu Province, China
| | - Bian Wang
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, Jiangsu Province, China
| | - Jing Zhang
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, Jiangsu Province, China
| |
Collapse
|
32
|
Rice J, Roberts H, Burton J, Pan J, States V, Rai SN, Galandiuk S. Assay reproducibility in clinical studies of plasma miRNA. PLoS One 2015; 10:e0121948. [PMID: 25853871 PMCID: PMC4390277 DOI: 10.1371/journal.pone.0121948] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
There are increasing reports of plasma miRNAs as biomarkers of human disease but few standards in methodologic reporting, leading to inconsistent data. We systematically reviewed plasma miRNA studies published between July 2013-June 2014 to assess methodology. Six parameters were investigated: time to plasma extraction, methods of RNA extraction, type of miRNA, quantification, cycle threshold (Ct) setting, and methods of statistical analysis. We compared these data with a proposed standard methodologic technique. Beginning with initial screening for 380 miRNAs using microfluidic array technology and validation in an additional cohort of patients, we compared 11 miRNAs that exhibited differential expression between 16 patients with benign colorectal neoplasms (advanced adenomas) and 16 patients without any neoplasm (controls). Plasma was isolated immediately, 12, 24, 48, or 72 h following phlebotomy. miRNA was extracted using two different techniques (Trizol LS with pre-amplification or modified miRNeasy). We performed Taqman-based RT-PCR assays for the 11 miRNAs with subsequent analyses using a variable Ct setting or a fixed Ct set at 0.01, 0.03, 0.05, or 0.5. Assays were performed in duplicate by two different operators. RNU6 was the internal reference. Systematic review yielded 74 manuscripts meeting inclusion criteria. One manuscript (1.4%) documented all 6 methodological parameters, while < 5% of studies listed Ct setting. In our proposed standard technique, plasma extraction ≤12 h provided consistent ΔCt. miRNeasy extraction yielded higher miRNA concentrations and fewer non-expressed miRNAs compared to Trizol LS (1/704 miRNAs [0.14%] vs 109/704 miRNAs [15%], not expressed, respectively). A fixed Ct bar setting of 0.03 yielded the most reproducible data, provided that <10% miRNA were non-expressed. There was no significant intra-operator variability. There was significant inter-operator variation using Trizol LS extraction, while this was negligible using modified miRNeasy. For standardized reporting, we recommend plasma extraction ≤ 12 h, using modified miRNeasy extraction and utilizing a 0.03 Ct.
Collapse
Affiliation(s)
- Jonathan Rice
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Henry Roberts
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - James Burton
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, United States of America
| | - Vanessa States
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, United States of America
| | - Susan Galandiuk
- Price Institute of Surgical Research, Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
33
|
Wang JY, Mao RC, Zhang YM, Zhang YJ, Liu HY, Qin YL, Lu MJ, Zhang JM. Serum microRNA-124 is a novel biomarker for liver necroinflammation in patients with chronic hepatitis B virus infection. J Viral Hepat 2015; 22:128-36. [PMID: 25131617 DOI: 10.1111/jvh.12284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with chronic hepatitis B virus (HBV) infection and normal or mildly increased transaminases may have sustained significant liver damage, as verified by liver biopsy. However, no suitable noninvasive method exists for identifying liver necroinflammation in such patients. We aimed to investigate the power of microRNA-124 as a novel biomarker for liver necroinflammation. A total of 131 recruited patients with chronic HBV infection underwent liver biopsy for grading of necroinflammation (G) and staging of fibrosis (S). Thirty healthy individuals were included as controls (HCs). Serum microRNA-124 and microRNA-122 levels were measured using qRT-PCR. Forty-five patients from the study population receiving entecavir therapy were monitored for changes in serum microRNA-124 levels in association with improved liver histology. The capacity of serum microRNA-124 levels in discriminating the grade of liver necroinflammation was compared with alanine aminotransferase (ALT) with liver biopsy validation. Serum microRNA-124 levels were significantly higher in patients with chronic HBV infection than in HCs (P < 0.0001). Patients with considerable liver necroinflammation (G ≥ 2) had significantly higher serum miRNA-124 levels than those without or with mild necroinflammation (P < 0.0001). After 48 weeks of antiviral therapy, serum microRNA-124 levels considerably declined in 45 patients (P < 0.0001), which were associated with histological improvement. In patients with normal ALT and a serum HBV DNA load >10(4) copies/mL, receiver operating characteristic (ROC) curve of serum microRNA-124 levels yielded an area under ROC curve (AUC) of 0.840, with 58.3% sensitivity and 91.7% specificity in discriminating between moderate-to-severe liver necroinflammation (G ≥ 2).
Collapse
Affiliation(s)
- J-Y Wang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xing TJ, Wang B, Zhang J. Screening and bioinformatic analysis of microRNA-associated immune clearance in patients with chronic hepatitis B. Int J Clin Exp Med 2014; 7:4924-32. [PMID: 25663989 PMCID: PMC4307436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aimed to perform screening and bioinformatic analysis of microRNA (miRNA) molecules associated with immune clearance in chronic hepatitis B (CHB) patients. METHODS Peripheral blood mononuclear cells (PBMCs) of CHB patients and healthy individuals were collected and detected by microarray. The target genes of differentially expressed miRNA molecules were predicted using three databases. Their molecular pathways and functions were analyzed by bioinformatics methods. RESULTS Compared with healthy individuals, 52 differentially expressed miRNA molecules were found in PBMCs of CHB patients, of which 33 were up-regulated and 19 were down-regulated. A total of 354 target genes were predicted in up-regulated miRNA molecules, and 1935 target genes were predicted in down-regulated miRNA molecules. MiRNA-mRNA network analysis showed that some target genes might be regulated, and constituted complex molecular networks with hsa-miR-520d-5p, hsa-miR-106a-5p, hsa-miR-30a-5p, and hsa-miR-29b-3p. Gene ontology and pathway analyses showed that several molecular pathways might be affected by up- or down-regulated miRNA molecules. CONCLUSION Abnormal expression of multiple miRNA molecules in PBMCs of CHB patients might be involved in immune clearance pathogenesis through the regulation of multiple molecular pathways and target genes.
Collapse
Affiliation(s)
- Tong-Jing Xing
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, China
| | - Bian Wang
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, China
| | - Jing Zhang
- Department of Infectious Diseases, Taizhou People's Hospital Taizhou 225300, China
| |
Collapse
|
35
|
Akamatsu S, Hayes CN, Tsuge M, Miki D, Akiyama R, Abe H, Ochi H, Hiraga N, Imamura M, Takahashi S, Aikata H, Kawaoka T, Kawakami Y, Ohishi W, Chayama K. Differences in serum microRNA profiles in hepatitis B and C virus infection. J Infect 2014; 70:273-87. [PMID: 25452043 DOI: 10.1016/j.jinf.2014.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Patients infected with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) are at greater risk of cirrhosis and hepatocellular carcinoma. The objective of this study was to identify virus-specific serum microRNA profiles associated with liver function and disease progression. Microarray analysis of serum microRNAs was performed using the Toray 3D array system in 22 healthy subjects, 42 HBV patients, and 30 HCV patients. Selected microRNAs were then validated by qRT-PCR in 186 HBV patients, 107 HCV patients, and 22 healthy subjects. RESULTS Microarray analysis showed up-regulation of a number of microRNAs in serum of both HBV and HCV patients. In qRT-PCR analysis, miR-122, miR-99a, miR-125b, miR-720, miR-22, and miR-1275 were up-regulated both in HBV patients relative to healthy subjects, and all except miR-1275 were up-regulated in HBeAg-positive patients relative to HBeAg-negative patients. Specific microRNAs were independently associated with different aspects of HBV infection. MiR-122 was independently associated with HBV DNA level, whereas miR-125b was independently associated with levels of HBV DNA, HBsAg, and HBeAg. MiR-22 and miR-1275 were independently associated with serum γ-glutamyl transpeptidase levels. CONCLUSIONS Serum microRNA levels reflect differences in the etiology and stage of viral hepatitis.
Collapse
Affiliation(s)
- Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Rie Akiyama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | | | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
36
|
Fan HX, Tang H. Complex interactions between microRNAs and hepatitis B/C viruses. World J Gastroenterol 2014; 20:13477-13492. [PMID: 25309078 PMCID: PMC4188899 DOI: 10.3748/wjg.v20.i37.13477] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate the expression of many target genes via mRNA degradation or translation inhibition. Many studies have shown that miRNAs are involved in the modulation of gene expression and replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) and play a pivotal role in host-virus interactions. Increasing evidence also demonstrates that viral infection leads to alteration of the miRNA expression profile in hepatic tissues or circulation. The deregulated miRNAs participate in hepatocellular carcinoma (HCC) initiation and progression by functioning as oncogenes or tumor suppressor genes by targeting various genes involved in cancer-related signaling pathways. The distinct expression pattern of miRNAs may be a useful marker for the diagnosis and prognosis of virus-related diseases considering the limitation of currently used biomarkers. Moreover, the role of deregulated miRNA in host-virus interactions and HCC development suggested that miRNAs may serve as therapeutic targets or as tools. In this review, we summarize the recent findings about the deregulation and the role of miRNAs during HBV/HCV infection and HCC development, and we discuss the possible mechanism of action of miRNAs in the pathogenesis of virus-related diseases. Furthermore, we discuss the potential of using miRNAs as markers for diagnosis and prognosis as well as therapeutic targets and drugs.
Collapse
|
37
|
Circulating RNA molecules as biomarkers in liver disease. Int J Mol Sci 2014; 15:17644-66. [PMID: 25272224 PMCID: PMC4227182 DOI: 10.3390/ijms151017644] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/04/2014] [Accepted: 09/17/2014] [Indexed: 02/07/2023] Open
Abstract
Liver disease is a major cause of morbidity and mortality worldwide. As in other fields of medicine, there is a stringent need for non-invasive markers to improve patient diagnostics, monitoring and prognostic ability in liver pathology. Cell-free circulating RNA molecules have been recently acknowledged as an important source of potential medical biomarkers. However, many aspects related to the biology of these molecules remain to be elucidated. In this review, we summarize current concepts related to the origin, transportation and possible functions of cell-free RNA. We outline current development of extracellular RNA-based biomarkers in the main forms of non-inherited liver disease: chronic viral hepatitis, hepatocellular carcinoma, non-alcoholic fatty liver, hepato-toxicity, and liver transplantation. Despite recent technological advances, the lack of standardization in the assessment of these markers makes their adoption into clinical practice difficult. We thus finally review the main factors influencing quantification of circulating RNA. These factors should be considered in the reporting and interpretation of current findings, as well as in the proper planning of future studies, to improve reliability and reproducibility of results.
Collapse
|
38
|
Xing TJ, Xu HT, Yu WQ, Wang B, Zhang J. MiRNA-548ah, a potential molecule associated with transition from immune tolerance to immune activation of chronic hepatitis B. Int J Mol Sci 2014; 15:14411-14426. [PMID: 25196343 PMCID: PMC4159859 DOI: 10.3390/ijms150814411] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/24/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The present study aims to identify the differently expressed microRNA (miRNA) molecules and target genes of miRNA in the immune tolerance (IT) and immune activation (IA) stages of chronic hepatitis B (CHB). METHODS miRNA expression profiles of peripheral blood mononuclear cells (PBMCs) at the IT and IA stages of CHB were screened using miRNA microarrays and authenticated using a quantitative real-time polymerase chain reaction (RT-PCR). Gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the significant functions and pathways of possible target genes of miRNAs. Assays of the gain and loss of function of the miRNAs were performed to verify the target genes in THP-1 cell lines. The luciferase reporter test was used on 293T cells as direct targets. RESULTS Significantly upregulated miR-548 and miR-4804 were observed in the miRNA microarrays and confirmed by RT-PCR in PBMCs at the IT and IA stages of CHB. GO and KEGG analysis revealed that MiR-548 and miR-4804 could be involved in numerous signaling pathways and protein binding activity. IFNγR1 was predicted as a target gene and validated as the direct gene of MiR-548. Significant negative correlation was found between the miR-548ah and mRNA levels of IFN-γR1 in CHB patients. CONCLUSIONS The abnormal expression profiles of miRNA in PBMCs could be closely associated with immune activation of chronic HBV infection. miR-548, by targeting IFN-γR1, may represent a mechanism that can facilitate viral pathogenesis and help determine new therapeutic molecular targets.
Collapse
Affiliation(s)
- Tong-Jing Xing
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Hong-Tao Xu
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Wen-Qing Yu
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Bian Wang
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Jing Zhang
- Department of Infectious Diseases, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| |
Collapse
|
39
|
Tan YLJ, Chen WN. MicroRNAs as therapeutic strategy for hepatitis B virus-associated hepatocellular carcinoma: Current status and future prospects. World J Gastroenterol 2014; 20:5973-5986. [PMID: 24876720 PMCID: PMC4033437 DOI: 10.3748/wjg.v20.i20.5973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/13/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains to be one of the top causing cancer-related deaths today. The majority of HCC cases are reported to be the result of chronic hepatitis B virus (HBV) infection. Current treatments for HBV-related HCC revolve around the use of drugs to inhibit viral replication, as a high level of viral load and antigen in circulation often presents a poor patient prognosis. However, existing therapies are inefficient in the complete eradication of HBV, often resulting in tumour recurrence. The involvement of microRNAs (miRNAs) in important processes in HBV-related HCC makes it an important player in the progression of HCC in chronic hepatitis B infected patients. In this review, we discuss the key aspects of HBV infection and the important viral products that may regulate cancer-related processes via their interaction with miRNAs or their closely related protein machinery. Conversely, we also look at how miRNAs may go about regulating the virus, especially in vital processes like viral replication. Apart from miRNAs acting as either oncogenes or tumour-suppressors, we also look at how miRNAs may function as biomarkers that may possibly serve as better candidates than those currently employed in the diagnosis of HBV infection or HBV-related HCC. A summary of the roles of miRNAs in HBV-related HCC will hopefully lead to a gain in understanding of the pathogenesis process and pave the way for new insights in medical therapy.
Collapse
|
40
|
Lagatie O, Van Loy T, Tritsmans L, Stuyver LJ. Circulating human microRNAs are not linked to JC polyomavirus serology or urinary viral load in healthy subjects. Virol J 2014; 11:41. [PMID: 24588811 PMCID: PMC3945012 DOI: 10.1186/1743-422x-11-41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/26/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND JC polyomavirus (JCPyV) is a widespread human polyomavirus that usually resides latently in its host. It can be reactivated under immunomodulating conditions and cause Progressive Multifocal Leukoencephalopathy (PML). Circulating microRNAs (miRNAs) are emerging as promising biomarkers for several pathologies. In this study, we have investigated whether circulating miRNAs exist that are differentially expressed between JCPyV seropositive and JCPyV seronegative on the one hand or between JCPyV shedders and JCPyV non-shedders on the other hand. METHODS Human miRNA expression profiling was performed in a small set of plasma samples obtained from seronegative subjects, seropositive shedders and seropositive non-shedders. A set of 10 miRNAs was selected for further analysis in a larger group of samples. RESULTS Based on the plasma profiling experiment of 30 samples, 6 miRNAs were selected that were possibly differentially expressed between seropositive and seronegative subjects and 4 miRNAs were selected that were possibly differentially expressed between shedders and non-shedders. Subsequently, expression of these 10 selected miRNAs was assessed in an independent set of 100 plasma samples. Results indicated that none of them were differentially expressed. CONCLUSION This study could not identify circulating human miRNAs that were differentially expressed between plasma from JCPyV seropositive and JCPyV seronegative subjects or between JCPyV shedders and JCPyV non-shedders.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | | | | |
Collapse
|
41
|
Chen W, Yan ZH, Wang YM, Xu BY, Deng GH. Genome-wide microarray-based analysis of miRNAs expression in patients with acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int 2014; 13:32-9. [PMID: 24463077 DOI: 10.1016/s1499-3872(14)60004-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a severe clinical syndrome that may cause a high mortality. However, the mechanism is still not clear. Characterization of the microRNA (miRNA) profiles in ACLF patients may provide new clues to the pathogenesis and management of this syndrome. METHODS Genome-wide microarray was performed to compare the different miRNA expression profiles in peripheral blood mononuclear cells of a pair of monozygotic twins, an ACLF patient and an HBV asymptomatic carrier (AsC). The case-control miRNA profiles were compared and confirmed by quantitative reverse transcription-polymerase chain reaction in 104 ACLF patients and 96 AsCs. A combined computational prediction algorithm was used to predict the potential target genes. RESULTS Forty-five miRNAs were increased and eight miRNAs were decreased in the ACLF group. The expressions of hsa-let-7a and hsa-miR-16 were increased by 8.58- and 8.63-fold in ACLF patients compared with that in AsCs, respectively (P<0.001). CARD8, BCL2, IL1RAPL1, LTB, FZD10 and EDA were identified as the target genes of hsa-miR-16; MAP4K3, OPRM1, IGF2BP1 and CERCAM were verified as the target genes of hsa-let-7a. CONCLUSIONS Our results showed that there is a close relationship between specific miRNAs of peripheral blood mononuclear cells and ACLF. hsa-miR-16 and hsa-let-7a may contribute to the development of ACLF.
Collapse
Affiliation(s)
- Wen Chen
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China. wym417@ 163.com
| | | | | | | | | |
Collapse
|
42
|
Circulating MicroRNAs in Plasma of Hepatitis B e Antigen Positive Children Reveal Liver-Specific Target Genes. Int J Hepatol 2014; 2014:791045. [PMID: 25580300 PMCID: PMC4281389 DOI: 10.1155/2014/791045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
Background and Aim. Hepatitis B e antigen positive (HBeAg-positive) children are at high risk of severe complications such as hepatocellular carcinoma and cirrhosis. Liver damage is caused by the host immune response to infected hepatocytes, and we hypothesise that specific microRNAs play a role in this complex interaction between virus and host. The study aimed to identify microRNAs with aberrant plasma expressions in HBeAg-positive children and with liver-specific target genes. Methods. By revisiting our previous screen of microRNA plasma levels in HBeAg-positive and HBeAg-negative children with chronic hepatitis B (CHB) and in healthy controls, candidate microRNAs with aberrant plasma expressions in HBeAg-positive children were identified. MicroRNAs targeting liver-specific genes were selected based on bioinformatics analysis and validated by qRT-PCR using plasma samples from 34 HBeAg-positive, 26 HBeAg-negative, and 60 healthy control children. Results. Thirteen microRNAs showed aberrant plasma expressions in HBeAg-positive children and targeted liver-specific genes. In particular, three microRNAs were upregulated and one was downregulated in HBeAg-positive children compared to HBeAg-negative and healthy control children, which showed equal levels. Conclusion. The identified microRNAs might impact the progression of CHB in children. Functional studies are warranted, however, to elucidate the microRNAs' role in the immunopathogenesis of childhood CHB.
Collapse
|
43
|
Winther TN, Heiberg IL, Bang-Berthelsen CH, Pociot F, Hogh B. Hepatitis B surface antigen quantity positively correlates with plasma levels of microRNAs differentially expressed in immunological phases of chronic hepatitis B in children. PLoS One 2013; 8:e80384. [PMID: 24244683 PMCID: PMC3823657 DOI: 10.1371/journal.pone.0080384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Background and Aim Children with chronic hepatitis B (CHB) are at high risk of progressive liver disease. It is suggested that a newly-identified panel of 16 microRNAs is important in the pathogenesis of CHB in children. Subviral hepatitis B surface antigen (HBsAg) particles are produced in large excess over infectious virions. Interestingly, circulating HBsAg particles have been shown to carry microRNAs. A thorough characterisation of the identified microRNAs and HBsAg over time in plasma from children with CHB may provide useful information about the natural course of childhood CHB. Patients and Methods A cohort of 42 children with CHB was followed over time. Three to five blood samples were obtained from each child at minimum intervals of half a year; in total 180 blood samples. Plasma levels of the 16 microRNAs previously identified were analysed by quantitative real-time polymerase-chain-reaction. Plasma HBsAg was quantified using ARCHITECT® HBsAg assay. Results The presence of 14/16 plasma microRNAs in children with CHB was confirmed. All 14 microRNAs were significantly differentially expressed in different immunological phases of the disease. MicroRNA plasma levels were highest in immune-tolerant children, lower in immune-active children, and reached the lowest values in immune-inactive children, p<0.001. Plasma levels of four microRNAs decreased significantly over time in immune-tolerant and immune-active children whereas the microRNA plasma levels were stable in immune-inactive children, p<0.004. HBsAg quantity was positively correlated with plasma levels of 11/14 microRNAs, p<0.004. Conclusion This is the first study to characterise plasma microRNAs and HBsAg over time in children with CHB. Our data suggest that plasma levels of selected microRNAs and HBsAg are inversely correlated with immunological control of CHB in children. Further studies are, however, needed to advance the understanding of microRNAs and HBsAg in the pathogenesis of CHB in children.
Collapse
Affiliation(s)
- Thilde Nordmann Winther
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
- Diagnostic Unit and Center for Non-Coding RNA in Technology and Health, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
- * E-mail:
| | - Ida Louise Heiberg
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus Heiner Bang-Berthelsen
- Diagnostic Unit and Center for Non-Coding RNA in Technology and Health, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Flemming Pociot
- Diagnostic Unit and Center for Non-Coding RNA in Technology and Health, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Birthe Hogh
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|