1
|
Kondrychyn I, He L, Wint H, Betsholtz C, Phng LK. Combined forces of hydrostatic pressure and actin polymerization drive endothelial tip cell migration and sprouting angiogenesis. eLife 2025; 13:RP98612. [PMID: 39977018 PMCID: PMC11841990 DOI: 10.7554/elife.98612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Cell migration is a key process in the shaping and formation of tissues. During sprouting angiogenesis, endothelial tip cells invade avascular tissues by generating actomyosin-dependent forces that drive cell migration and vascular expansion. Surprisingly, endothelial cells (ECs) can still invade if actin polymerization is inhibited. In this study, we show that endothelial tip cells employ an alternative mechanism of cell migration that is dependent on Aquaporin (Aqp)-mediated water inflow and increase in hydrostatic pressure. In the zebrafish, ECs express aqp1a.1 and aqp8a.1 in newly formed vascular sprouts in a VEGFR2-dependent manner. Aqp1a.1 and Aqp8a.1 loss-of-function studies show an impairment in intersegmental vessels formation because of a decreased capacity of tip cells to increase their cytoplasmic volume and generate membrane protrusions, leading to delayed tip cell emergence from the dorsal aorta and slower migration. Further inhibition of actin polymerization resulted in a greater decrease in sprouting angiogenesis, indicating that ECs employ two mechanisms for robust cell migration in vivo. Our study thus highlights an important role of hydrostatic pressure in tissue morphogenesis.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversityUppsalaSweden
| | - Haymar Wint
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversityUppsalaSweden
- Department of Medicine Huddinge, Karolinska InstitutetHuddingeSweden
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| |
Collapse
|
2
|
Wang S, Jing W, Gu G, Li S, Pang J, Cong H, Zhang K, Yang J, Wu C. Improvement effect and mechanism of XuanFuDaiZhe tang on rats with diarrheal irritable bowel syndrome induced by colorectal dilation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118938. [PMID: 39419305 DOI: 10.1016/j.jep.2024.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE XuanFuDaiZhe Tang (XFDZT) is used in traditional Chinese medicine (TCM) to treat diarrhoea-predominant irritable bowel syndrome (IBS-D). Our laboratory has demonstrated that XFDZT remarkably improves various gastrointestinal motility disorders in animal models. However, previous studies have only focused on one or several protein targets without systematically investigating dynamic changes and protein interrelations. AIM OF THE STUDY To explore the mechanisms underlying the therapeutic action of XFDZT in IBS-D using a network pharmacology approach and in vivo experiments. MATERIALS AND METHODS The active compounds of XFDZT were selected from TCM Systems Pharmacology and TCM Integrated databases, and potential targets were identified using the Swiss Target Prediction databases. Targets related to IBS-D were mined from the DisGeNet, Drug Bank, and Therapeutic Target databases. The intersecting protein-protein interactions (PPIs) of the drug-disease crossover genes were analysed, and a central PPI network was constructed using the STRING database and Cytoscape 3.7.2. Following Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, a gene pathway network was constructed to identify key target genes and pathways. Using haematoxylin and eosin staining and western blotting, we validated how XFDZT controls water expression in the body to treat IBS-D infection. RESULTS First, the results showed that XFDZT contained 1037 active ingredients and 1458 corresponding targets. After intersecting the 252 IBS targets, 108 targets were identified. The main targets of XFDZT were albumin, aquaporins such as AQP1 and AQP3, calmodulin, and the cellular enzyme CYP2C9. GO and KEGG enrichment predicted that the action pathways were the neuroactive ligand-receptor interaction, calcium signalling pathway, serotonergic synapse signalling pathway, cGMP-PKG signalling pathway, cAMP signalling pathway, and MLCK-MLC signalling pathway. Second, an IBS-D rat model was constructed using colorectal dilation (CRD). CRD can significantly induce IBS-D symptoms such as diarrhoea, abdominal pain, and anxiety and depression-like behaviour in rats. XFDZT (10, 20, and 40 g/kg) administered for 14, 21, and 28 days significantly reversed these changes in IBS-D rats in a time- and dose-dependent manner, suggesting that XFDZT significantly improved IBS-D. Finally, the mechanism by which XFDZT improves IBS-D was explored from the perspective of AQPs, tight junction proteins, and motility-related proteins in colon tissue. Compared with the control group, the protein expression of AQP1, AQP3, and AQP8 in the colon tissue of IBS-D rats was significantly downregulated, whereas the protein expression of AQP7 was significantly upregulated. The expression of tight junction-related proteins claudin-1, occludin, and ZO-1 in colon tissue was significantly downregulated, whereas the expression of motility-related proteins p-MLC, MLC, MLCK, and CaM in colon tissue was significantly upregulated, suggesting that IBS-D rats had AQP disorders, epithelial intercellular connections, and motility in colon tissue. The above changes were significantly reversed by XFDZT administration (5, 10, and 20 g/kg) for 14 days. CONCLUSION XFDZT significantly improved diarrhoea, abdominal pain, anxiety, and depression in IBS-D rats, and its mechanism of action may be related to the regulation of AQPs, tight junction proteins, and the MLCK-MLC pathway. This study provided a pharmacological experimental basis for the development of XFDZT as a novel drug for the treatment of IBS-D.
Collapse
Affiliation(s)
- Shasha Wang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Weiliang Jing
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Guanliang Gu
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Shile Li
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Jie Pang
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Huan Cong
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China
| | - Kuo Zhang
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China.
| | - Jingyu Yang
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China.
| | - Chunfu Wu
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Shenyang, China.
| |
Collapse
|
3
|
Yadav DK, Singh DD, Shin D. Distinctive roles of aquaporins and novel therapeutic opportunities against cancer. RSC Med Chem 2024:d4md00786g. [PMID: 39697243 PMCID: PMC11650210 DOI: 10.1039/d4md00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins responsible for facilitating the transmembrane transport of water and small solutes. Their involvement in diverse physiological functions extends to pathological conditions, including cancer, positioning them as promising targets for anticancer therapy. Tumor cells, particularly those with high metastatic potential, exhibit elevated AQP expression, reinforcing their critical role in tumor biology. Emerging evidence highlights AQPs' involvement in key oncogenic processes such as cell migration, proliferation, and tumor-associated edema, suggesting their potential as novel therapeutic targets. Despite this, the development of selective and potent AQP inhibitors has proven challenging. Efforts to produce small-molecule AQP inhibitors have largely been unsuccessful. However, recent advancements include monoclonal human IgG antibodies targeting extracellular domains of aquaporin-4, offering new therapeutic strategies, particularly in glioblastoma, where AQP-4 is overexpressed. However, recent advancements include monoclonal human IgG antibodies targeting extracellular domains of aquaporin-4, offering new therapeutic strategies, particularly in glioblastoma, where AQP-4 is over expressed. These antibodies hold promise for selectively targeting and eradicating AQP-4-expressing cells in malignant brain tumors. This review discusses the critical role AQPs play in cancer, including their contributions to tumor cell proliferation, migration, angiogenesis, and edema formation. Additionally, we explore innovative therapeutic approaches, such as antibody-based interventions, and outline potential future research directions in AQP-targeted cancer therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea +82 32 820 4948 +82 32 820 4945
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Dongyun Shin
- College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea +82 32 820 4948 +82 32 820 4945
| |
Collapse
|
4
|
Jia W, Czabanka M, Broggini T. Cell blebbing novel therapeutic possibilities to counter metastasis. Clin Exp Metastasis 2024; 41:817-828. [PMID: 39222238 PMCID: PMC11607095 DOI: 10.1007/s10585-024-10308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cells constantly reshape there plasma membrane and cytoskeleton during physiological and pathological processes (Hagmann et al. in J Cell Biochem 73:488-499, 1999). Cell blebbing, the formation of bulges or protrusions on the cell membrane, is related to mechanical stress, changes in intracellular pressure, chemical signals, or genetic anomalies. These membrane bulges interfere with the force balance of actin filaments, microtubules, and intermediate filaments, the basic components of the cytoskeleton (Charras in J Microsc 231:466-478, 2008). In the past, these blebs with circular structures were considered apoptotic markers (Blaser et al. in Dev Cell 11:613-627, 2006). Cell blebbing activates phagocytes and promotes the rapid removal of intrinsic compartments. However, recent studies have revealed that blebbing is associated with dynamic cell reorganization and alters the movement of cells in-vivo and in-vitro (Charras and Paluch in Nat Rev Mol Cell Biol 9:730-736, 2008). During tumor progression, blebbing promotes invasion of cancer cells into blood, and lymphatic vessels, facilitating tumor progression and metastasis (Weems et al. in Nature 615:517-525, 2023). Blebbing is a dominant feature of tumor cells generally absent in normal cells. Restricting tumor blebbing reduces anoikis resistance (survival in suspension) (Weems et al. in Nature 615:517-525, 2023). Hence, therapeutic intervention with targeting blebbing could be highly selective for proliferating pro-metastatic tumor cells, providing a novel therapeutic pathway for tumor metastasis with minimal side effects. Here, we review the association between cell blebbing and tumor cells, to uncover new research directions and strategies for metastatic cancer therapy. Finaly, we aim to identify the druggable targets of metastatic cancer in relation to cell blebbing.
Collapse
Affiliation(s)
- Weiyi Jia
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
5
|
Feng J, Sun Q, Chen P, Ren K, Zhang Y, Shi Y, Gao S, Song Z, Wang J, Liao F, Han D. Characterization of Cancer Cell Mechanics by Measuring Active Deformation Behavior. SMALL METHODS 2024; 8:e2300520. [PMID: 37775303 DOI: 10.1002/smtd.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/17/2023] [Indexed: 10/01/2023]
Abstract
Active deformation behavior reflects cell structural dynamics adapting to varying environmental constraints during malignancy progression. In most cases, cell mechanics is characterized by modeling using static equilibrium systems, which fails to comprehend cell deformation behavior leading to inaccuracies in distinguishing cancer cells from normal cells. Here, a method is introduced to measure the active deformation behavior of cancer cells using atomic force microscopy (AFM) and the newly developed deformation behavior cytometry (DBC). During the measurement, cells are deformed and allows a long timescale relaxation (≈5 s). Two parameters are derived to represent deformation behavior: apparent Poisson's ratio for adherent cells, which is measured with AFM and refers to the ratio of the lateral strain to the longitudinal strain of the cell, and shape recovery for suspended cells, which is measured with DBC. Active deformation behavior defines cancer cell mechanics better than traditional mechanical parameters (e.g., stiffness, diffusion, and viscosity). Additionally, aquaporins are essential for promoting the deformation behavior, while the actin cytoskeleton acts as a downstream effector. Therefore, the potential application of the cancer cell active deformation behavior as a biomechanical marker or therapeutic target in cancer treatment should be evaluated.
Collapse
Affiliation(s)
- Jiantao Feng
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Quanmei Sun
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peipei Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keli Ren
- The Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Zhang
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yahong Shi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Songkun Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100006, China
| | - Zhiwei Song
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fulong Liao
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
6
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
7
|
Login FH, Nejsum LN. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 2023; 19:604-618. [PMID: 37460759 DOI: 10.1038/s41581-023-00734-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Morley SC. T cells go with the flow: aquaporin 4 is required for full T-cell activation. J Leukoc Biol 2023; 113:541-543. [PMID: 37042742 PMCID: PMC10510064 DOI: 10.1093/jleuko/qiad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Proximal T-cell receptor signaling and subsequent T cell activation was reduced downstream of anti-CD3/CD28 ligation through small molecule inhibition of the water channel aquaporin 4.
Collapse
Affiliation(s)
- Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases and Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis School of Medicine, Campus Box 8208, 660 S. Euclid Ave, St. Louis, MO 63116, United States
| |
Collapse
|
10
|
Zamora-Ceballos M, Bárcena J, Mertens J. Eukaryotic CRFK Cells Motion Characterized with Atomic Force Microscopy. Int J Mol Sci 2022; 23:ijms232214369. [PMID: 36430849 PMCID: PMC9692694 DOI: 10.3390/ijms232214369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
We performed a time-lapse imaging with atomic force microscopy (AFM) of the motion of eukaryotic CRFK (Crandell-Rees Feline Kidney) cells adhered onto a glass surface and anchored to other cells in culture medium at 37 °C. The main finding is a gradient in the spring constant of the actomyosin cortex along the cells axis. The rigidity increases at the rear of the cells during motion. This observation as well as a dramatic decrease of the volume suggests that cells may organize a dissymmetry in the skeleton network to expulse water and drive actively the rear edge.
Collapse
Affiliation(s)
- María Zamora-Ceballos
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Johann Mertens
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Campus de Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
11
|
Heckman CA, Ademuyiwa OM, Cayer ML. How filopodia respond to calcium in the absence of a calcium-binding structural protein: non-channel functions of TRP. Cell Commun Signal 2022; 20:130. [PMID: 36028898 PMCID: PMC9414478 DOI: 10.1186/s12964-022-00927-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background For many cell types, directional locomotion depends on their maintaining filopodia at the leading edge. Filopodia lack any Ca2+-binding structural protein but respond to store-operated Ca2+ entry (SOCE). Methods SOCE was induced by first replacing the medium with Ca2+-free salt solution with cyclopiazonic acid (CPA). This lowers Ca2+ in the ER and causes stromal interacting molecule (STIM) to be translocated to the cell surface. After this priming step, CPA was washed out, and Ca2+ influx restored by addition of extracellular Ca2+. Intracellular Ca2+ levels were measured by calcium orange fluorescence. Regulatory mechanisms were identified by pharmacological treatments. Proteins mediating SOCE were localized by immunofluorescence and analyzed after image processing. Results Depletion of the ER Ca2+ increased filopodia prevalence briefly, followed by a spontaneous decline that was blocked by inhibitors of endocytosis. Intracellular Ca2+ increased continuously for ~ 50 min. STIM and a transient receptor potential canonical (TRPC) protein were found in separate compartments, but an aquaporin unrelated to SOCE was present in both. STIM1- and TRPC1-bearing vesicles were trafficked on microtubules. During depletion, STIM1 migrated to the surface where it coincided with Orai in punctae, as expected. TRPC1 was partially colocalized with Vamp2, a rapidly releasable pool marker, and with phospholipases (PLCs). TRPC1 retreated to internal compartments during ER depletion. Replenishment of extracellular Ca2+ altered the STIM1 distribution, which came to resemble that of untreated cells. Vamp2 and TRPC1 underwent exocytosis and became homogeneously distributed on the cell surface. This was accompanied by an increased prevalence of filopodia, which was blocked by inhibitors of TRPC1/4/5 and endocytosis. Conclusions Because the media were devoid of ligands that activate receptors during depletion and Ca2+ replenishment, we could attribute filopodia extension to SOCE. We propose that the Orai current stimulates exocytosis of TRPC-bearing vesicles, and that Ca2+ influx through TRPC inhibits PLC activity. This allows regeneration of the substrate, phosphatidylinositol 4,5 bisphosphate (PIP2), a platform for assembling proteins, e. g. Enabled and IRSp53. TRPC contact with PLC is required but is broken by TRPC dissemination. This explains how STIM1 regulates the cell’s ability to orient itself in response to attractive or repulsive cues. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00927-y.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA.
| | - O M Ademuyiwa
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA
| | - M L Cayer
- Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
12
|
Zieger E, Schwaha T, Burger K, Bergheim I, Wanninger A, Calcino AD. Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Front Cell Dev Biol 2022; 10:894434. [PMID: 35774230 PMCID: PMC9237387 DOI: 10.3389/fcell.2022.894434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Intercellular lumen formation is a crucial aspect of animal development and physiology that involves a complex interplay between the molecular and physical properties of the constituent cells. Embryos of the invasive freshwater mussel Dreissena rostriformis are ideal models for studying this process due to the large intercellular cavities that readily form during blastomere cleavage. Using this system, we show that recruitment of the transmembrane water channel protein aquaporin exclusively to the midbody of intercellular cytokinetic bridges is critical for lumenogenesis. The positioning of aquaporin-positive midbodies thereby influences the direction of cleavage cavity expansion. Notably, disrupting cytokinetic bridge microtubules impairs not only lumenogenesis but also cellular osmoregulation. Our findings reveal a simple mechanism that provides tight spatial and temporal control over the formation of luminal structures and likely plays an important role in water homeostasis during early cleavage stages of a freshwater invertebrate species.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Thomas Schwaha
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Katharina Burger
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Andrew D. Calcino
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| |
Collapse
|
13
|
Patteson AE, Asp ME, Janmey PA. Materials science and mechanosensitivity of living matter. APPLIED PHYSICS REVIEWS 2022; 9:011320. [PMID: 35392267 PMCID: PMC8969880 DOI: 10.1063/5.0071648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering.
Collapse
Affiliation(s)
- Alison E. Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Merrill E. Asp
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering and Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
14
|
Savitskaya MA, Zakharov II, Onishchenko GE. Apoptotic Features in Non-Apoptotic Processes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:191-206. [PMID: 35526851 DOI: 10.1134/s0006297922030014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Apoptosis is the most thoroughly studied type of regulated cell death. Certain events, such as externalization of phosphatidylserine (PS) into the outer leaflet of plasma membrane, mitochondrial outer membrane permeabilization, caspase cascade activation, DNA fragmentation and blebbing, are widely considered to be hallmarks of apoptosis as well as being traditionally viewed as irreversible. This review shows that under particular circumstances these events can also participate in physiological processes not associated with initiation of apoptosis, such as cell differentiation, division, and motility, as well as non-apoptotic types of cell death. Moreover, these events may often be reversible. This review focuses on three processes: phosphatidylserine externalization, blebbing, and activation of apoptotic caspases. Mitochondrial outer membrane permeabilization and DNA fragmentation are not discussed.
Collapse
Affiliation(s)
| | - Ilya I Zakharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
15
|
Varricchio A, Ramesh SA, Yool AJ. Novel Ion Channel Targets and Drug Delivery Tools for Controlling Glioblastoma Cell Invasiveness. Int J Mol Sci 2021; 22:ijms222111909. [PMID: 34769339 PMCID: PMC8584308 DOI: 10.3390/ijms222111909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Comprising more than half of all brain tumors, glioblastoma multiforme (GBM) is a leading cause of brain cancer-related deaths worldwide. A major clinical challenge is presented by the capacity of glioma cells to rapidly infiltrate healthy brain parenchyma, allowing the cancer to escape control by localized surgical resections and radiotherapies, and promoting recurrence in other brain regions. We propose that therapies which target cellular motility pathways could be used to slow tumor dispersal, providing a longer time window for administration of frontline treatments needed to directly eradicate the primary tumors. An array of signal transduction pathways are known to be involved in controlling cellular motility. Aquaporins (AQPs) and voltage-gated ion channels are prime candidates as pharmacological targets to restrain cell migration in glioblastoma. Published work has demonstrated AQPs 1, 4 and 9, as well as voltage-gated potassium, sodium and calcium channels, chloride channels, and acid-sensing ion channels are expressed in GBM and can influence processes of cell volume change, extracellular matrix degradation, cytoskeletal reorganization, lamellipodial and filopodial extension, and turnover of cell-cell adhesions and focal assembly sites. The current gap in knowledge is the identification of optimal combinations of targets, inhibitory agents, and drug delivery systems that will allow effective intervention with minimal side effects in the complex environment of the brain, without disrupting finely tuned activities of neuro-glial networks. Based on published literature, we propose that co-treatments using AQP inhibitors in addition to other therapies could increase effectiveness, overcoming some limitations inherent in current strategies that are focused on single mechanisms. An emerging interest in nanobodies as drug delivery systems could be instrumental for achieving the selective delivery of combinations of agents aimed at multiple key targets, which could enhance success in vivo.
Collapse
Affiliation(s)
- Alanah Varricchio
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
- Correspondence:
| |
Collapse
|
16
|
Janmey PA, Hinz B, McCulloch CA. Physics and Physiology of Cell Spreading in Two and Three Dimensions. Physiology (Bethesda) 2021; 36:382-391. [PMID: 34704856 PMCID: PMC8560373 DOI: 10.1152/physiol.00020.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cells spread on surfaces and within three-dimensional (3-D) matrixes as they grow, divide, and move. Both chemical and physical signals orchestrate spreading during normal development, wound healing, and pathological states such as fibrosis and tumor growth. Diverse molecular mechanisms drive different forms of cell spreading. This article discusses mechanisms by which cells spread in 2-D and 3-D and illustrates new directions in studies of this aspect of cell function.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Rilla K. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. J Extracell Vesicles 2021; 10:e12148. [PMID: 34533887 PMCID: PMC8448080 DOI: 10.1002/jev2.12148] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane curvature is an important factor in the regulation of cellular phenotype and is critical for various cellular activities including the shedding of extracellular vesicles (EV). One of the most striking morphological features of cells is different plasma membrane-covered extensions supported by actin core such as filopodia and microvilli. Despite the various functions of these extensions are partially unexplained, they are known to facilitate many crucial cellular functions such as migration, adhesion, absorption, and secretion. Due to the rapid increase in the research activity of EVs, there is raising evidence that one of the general features of cellular plasma membrane protrusions is to act as specialized platforms for the budding of EVs. This review will focus on early observations and recent findings supporting this hypothesis, discuss the putative budding and shedding mechanisms of protrusion-derived EVs and their biological significance.
Collapse
Affiliation(s)
- Kirsi Rilla
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
18
|
Mohammed D, Park CY, Fredberg JJ, Weitz DA. Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin. Sci Rep 2021; 11:16279. [PMID: 34381087 PMCID: PMC8358034 DOI: 10.1038/s41598-021-95740-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The migration of tumorigenic cells is a critical step for metastatic breast cancer progression. Although the role of the extracellular matrix in breast cancer cell migration has been extensively described, the effect of osmotic stress on the migration of tumor breast cohorts remains unclear. Most of our understanding on the effect of osmotic stresses on cell migration comes from studies at the level of the single cell in isolation and does not take cell-cell interactions into account. Here, we study the impact of moderate osmotic stress on the migration of cell clusters composed of either non-tumorigenic or tumorigenic cells. We observe a decrease in migration distance and speed for non-tumorigenic cells but not for tumorigenic ones. To explain these differences, we investigate how osmotic stress impacts the mechanical properties of cell clusters and affects their volumes. Our findings show that tumorigenic mesenchymal cells are less sensitive to osmotic stress than non-tumorigenic cells and suggest that this difference is associated with a lower expression of E-cadherin. Using EGTA treatments, we confirm that the establishment of cell-cell adhesive interactions is a key component of the behavior of cell clusters in response to osmotic stress. This study provides evidence on the low sensitivity of mesenchymal tumorigenic clusters to moderate osmotic stress and highlights the importance of cadherin-based junctions in the response to osmotic stress.
Collapse
Affiliation(s)
- Danahe Mohammed
- grid.38142.3c000000041936754XJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Physics, Harvard University, Cambridge, MA USA
| | - Chan Young Park
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Jeffrey J. Fredberg
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - David A. Weitz
- grid.38142.3c000000041936754XJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Physics, Harvard University, Cambridge, MA USA
| |
Collapse
|
19
|
Amanzougaghene N, Tajeri S, Yalaoui S, Lorthiois A, Soulard V, Gego A, Rametti A, Risco-Castillo V, Moreno A, Tefit M, van Gemert GJ, Sauerwein RW, Vaillant JC, Ravassard P, Pérignon JL, Froissard P, Mazier D, Franetich JF. The Host Protein Aquaporin-9 is Required for Efficient Plasmodium falciparum Sporozoite Entry into Human Hepatocytes. Front Cell Infect Microbiol 2021; 11:704662. [PMID: 34268141 PMCID: PMC8276244 DOI: 10.3389/fcimb.2021.704662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte invasion by Plasmodium sporozoites represents a promising target for innovative antimalarial therapy, but the molecular events mediating this process are still largely uncharacterized. We previously showed that Plasmodium falciparum sporozoite entry into hepatocytes strictly requires CD81. However, CD81-overexpressing human hepatoma cells remain refractory to P. falciparum infection, suggesting the existence of additional host factors necessary for sporozoite entry. Here, through differential transcriptomic analysis of human hepatocytes and hepatoma HepG2-CD81 cells, the transmembrane protein Aquaporin-9 (AQP9) was found to be among the most downregulated genes in hepatoma cells. RNA silencing showed that sporozoite invasion of hepatocytes requires AQP9 expression. AQP9 overexpression in hepatocytes increased their permissiveness to P. falciparum. Moreover, chemical disruption with the AQP9 inhibitor phloretin markedly inhibited hepatocyte infection. Our findings identify AQP9 as a novel host factor required for P. falciparum sporozoite hepatocyte-entry and indicate that AQP9 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Samir Yalaoui
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Audrey Lorthiois
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Valérie Soulard
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Audrey Gego
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Armelle Rametti
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | | | - Alicia Moreno
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Maurel Tefit
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, MMB-NCMLS, Nijmegen, Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, MMB-NCMLS, Nijmegen, Netherlands
| | - Jean-Christophe Vaillant
- AP-HP, Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - Philippe Ravassard
- CR-ICM - LGN CNRS UMR-7991, IFR des Neurosciences, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Pérignon
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Patrick Froissard
- Université Pierre et Marie Curie-Paris 6, UMR S945, Paris, France.,INSERM, U945, Paris, France
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
20
|
Unexpected localization of AQP3 and AQP4 induced by migration of primary cultured IMCD cells. Sci Rep 2021; 11:11930. [PMID: 34099798 PMCID: PMC8185088 DOI: 10.1038/s41598-021-91369-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aquaporin-2-4 (AQP) are expressed in the principal cells of the renal collecting duct (CD). Beside their role in water transport across membranes, several studies showed that AQPs can influence the migration of cells. It is unknown whether this also applies for renal CD cells. Another fact is that the expression of these AQPs is highly modulated by the external osmolality. Here we analyzed the localization of AQP2-4 in primary cultured renal inner medullary CD (IMCD) cells and how osmolality influences the migration behavior of these cells. The primary IMCD cells showed a collective migration behavior and there were no differences in the migration speed between cells cultivated either at 300 or 600 mosmol/kg. Acute increase from 300 to 600 mosmol/kg led to a marked reduction and vice versa an acute decrease from 600 to 300 mosmol/kg to a marked increase in migration speed. Interestingly, none of the analyzed AQPs were localized at the leading edge. While AQP3 disappeared within the first 2-3 rows of cells, AQP4 was enriched at the rear end. Further analysis indicated that migration induced lysosomal degradation of AQP3. This could be prevented by activation of the protein kinase A, inducing localization of AQP3 and AQP2 at the leading edge and increasing the migration speed.
Collapse
|
21
|
Läsche M, Urban H, Gallwas J, Gründker C. HPV and Other Microbiota; Who's Good and Who's Bad: Effects of the Microbial Environment on the Development of Cervical Cancer-A Non-Systematic Review. Cells 2021; 10:cells10030714. [PMID: 33807087 PMCID: PMC8005086 DOI: 10.3390/cells10030714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.
Collapse
|
22
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
23
|
Misztal T, Golaszewska A, Branska-Januszewska J, Marcinczyk N, Chabielska E, Tomasiak M, Rusak T. HAuCl 4, Putative General Aquaporins Blocker, Reduces Platelet Spreading, Filopodia Formation, Procoagulant Response, and Thrombus Formation Under Flow. Front Physiol 2020; 11:1025. [PMID: 32973556 PMCID: PMC7472438 DOI: 10.3389/fphys.2020.01025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023] Open
Abstract
Background: Recent studies indicate that aquaporin (AQP) water channels have a regulatory function in human platelet secretion and in procoagulant response of murine platelets. However, the engagement of AQPs in morphological changes, procoagulant response, and thrombus formation in human blood has never been investigated. Methods: Confocal microscopy was used to study platelet spreading, filopodia formation, ballooning, and thrombus formation under flow. Flow cytometry was utilized to assess platelet phosphatidylserine (PS) exposure and microparticles shedding. Kinetics of clot formation in vitro was evaluated by thromboelastometry. Mouse model of ferric chloride (III) (FeCl3)-induced thrombosis was used to investigate thrombus formation in vivo. Results: We found that chloroauric(III) acid (HAuCl4), a classical AQP inhibitor (10–100 μM), reduced spreading of human platelets on collagen-coated surfaces and inhibited filopodia formation in a fluid phase. Under flow conditions, HAuCl4 (100 μM) attenuated thrombi growth on collagen, platelet secretion, and PS exposure. Thrombus formation was restored by the addition of exogenous adenosine diphosphate (ADP). Collagen-evoked platelet procoagulant response (evaluated as PS exposure, shedding of microparticles, platelet-dependent thrombin generation, and membrane ballooning) was distinctly reduced by HAuCl4 (25–200 μM), as well as the dynamics of clot formation. In mouse model of thrombosis, reduction of surface of PS-positive cells within thrombus was observed in the presence of HAuCl4 (1–10 mg/kg). Conclusion: These results suggest that in human platelets AQPs are crucial for agonist-evoked morphological changes, thrombus formation under flow, and in development of procoagulant response. Antithrombotic effect in vivo suggests that nontoxic inhibitors of AQPs may be considered as potential candidates for a novel class of antiplatelet drugs.
Collapse
Affiliation(s)
- Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Agata Golaszewska
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | | | - Natalia Marcinczyk
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Marian Tomasiak
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
24
|
Caruso S, Atkin-Smith GK, Baxter AA, Tixeira R, Jiang L, Ozkocak DC, Santavanond JP, Hulett MD, Lock P, Phan TK, Poon IKH. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis. Apoptosis 2020; 24:862-877. [PMID: 31489517 DOI: 10.1007/s10495-019-01565-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During apoptosis, dying cells undergo dynamic morphological changes that ultimately lead to their disassembly into fragments called apoptotic bodies (ApoBDs). Reorganisation of the cytoskeletal structures is key in driving various apoptotic morphologies, including the loss of cell adhesion and membrane bleb formation. However, whether cytoskeletal components are also involved in morphological changes that occur later during apoptosis, such as the recently described generation of thin apoptotic membrane protrusions called apoptopodia and subsequent ApoBD formation, is not well defined. Through monitoring the progression of apoptosis by confocal microscopy, specifically focusing on the apoptopodia formation step, we characterised the presence of F-actin and microtubules in a subset of apoptopodia generated by T cells and monocytes. Interestingly, targeting actin polymerisation and microtubule assembly pharmacologically had no major effect on apoptopodia formation. These data demonstrate apoptopodia as a novel type of membrane protrusion that could be formed in the absence of actin polymerisation and microtubule assembly.
Collapse
Affiliation(s)
- Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jascinta P Santavanond
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter Lock
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
25
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
McLennan R, McKinney MC, Teddy JM, Morrison JA, Kasemeier-Kulesa JC, Ridenour DA, Manthe CA, Giniunaite R, Robinson M, Baker RE, Maini PK, Kulesa PM. Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia. Development 2020; 147:dev.185231. [PMID: 31826865 DOI: 10.1242/dev.185231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023]
Abstract
Neural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin 1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed and direction, as well as the length and stability of cell filopodia. Furthermore, AQP-1 enhances matrix metalloprotease activity and colocalizes with phosphorylated focal adhesion kinases. Colocalization of AQP-1 with EphB guidance receptors in the same migrating neural crest cells has novel implications for the concept of guided bulldozing by lead cells during migration.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Craig A Manthe
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Rasa Giniunaite
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Martin Robinson
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK.,Department of Computer Science, Parks Road, Oxford OX1 3QD, UK
| | - Ruth E Baker
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Philip K Maini
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
27
|
Fitzgerald G, Soro-Arnaiz I, De Bock K. The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer. Front Cell Dev Biol 2018; 6:100. [PMID: 30255018 PMCID: PMC6141712 DOI: 10.3389/fcell.2018.00100] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Endothelial cells (ECs) make up the lining of our blood vessels and they ensure optimal nutrient and oxygen delivery to the parenchymal tissue. In response to oxygen and/or nutrient deprivation, ECs become activated and sprout into hypo-vascularized tissues forming new vascular networks in a process termed angiogenesis. New sprouts are led by migratory tip cells and extended through the proliferation of trailing stalk cells. Activated ECs rewire their metabolism to cope with the increased energetic and biosynthetic demands associated with migration and proliferation. Moreover, metabolic signaling pathways interact and integrate with angiogenic signaling events. These metabolic adaptations play essential roles in determining EC fate and function, and are perturbed during pathological angiogenesis, as occurs in cancer. The angiogenic switch, or the growth of new blood vessels into an expanding tumor, increases tumor growth and malignancy. Limiting tumor angiogenesis has therefore long been a goal for anticancer therapy but the traditional growth factor targeted anti-angiogenic treatments have met with limited success. In recent years however, it has become increasingly recognized that focusing on altered tumor EC metabolism provides an attractive alternative anti-angiogenic strategy. In this review, we will describe the EC metabolic signature and how changes in EC metabolism affect EC fate during physiological sprouting, as well as in the cancer setting. Then, we will discuss the potential of targeting EC metabolism as a promising approach to develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Sierra-López F, Baylón-Pacheco L, Espíritu-Gordillo P, Lagunes-Guillén A, Chávez-Munguía B, Rosales-Encina JL. Influence of Micropatterned Grill Lines on Entamoeba histolytica Trophozoites Morphology and Migration. Front Cell Infect Microbiol 2018; 8:295. [PMID: 30197879 PMCID: PMC6117912 DOI: 10.3389/fcimb.2018.00295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022] Open
Abstract
Entamoeba histolytica, the causal agent of human amoebiasis, has two morphologically different phases: a resistant cyst and a trophozoite responsible for the invasion of the host tissues such as the colonic mucosa and the intestinal epithelium. During in vitro migration, trophozoites usually produce protuberances such as pseudopods and rarely filopodia, structures that have been observed in the interaction of trophozoites with human colonic epithelial tissue. To study the different membrane projections produced by the trophozoites, including pseudopods, filopodia, uropods, blebs, and others, we designed an induction system using erythrocyte extract or fibronectin (FN) in micropatterned grill lines (each micro-line containing multiple micro-portions of FN or erythrocyte extract) on which the trophozoites were placed in culture for migration assays. Using light, confocal, and scanning electron microscopy, we established that E. histolytica trophozoites frequently produce short and long filopodia, large retractile uropods in the rear, pseudopods, blebs, and others structures, also showing continuous migration periods. The present study provides a simple migration method to induce trophozoites to generate abundant membrane protrusion structures that are rarely obtained in normal or induced cultures, such as long filopodia; this method will allow a–better understanding of the interactions of trophozoites with FN and cell debris. E. histolytica trophozoites motility plays an important role in invasive amoebiasis. It has been proposed that both physical forces and chemical signals are involved in the trophozoite motility and migration. However, the in vivo molecules that drive the chemotactic migration remain to be determined. We propose the present assay to study host molecules that guide chemotactic behavior because the method is highly reproducible, and a live image of cell movement and migration can be quantified.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Espíritu-Gordillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
29
|
Martínez-Ramírez I, Carrillo-García A, Contreras-Paredes A, Ortiz-Sánchez E, Cruz-Gregorio A, Lizano M. Regulation of Cellular Metabolism by High-Risk Human Papillomaviruses. Int J Mol Sci 2018; 19:1839. [PMID: 29932118 PMCID: PMC6073392 DOI: 10.3390/ijms19071839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The alteration of glucose metabolism is one of the first biochemical characteristics associated with cancer cells since most of these cells increase glucose consumption and glycolytic rates even in the presence of oxygen, which has been called “aerobic glycolysis” or the Warburg effect. Human papillomavirus (HPV) is associated with approximately 5% of all human cancers worldwide, principally to cervical cancer. E6 and E7 are the main viral oncoproteins which are required to preserve the malignant phenotype. These viral proteins regulate the cell cycle through their interaction with tumor suppressor proteins p53 and pRB, respectively. Together with the viral proteins E5 and E2, E6 and E7 can favor the Warburg effect and contribute to radio- and chemoresistance through the increase in the activity of glycolytic enzymes, as well as the inhibition of the Krebs cycle and the respiratory chain. These processes lead to a fast production of ATP obtained by Warburg, which could help satisfy the high energy demands of cancer cells during proliferation. In this way HPV proteins could promote cancer hallmarks. However, it is also possible that during an early HPV infection, the Warburg effect could help in the achievement of an efficient viral replication.
Collapse
Affiliation(s)
- Imelda Martínez-Ramírez
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Elizabeth Ortiz-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Alfredo Cruz-Gregorio
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
30
|
Jensen HH, Holst MR, Login FH, Morgen JJ, Nejsum LN. Ectopic expression of aquaporin-5 in noncancerous epithelial MDCK cells changes cellular morphology and actin fiber formation without inducing epithelial-to-mesenchymal transition. Am J Physiol Cell Physiol 2018; 314:C654-C661. [DOI: 10.1152/ajpcell.00186.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.
Collapse
Affiliation(s)
- Helene H. Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mikkel R. Holst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jeanette J. Morgen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene N. Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Stahl K, Rahmani S, Prydz A, Skauli N, MacAulay N, Mylonakou MN, Torp R, Skare Ø, Berg T, Leergaard TB, Paulsen RE, Ottersen OP, Amiry-Moghaddam M. Targeted deletion of the aquaglyceroporin AQP9 is protective in a mouse model of Parkinson's disease. PLoS One 2018; 13:e0194896. [PMID: 29566083 PMCID: PMC5864064 DOI: 10.1371/journal.pone.0194896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
More than 90% of the cases of Parkinson’s disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remains unknown. We have previously shown that aquaglyceroporin AQP9 is expressed in dopaminergic neurons and astrocytes of rodent brain. AQP9 is permeable to a broad spectrum of substrates including purines, pyrimidines, and lactate, in addition to water and glycerol. Here we test our hypothesis that AQP9 serves as an influx route for exogenous toxins and, hence, may contribute to the selective vulnerability of nigral dopaminergic (tyrosine hydroxylase-positive) neurons. Using Xenopus oocytes injected with Aqp9 cRNA, we show that AQP9 is permeable to the parkinsonogenic toxin 1-methyl-4-phenylpyridinium (MPP+). Stable expression of AQP9 in HEK cells increases their vulnerability to MPP+ and to arsenite—another parkinsonogenic toxin. Conversely, targeted deletion of Aqp9 in mice protects nigral dopaminergic neurons against MPP+ toxicity. A protective effect of Aqp9 deletion was demonstrated in organotypic slice cultures of mouse midbrain exposed to MPP+in vitro and in mice subjected to intrastriatal injections of MPP+in vivo. Seven days after intrastriatal MPP+ injections, the population of tyrosine hydroxylase-positive cells in substantia nigra is reduced by 48% in Aqp9 knockout mice compared with 67% in WT littermates. Our results show that AQP9 –selectively expressed in catecholaminergic neurons—is permeable to MPP+ and suggest that this aquaglyceroporin contributes to the selective vulnerability of nigral dopaminergic neurons by providing an entry route for parkinsonogenic toxins. To our knowledge this is the first evidence implicating a toxin permeable membrane channel in the pathophysiology of Parkinson’s disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacokinetics
- Animals
- Aquaporins/genetics
- Disease Models, Animal
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Female
- Gene Deletion
- HEK293 Cells
- Humans
- MPTP Poisoning/genetics
- MPTP Poisoning/metabolism
- MPTP Poisoning/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutagenesis, Site-Directed
- Neuroprotection/genetics
- Neuroprotective Agents/metabolism
- Parkinson Disease/genetics
- Parkinson Disease/pathology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/pathology
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Katja Stahl
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Soulmaz Rahmani
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Agnete Prydz
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria N. Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Norway Biotechnology Centre, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Torill Berg
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Karolinska Institutet, Stockholm, Sweden
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
32
|
Chengappa P, Sao K, Jones TM, Petrie RJ. Intracellular Pressure: A Driver of Cell Morphology and Movement. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:185-211. [PMID: 29551161 DOI: 10.1016/bs.ircmb.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular pressure, generated by actomyosin contractility and the directional flow of water across the plasma membrane, can rapidly reprogram cell shape and behavior. Recent work demonstrates that cells can generate intracellular pressure with a range spanning at least two orders of magnitude; significantly, pressure is implicated as an important regulator of cell dynamics, such as cell division and migration. Changes to intracellular pressure can dictate the mechanisms by which single human cells move through three-dimensional environments. In this review, we chronicle the classic as well as recent evidence demonstrating how intracellular pressure is generated and maintained in metazoan cells. Furthermore, we highlight how this potentially ubiquitous physical characteristic is emerging as an important driver of cell morphology and behavior.
Collapse
Affiliation(s)
| | - Kimheak Sao
- Drexel University, Philadelphia, PA, United States
| | - Tia M Jones
- Drexel University, Philadelphia, PA, United States
| | | |
Collapse
|
33
|
Casselbrant A, Helander HF. Effects of fixation on electrophysiology and structure of human jejunal villi. Microsc Res Tech 2018; 81:376-383. [PMID: 29322584 DOI: 10.1002/jemt.22988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023]
Abstract
The villi of human jejunum vary in size and shape during different functional conditions. In the base the lamina propria is isotonic with blood, in the tip hyperosmotic. Here we study electrophysiological and morphological effects of incubation in hypotonic, isotonic, or hypertonic solutions, and to test various isotonic fixatives for microscopy. Samples of jejunal mucosae, obtained during surgery in obese patients, were studied in Ussing chambers where electrical parameters were registered during incubation in Krebs solution at various osmolarities, and during fixation in formaldehyde, glutaraldehyde, or osmium tetroxide (OsO4 ). The same fixatives were used for other jejunal specimens that were fixed directly for light microscopy. Morphometry was carried out to determine size and height of villi, proportion of lamina propria, and surface enlargement due to villi. Ussing chamber incubation in fluids with low osmolarity resulted in increased electrical resistance and epithelial swelling. Opposite results were obtained at high osmolality. Fixation was faster in formaldehyde than in glutaraldehyde or OsO4 . In biopsies processed directly for light microscopy the proportions of lamina propria of the mucosa, and of lamina propria of villi, were significantly larger in biopsies fixed in formaldehyde than after fixation in glutaraldehyde or OsO4 . The villus tips sometimes ended with a bleb with prominent spaces between the epithelial cells. In summary, jejunal villi swell in vitro when exposed to hypotonic solutions, and shrink in hypertonic solutions. Much of the morphological changes occurring during fixation can be related to the physiological hyperosmolar milieu in villus tips.
Collapse
Affiliation(s)
- Anna Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Herbert F Helander
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Abstract
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.
Collapse
|
35
|
Epstein T, Gatenby RA, Brown JS. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 2017; 12:e0185085. [PMID: 28922380 PMCID: PMC5602667 DOI: 10.1371/journal.pone.0185085] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/06/2017] [Indexed: 11/28/2022] Open
Abstract
To maintain optimal fitness, a cell must balance the risk of inadequate energy reserve for response to a potentially fatal perturbation against the long-term cost of maintaining high concentrations of ATP to meet occasional spikes in demand. Here we apply a game theoretic approach to address the dynamics of energy production and expenditure in eukaryotic cells. Conventionally, glucose metabolism is viewed as a function of oxygen concentrations in which the more efficient oxidation of glucose to CO2 and H2O produces all or nearly all ATP except under hypoxic conditions when less efficient (2 ATP/ glucose vs. about 36ATP/glucose) anaerobic metabolism of glucose to lactic acid provides an emergency backup. We propose an alternative in which energy production is governed by the complex temporal and spatial dynamics of intracellular ATP demand. In the short term, a cell must provide energy for constant baseline needs but also maintain capacity to rapidly respond to fluxes in demand particularly due to external perturbations on the cell membrane. Similarly, longer-term dynamics require a trade-off between the cost of maintaining high metabolic capacity to meet uncommon spikes in demand versus the risk of unsuccessfully responding to threats or opportunities. Here we develop a model and computationally explore the cell’s optimal mix of glycolytic and oxidative capacity. We find the Warburg effect, high glycolytic metabolism even under normoxic conditions, is represents a metabolic strategy that allow cancer cells to optimally meet energy demands posed by stochastic or fluctuating tumor environments.
Collapse
Affiliation(s)
- Tamir Epstein
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, United States of America
- * E-mail:
| | - Robert A. Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Joel S. Brown
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, United States of America
- Department of Biological Sciences & Cancer Center, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
36
|
Abstract
Lysosomes and lysosomal proteases have been found to participate during several forms of cell death pathways including apoptosis. A critical step in the mediation of apoptotic signaling is the release of cathepsins to the cytosol, a process known as lysosomal membrane permeabilization (LMP). In this chapter, we describe immunofluorescence detection of LMP in cell cultures stained for cathepsin B and LAMP-2 using three confocal techniques namely laser scanning, spinning disk, and aperture correlation spinning disk confocal to obtain images. Image analysis is performed using Huygens software for deconvolution. LMP results in a decrease in the fraction of cathepsin B colocalizing with LAMP-2, which is quantified through Manders' colocalization coefficient. Analysis of the images obtained by the three techniques show the same trend but the magnitude of the decrease differs due to the axial resolution. The observations emphasize the use of highest possible resolution when determining colocalization.
Collapse
|
37
|
The role of aquaporin-5 in cancer cell migration: A potential active participant. Int J Biochem Cell Biol 2016; 79:271-276. [PMID: 27609140 DOI: 10.1016/j.biocel.2016.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 11/23/2022]
Abstract
Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics.
Collapse
|
38
|
Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. Int J Mol Sci 2016; 17:ijms17091399. [PMID: 27589719 PMCID: PMC5037679 DOI: 10.3390/ijms17091399] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Collapse
|
39
|
Fragment Screening of Human Aquaporin 1. Int J Mol Sci 2016; 17:449. [PMID: 27023529 PMCID: PMC4848905 DOI: 10.3390/ijms17040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS) to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 "fragments", i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1) using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD), with an temperature of aggregation shift ΔTagg of +4 to +50 °C) in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface.
Collapse
|
40
|
Holm A, Magnusson KE, Vikström E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages. Front Cell Infect Microbiol 2016; 6:32. [PMID: 27047801 PMCID: PMC4805602 DOI: 10.3389/fcimb.2016.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|
41
|
Molinas A, Mirazimi A, Holm A, Loitto VM, Magnusson KE, Vikström E. Protective role of host aquaporin 6 against Hazara virus, a model for Crimean-Congo hemorrhagic fever virus infection. FEMS Microbiol Lett 2016; 363:fnw058. [PMID: 26976854 DOI: 10.1093/femsle/fnw058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/26/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an arthropod-borne pathogen that causes infectious disease with severe hemorrhagic manifestations in vascular system in humans. The proper function of the cells in the vascular system is critically regulated by aquaporins (AQP), water channels that facilitate fluxes of water and small solutes across membranes. With Hazara virus as a model for CCHFV, we investigated the effects of viruses on AQP6 and the impact of AQP6 on virus infectivity in host cells, using transiently expressed GFP-AQP6 cells, immunofluorescent assay for virus detection, epifluorescent imaging of living cells and confocal microscopy. In GFP-AQP6 expressing cells, Hazara virus reduced both the cellular and perinuclear AQP6 distribution and changed the cell area. Infection of human cell with CCHFV strain IbAR 10200 downregulated AQP6 expression at mRNA level. Interestingly, the overexpression of AQP6 in host cells decreased the infectivity of Hazara virus, speaking for a protective role of AQP6. We suggest the possibility for AQP6 being a novel player in the virus-host interactions, which may lead to less severe outcomes of an infection.
Collapse
Affiliation(s)
- Andrea Molinas
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Vesa M Loitto
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
42
|
Leijnse N, Oddershede LB, Bendix PM. An updated look at actin dynamics in filopodia. Cytoskeleton (Hoboken) 2016; 72:71-9. [PMID: 25786787 DOI: 10.1002/cm.21216] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/10/2022]
Abstract
Cells dynamically interact with and probe their environment by growing finger-like structures named filopodia. The dynamics of filopodia are mainly caused by the actin rich core or shaft which sits inside the filopodial membrane and continuously undergoes changes like growth, shrinking, bending, and rotation. Recent experiments combining advanced imaging and manipulation tools have provided detailed quantitative data on the correlation between mechanical properties of filopodia, their molecular composition, and the dynamic architecture of the actin structure. These experiments have revealed how retrograde flow and twisting of the actin shaft within filopodia can generate traction on external substrates. Previously, the mechanism behind filopodial pulling was mainly attributed to retrograde flow of actin, but recent experiments have shown that rotational dynamics can also contribute to the traction force. Although force measurements have indicated a step-like behavior in filopodial pulling, no direct evidence has been provided to link this behavior to a molecular motor like myosin. Therefore, the underlying biochemical and mechanical mechanisms behind filopodial force generation still remain to be resolved.
Collapse
Affiliation(s)
- Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | |
Collapse
|
43
|
Khajah MA, Luqmani YA. Involvement of Membrane Blebbing in Immunological Disorders and Cancer. Med Princ Pract 2016; 25 Suppl 2:18-27. [PMID: 26488882 PMCID: PMC5588526 DOI: 10.1159/000441848] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022] Open
Abstract
Cellular blebbing is a unique form of dynamic protrusion emanating from the plasma membrane which can be either apoptotic or nonapoptotic in nature. Blebs have been observed in a wide variety of cell types and in response to multiple mechanical and chemical stimuli. They have been linked to various physiological and pathological processes including tumor motility and invasion, as well as to various immunological disorders. They can form and retract extremely rapidly in seconds or minutes, or slowly over hours or days. This review focuses on recent evidence regarding the role of blebbing in cell locomotion with particular emphasis on its role in tumor metastasis, indicating the role of specific causative molecules. The phenomenon of blebbing has been observed in endocrine-resistant breast cancer cells in response to brief exposure to extracellular alkaline pH, which leads to enhanced invasive capacity. Genetic or pharmacological targeting of cellular blebs could serve as a potential therapeutic option to control tumor metastasis.
Collapse
Affiliation(s)
| | - Yunus A. Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- *Yunus A. Luqmani, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
44
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
45
|
Holm A, Karlsson T, Vikström E. Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages. Front Microbiol 2015; 6:915. [PMID: 26388857 PMCID: PMC4558532 DOI: 10.3389/fmicb.2015.00915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa controls production of its multiple virulence factors and biofilm development via the quorum sensing (QS) system. QS signals also interact with and affect the behavior of eukaryotic cells. Host water homeostasis and aquaporins (AQP) are essential during pathological conditions since they interfere with the cell cytoskeleton and signaling, and hereby affect cell morphology and functions. We investigated the contribution of P. aeruginosa QS genes lasI/rhlI to phagocytosis, cell morphology, AQP9 expression, and distribution in human macrophages, using immunoblotting, confocal, and nanoscale imaging. Wild type P. aeruginosa with a functional QS system was a more attractive prey for macrophages than the lasI/rhlI mutant lacking the production of QS molecules, 3O-C12-HSL, and C4-HSL, and associated virulence factors. The P. aeruginosa infections resulted in elevated AQP9 expression and relocalization to the leading and trailing regions in macrophages, increased cell area and length; bacteria with a functional QS system lasI/rhlI achieved stronger responses. We present evidence for a new role of water fluxes via AQP9 during bacteria–macrophage interaction and for the QS system as an important stimulus in this process. These novel events in the interplay between P. aeruginosa and macrophages may influence on the outcome of infection, inflammation, and development of disease.
Collapse
Affiliation(s)
- Angelika Holm
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Thommie Karlsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University Linköping, Sweden
| |
Collapse
|
46
|
Enhanced expression of aquaporin 9 in activated polymorphonuclear leukocytes in patients with systemic inflammatory response syndrome. Shock 2015; 42:322-6. [PMID: 24978896 DOI: 10.1097/shk.0000000000000218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aquaporins (AQPs) are water channels of cell membranes. All living cells experience osmotic pressure changes in their environment, but the mechanism by which water influx occurs was not known until the discovery of AQPs. AQP9, which is expressed in human polymorphonuclear leukocytes (PMNLs), is reported to relate to morphologic changes of PMNLs in vitro. We examined the expression of AQP9 in PMNLs from patients with systemic inflammatory response syndrome (SIRS) and addressed the role of AQP9 in both morphologic and functional changes of PMNLs in the SIRS condition. Fourteen patients with SIRS were included in our study. Polyclonal antibody was used for the AQP9 assay. F-actin polymerization, oxidative activity, and the expression of AQP9 in PMNLs with and without stimulation by N-formylmethionyl-leucyl-phenylalanine were evaluated by flow cytometry. Expression of AQP9, F-actin polymerization, and oxidative activity in PMNLs were increased significantly in patients with SIRS compared with those in healthy volunteers. The time course of AQP9 fluorescence in PMNLs corresponded to the time course of F-actin polymerization, which showed peak fluorescence at 1 min after N-formylmethionyl-leucyl-phenylalanine stimulation. The expression of AQP9 in PMNLs is increased significantly in SIRS patients. The increased expression of AQP9 in SIRS patients might be associated with F-actin polymerization in PMNLs, which could affect both morphologic and functional changes of PMNLs in the SIRS condition.
Collapse
|
47
|
Taloni A, Kardash E, Salman OU, Truskinovsky L, Zapperi S, La Porta CAM. Volume Changes During Active Shape Fluctuations in Cells. PHYSICAL REVIEW LETTERS 2015; 114:208101. [PMID: 26047252 DOI: 10.1103/physrevlett.114.208101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Cells modify their volume in response to changes in osmotic pressure but it is usually assumed that other active shape variations do not involve significant volume fluctuations. Here we report experiments demonstrating that water transport in and out of the cell is needed for the formation of blebs, commonly observed protrusions in the plasma membrane driven by cortex contraction. We develop and simulate a model of fluid-mediated membrane-cortex deformations and show that a permeable membrane is necessary for bleb formation which is otherwise impaired. Taken together, our experimental and theoretical results emphasize the subtle balance between hydrodynamics and elasticity in actively driven cell morphological changes.
Collapse
Affiliation(s)
- Alessandro Taloni
- CNR-Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via Roberto Cozzi 53, 20125 Milano, Italy
- Center for Complexity and Biosystems and Department of Physics, University of Milano, Via Celoria 16, 20133 Milano, Italy
| | - Elena Kardash
- Departments of Biochemistry and Molecular Biology, Sciences II, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Oguz Umut Salman
- CNR-Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via Roberto Cozzi 53, 20125 Milano, Italy
- CNRS, LSPM UPR3407, Université Paris 13, Sorbonne Paris Cit, 93430 Villetaneuse, France
| | - Lev Truskinovsky
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - Stefano Zapperi
- CNR-Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via Roberto Cozzi 53, 20125 Milano, Italy
- Center for Complexity and Biosystems and Department of Physics, University of Milano, Via Celoria 16, 20133 Milano, Italy
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, 10126 Torino, Italy
- Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076 Aalto, Finland
| | - Caterina A M La Porta
- Center for Complexity and Biosystems and Department of Bioscience, University of Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
48
|
von Bülow J, Golldack A, Albers T, Beitz E. The amoeboidalDictyosteliumaquaporin AqpB is gated via Tyr216 andaqpBgene deletion affects random cell motility. Biol Cell 2015; 107:78-88. [DOI: 10.1111/boc.201400070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/22/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Julia von Bülow
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| | - Tineke Albers
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| | - Eric Beitz
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| |
Collapse
|
49
|
Stock C, Schwab A. Ion channels and transporters in metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2638-46. [PMID: 25445667 DOI: 10.1016/j.bbamem.2014.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
Abstract
An elaborate interplay between ion channels and transporters, components of the cytoskeleton, adhesion molecules, and signaling cascades provides the basis for each major step of the metastatic cascade. Ion channels and transporters contribute to cell motility by letting through or transporting ions essential for local Ca2+, pH and--in cooperation with water permeable aquaporins--volume homeostasis. Moreover, in addition to the actual ion transport they, or their auxiliary subunits, can display non-conducting activities. They can exert kinase activity in order to phosphorylate cytoskeletal constituents or their associates. They can become part of signaling processes by permeating Ca2+, by generating local pH-nanodomains or by being final downstream effectors. A number of channels and transporters are found at focal adhesions, interacting directly or indirectly with proteins of the extracellular matrix, with integrins or with components of the cytoskeleton. We also include the role of aquaporins in cell motility. They drive the outgrowth of lamellipodia/invadopodia or control the number of β1 integrins in the plasma membrane. The multitude of interacting ion channels and transporters (called transportome) including the associated signaling events holds great potential as therapeutic target(s) for anticancer agents that are aimed at preventing metastasis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| |
Collapse
|
50
|
The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res 2014; 32:665-79. [PMID: 25145337 DOI: 10.1007/s11095-014-1494-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The further characterization of the cell line RPMI 2650 and the evaluation of different culture conditions for an in vitro model for nasal mucosa. METHODS Cells were cultured in media MEM or A-MEM at air-liquid (A-L) or liquid-liquid (L-L) interfaces for 1 or 3 weeks. Different cryopreservation methods and cell culture techniques were evaluated with immunolabelling of junctional proteins, ultrastructural analysis using electron microscopy, transepithelial electrical resistance (TEER) measurements, permeation studies with dextran and jacalin, and gene expression profiling of 84 drug transporters. RESULTS Cell proliferation and differentiation depended on the used medium. The established epithelia expressed occludin, claudin-1, and E-cadherin under all conditions. Cells grown at the A-L interface formed more layers and exhibited a higher TEER and lower dextran and jacalin permeability than at the L-L interface, where cells morphologically exhibited a more differentiated phenotype. The expression of ABC and SLC transporters depended on culture duration and interface. CONCLUSIONS The RPMI 2650 cells form a polarized epithelium resembling nasal mucosa. However, different culture conditions have a significant effect on cell ultrastructure, barrier integrity, and gene expression, and should be considered when using this cell line as an in vitro model for drug permeability studies and screening of nasal drug candidates.
Collapse
|