1
|
Karasová M, Jobst M, Framke D, Bergen J, Meier-Menches S, Keppler B, Koellensperger G, Zanghellini J, Gerner C, Del Favero G. Mechanical cues rewire lipid metabolism and support chemoresistance in epithelial ovarian cancer cell lines OVCAR3 and SKOV3. Cell Commun Signal 2025; 23:193. [PMID: 40264231 PMCID: PMC12016438 DOI: 10.1186/s12964-025-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest cancers in women, and acquired chemoresistance is a major contributor of aggressive phenotypes. Overcoming treatment failure and disease recurrence is therefore an ambitious goal. Ovarian cancer develops in a biophysically challenging environment where the cells are constantly exposed to mechanical deformation originating in the abdomen and shear stress caused by the accumulation of ascitic fluid in the peritoneal cavity. Therefore, mechanical stimulation can be seen as an inseparable part of the tumor microenvironment. The role of biomechanics in shaping tumor metabolism is emerging and promises to be a real game changer in the field of cancer biology. Focusing on two different epithelial ovarian cancer cell lines (SKOV3 and OVCAR3), we explored the impact of shear stress on cellular behavior driven by mechanosensitive transcription factors (TFs). Here, we report data linking physical triggers to the alteration of lipid metabolism, ultimately supporting increased chemoresistance. Mechanistically, shear stress induced adaptation of cell membrane and actin cytoskeleton which were accompanied by the regulation of nuclear translocation of SREBP2 and YAP1. This was associated with increased cholesterol uptake/biosynthesis and decreased sensitivity to the ruthenium-based anticancer drug BOLD-100. Overall, the present study contributes to shedding light on the molecular pathways connecting mechanical cues, tumor metabolism and drug responsiveness.
Collapse
Affiliation(s)
- Martina Karasová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
- Doctoral School of Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Denise Framke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
- Doctoral School of Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Bernhard Keppler
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria.
| |
Collapse
|
2
|
Mehta G, Horst E, Cotter L, Bonini M, Novak C, Treacher N, Zhang Y, Jackson Z, Narayanan IV, Wuchu F, Nenwani M, Fischer Z, Sunshine A, Lin Z, Tran L, Nagrath D, Ljungman M, Maturen K, DiFeo A, Nordsletten D. Ascitic Shear Stress Activates GPCRs and Downregulates Mucin 15 to Promote Ovarian Cancer Malignancy. RESEARCH SQUARE 2024:rs.3.rs-5160301. [PMID: 39483899 PMCID: PMC11527234 DOI: 10.21203/rs.3.rs-5160301/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The accumulation of ascites in patients with ovarian cancer increases their risk of transcoelomic metastasis. Although common routes of peritoneal dissemination are known to follow distinct paths of circulating ascites, the mechanisms that initiate these currents and subsequent fluid shear stresses are not well understood. Here, we developed a patient-based, boundary-driven computational fluid dynamics model to predict an upper range of fluid shear stress generated by the accumulation of ascites. We show that ovarian cancer cells exposed to ascitic shear stresses display heightened G protein-coupled receptor mechanosignaling and the induction of an epithelial to mesenchymal-like transition through p38α mitogen-activated protein kinase and mucin 15 modulation. These findings along with a shear-induced immunomodulatory secretome position elevated shear stress as a protumoural signal. Together, this study suggests inhibition of the Gαq protein and restriction of ascites accumulation as maintenance strategies for overcoming mechanotransduction-mediated metastasis within the peritoneal cavity.
Collapse
|
3
|
Ruhi MK, Rickard BP, Overchuk M, Sinawang PD, Stanley E, Mansi M, Sierra RG, Hayes B, Tan X, Akin D, Chen B, Demirci U, Rizvi I. PpIX-enabled fluorescence-based detection and photodynamic priming of platinum-resistant ovarian cancer cells under fluid shear stress. Photochem Photobiol 2024; 100:1603-1621. [PMID: 39189505 DOI: 10.1111/php.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/28/2024]
Abstract
Over 75% percent of ovarian cancer patients are diagnosed with advanced-stage disease characterized by unresectable intraperitoneal dissemination and the presence of ascites, or excessive fluid build-up within the abdomen. Conventional treatments include cytoreductive surgery followed by multi-line platinum and taxane chemotherapy regimens. Despite an initial response to treatment, over 75% of patients with advanced-stage ovarian cancer will relapse and succumb to platinum-resistant disease. Recent evidence suggests that fluid shear stress (FSS), which results from the movement of fluid such as ascites, induces epithelial-to-mesenchymal transition and confers resistance to carboplatin in ovarian cancer cells. This study demonstrates, for the first time, that FSS-induced platinum resistance correlates with increased cellular protoporphyrin IX (PpIX), the penultimate downstream product of heme biosynthesis, the production of which can be enhanced using the clinically approved pro-drug aminolevulinic acid (ALA). These data suggest that, with further investigation, PpIX could serve as a fluorescence-based biomarker of FSS-induced platinum resistance. Additionally, this study investigates the efficacy of PpIX-enabled photodynamic therapy (PDT) and the secretion of extracellular vesicles under static and FSS conditions in Caov-3 and NIH:OVCAR-3 cells, two representative cell lines for high-grade serous ovarian carcinoma (HGSOC), the most lethal form of the disease. FSS induces resistance to ALA-PpIX-mediated PDT, along with a significant increase in the number of EVs. Finally, the ability of PpIX-mediated photodynamic priming (PDP) to enhance carboplatin efficacy under FSS conditions is quantified. These preliminary findings in monolayer cultures necessitate additional studies to determine the feasibility of PpIX as a fluorescence-based indicator, and mediator of PDP, to target chemoresistance in the context of FSS.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Brittany P Rickard
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Prima Dewi Sinawang
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, California, USA
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Elizabeth Stanley
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, North Carolina, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratories, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California, USA
- Department of Radiology, School of Medicine, Canary Center at Stanford, Stanford University, Palo Alto, California, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Kang B, Shin J, Kang D, Chang S, Rhyou C, Cho SW, Lee H. Spatial regulation of hydrogel polymerization reaction using ultrasound-driven streaming vortex. ULTRASONICS SONOCHEMISTRY 2024; 110:107053. [PMID: 39270467 DOI: 10.1016/j.ultsonch.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Ultrasound is gaining attention as an alternative tool to regulate chemical processes due to its advantages such as high cost-effectiveness, rapid response, and contact-free operation. Previous studies have demonstrated that acoustic bubble cavitation can generate energy to synthesize functional materials. In this study, we introduce a method to control the spatial distribution of physical and chemical properties of hydrogels by using an ultrasound-mediated particle manipulation technique. We developed a surface acoustic wave device that can localize micro-hydrogel particles, which are formed during gelation, in a hydrogel solution. The hydrogel fabricated with the application of surface acoustic waves exhibited gradients in mechanical, mass transport, and structural properties. We demonstrated that the gel having the property gradients could be utilized as a cell-culture substrate dictating cellular shapes, which is beneficial for interfacial tissue engineering. The acoustic method and fabricated hydrogels with property gradients can be applied to design flexible polymeric materials for soft robotics, biomedical sensors, or bioelectronics applications.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sooho Chang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanryeol Rhyou
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Overchuk M, Rickard BP, Tulino J, Tan X, Ligler FS, Huang HC, Rizvi I. Overcoming the effects of fluid shear stress in ovarian cancer cell lines: Doxorubicin alone or photodynamic priming to target platinum resistance. Photochem Photobiol 2024; 100:1676-1693. [PMID: 38849970 PMCID: PMC11568959 DOI: 10.1111/php.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024]
Abstract
Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.
Collapse
Affiliation(s)
- Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| | - Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin Tulino
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Frances S. Ligler
- Department of Biomedical Engineering, Texas A&M University, Collage Station, TX, 77843 USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Chen C, Boché A, Wang Z, Lopez E, Peng J, Carreiras F, Schanne-Klein MC, Chen Y, Lambert A, Aimé C. The Balance Between Shear Flow and Extracellular Matrix in Ovarian Cancer-on-Chip. Adv Healthc Mater 2024; 13:e2400938. [PMID: 38829702 DOI: 10.1002/adhm.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Ovarian cancer is the most lethal gynecologic cancer in developed countries. In the tumor microenvironment, the extracellular matrix (ECM) and flow shear stress are key players in directing ovarian cancer cells invasion. Artificial ECM models based only on ECM proteins are used to build an ovarian tumor-on-chip to decipher the crosstalk between ECM and shear stress on the migratory behavior and cellular heterogeneity of ovarian tumor cells. This work shows that in the shear stress regime of the peritoneal cavity, the ECM plays a major role in driving individual or collective ovarian tumor cells migration. In the presence of basement membrane proteins, migration is more collective than on type I collagen regardless of shear stress. With increasing shear stress, individual cell migration is enhanced; while, no significant impact on collective migration is measured. This highlights the central position that ECM and flow shear stress should hold in in vitro ovarian cancer models to deepen understanding of cellular responses and improve development of ovarian cancer therapeutic platforms. In this frame, adding flow provides significant improvement in biological relevance over the authors' previous work. Further steps for enhanced clinical relevance require not only multiple cell lines but also patient-derived cells and sera.
Collapse
Affiliation(s)
- Changchong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Alphonse Boché
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Groupe Matrice Extracellulaire et physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy, 95000, France
| | - Zixu Wang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Elliot Lopez
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Juan Peng
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Groupe Matrice Extracellulaire et physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy, 95000, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Ambroise Lambert
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Groupe Matrice Extracellulaire et physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy, 95000, France
| | - Carole Aimé
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| |
Collapse
|
7
|
Clevenger AJ, McFarlin MK, Gorley JPM, Solberg SC, Madyastha AK, Raghavan SA. Advances in cancer mechanobiology: Metastasis, mechanics, and materials. APL Bioeng 2024; 8:011502. [PMID: 38449522 PMCID: PMC10917464 DOI: 10.1063/5.0186042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Within the tumor microenvironment (TME), tumor cells are exposed to numerous mechanical forces, both internally and externally, which contribute to the metastatic cascade. From the initial growth of the tumor to traveling through the vasculature and to the eventual colonization of distant organs, tumor cells are continuously interacting with their surroundings through physical contact and mechanical force application. The mechanical forces found in the TME can be simplified into three main categories: (i) shear stress, (ii) tension and strain, and (iii) solid stress and compression. Each force type can independently impact tumor growth and progression. Here, we review recent bioengineering strategies, which have been employed to establish the connection between mechanical forces and tumor progression. While many cancers are explored in this review, we place great emphasis on cancers that are understudied in their response to mechanical forces, such as ovarian and colorectal cancers. We discuss the major steps of metastatic transformation and present novel, recent advances in model systems used to study how mechanical forces impact the study of the metastatic cascade. We end by summarizing systems that incorporate multiple forces to expand the complexity of our understanding of how tumor cells sense and respond to mechanical forces in their environment. Future studies would also benefit from the inclusion of time or the aspect of mechanical memory to further enhance this field. While the knowledge of mechanical forces and tumor metastasis grows, developing novel materials and in vitro systems are essential to providing new insight into predicting, treating, and preventing cancer progression and metastasis.
Collapse
Affiliation(s)
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
8
|
Buckley M, Kramer M, Johnson B, Huskin G, Berry J, Sewell-Loftin MK. Mechanical activation and expression of HSP27 in epithelial ovarian cancer. Sci Rep 2024; 14:2856. [PMID: 38310132 PMCID: PMC10838328 DOI: 10.1038/s41598-024-52992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
Understanding the complex biomechanical tumor microenvironment (TME) is of critical importance in developing the next generation of anti-cancer treatment strategies. This is especially true in epithelial ovarian cancer (EOC), the deadliest of the gynecologic cancers due to recurrent disease or chemoresistance. However, current models of EOC progression provide little control or ability to monitor how changes in biomechanical parameters alter EOC cell behaviors. In this study, we present a microfluidic device designed to permit biomechanical investigations of the ovarian TME. Using this microtissue system, we describe how biomechanical stimulation in the form of tensile strains upregulate phosphorylation of HSP27, a heat shock protein implicated in ovarian cancer chemoresistance. Furthermore, EOC cells treated with strain demonstrate decreased response to paclitaxel in the in vitro vascularized TME model. The results provide a direct link to biomechanical regulation of HSP27 as a mediator of EOC chemoresistance, possibly explaining the failure of such therapies in some patients. The work presented here lays a foundation to elucidating mechanobiological regulation of EOC progression, including chemoresistance and could provide novel targets for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Molly Buckley
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Maranda Kramer
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Bronte Johnson
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Gillian Huskin
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, UK
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6thAvenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, UK.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, UK.
| |
Collapse
|
9
|
Sorrin AJ, Zhou K, May K, Liu C, McNaughton K, Rahman I, Liang BJ, Rizvi I, Roque DM, Huang HC. Transient fluid flow improves photoimmunoconjugate delivery and photoimmunotherapy efficacy. iScience 2023; 26:107221. [PMID: 37520715 PMCID: PMC10372742 DOI: 10.1016/j.isci.2023.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Circulating drugs in the peritoneal cavity is an effective strategy for advanced ovarian cancer treatment. Photoimmunotherapy, an emerging modality with potential for the treatment of ovarian cancer, involves near-infrared light activation of antibody-photosensitizer conjugates (photoimmunoconjugates) to generate cytotoxic reactive oxygen species. Here, a microfluidic cell culture model is used to study how fluid flow-induced shear stress affects photoimmunoconjugate delivery to ovarian cancer cells. Photoimmunoconjugates are composed of the antibody, cetuximab, conjugated to the photosensitizer, and benzoporphyrin derivative. Longitudinal tracking of photoimmunoconjugate treatment under flow conditions reveals enhancements in subcellular photosensitizer accumulation. Compared to static conditions, fluid flow-induced shear stress at 0.5 and 1 dyn/cm2 doubled the cellular delivery of photoimmunoconjugates. Fluid flow-mediated treatment with three different photosensitizer formulations (benzoporphyrin derivative, photoimmunoconjugates, and photoimmunoconjugate-coated liposomes) led to enhanced phototoxicity compared to static conditions. This study confirms the fundamental role of fluid flow-induced shear stress in the anti-cancer effects of photoimmunotherapy.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Katherine May
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Cindy Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kathryn McNaughton
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Idrisa Rahman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Barry J. Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Lboukili I, Stamatas GN, Descombes X. Age-dependent changes in epidermal architecture explored using an automated image analysis algorithm on in vivo reflectance confocal microscopy images. Skin Res Technol 2023; 29:e13343. [PMID: 37231922 PMCID: PMC10177282 DOI: 10.1111/srt.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Reflectance confocal microscopy (RCM) allows for real-time in vivo visualization of the epidermis at the cellular level noninvasively. Parameters relating to tissue architecture can be extracted from RCM images, however, analysis of such images requires manual identification of cells to derive these parameters, which can be time-consuming and subject to human error, highlighting the need for an automated cell identification method. METHODS First, the region-of-interest (ROI) containing cells needs to be identified, followed by the identification of individual cells within the ROI. To perform this task, we use successive applications of Sato and Gabor filters. The final step is post-processing improvement of cell detection and removal of size outliers. The proposed algorithm is evaluated on manually annotated real data. It is then applied to 5345 images to study the evolution of epidermal architecture in children and adults. The images were acquired on the volar forearm of healthy children (3 months to 10 years) and women (25-80 years), and on the volar forearm and cheek of women (40-80 years). Following the identification of cell locations, parameters such as cell area, cell perimeter, and cell density are calculated, as well as the probability distribution of the number of nearest neighbors per cell. The thicknesses of the Stratum Corneum and supra-papillary epidermis are also calculated using a hybrid deep-learning method. RESULTS Epidermal keratinocytes are significantly larger (area and perimeter) in the granular layer than in the spinous layer and they get progressively larger with a child's age. Skin continues to mature dynamically during adulthood, as keratinocyte size continues to increase with age on both the cheeks and volar forearm, but the topology and cell aspect ratio remain unchanged across different epidermal layers, body sites, and age. Stratum Corneum and supra-papillary epidermis thicknesses increase with age, at a faster rate in children than in adults. CONCLUSIONS The proposed methodology can be applied to large datasets to automate image analysis and the calculation of parameters relevant to skin physiology. These data validate the dynamic nature of skin maturation during childhood and skin aging in adulthood.
Collapse
Affiliation(s)
- Imane Lboukili
- R&D Essential HealthJohnson & Johnson Santé Beauté FranceIssy‐les‐moulineauxFrance
- MorphemeUCA–INRIA–I3S/CNRSSophia AntipolisFrance
| | - Georgios N. Stamatas
- R&D Essential HealthJohnson & Johnson Santé Beauté FranceIssy‐les‐moulineauxFrance
| | | |
Collapse
|
11
|
Ardavín C, Alvarez‐Ladrón N, Ferriz M, Gutiérrez‐González A, Vega‐Pérez A. Mouse Tissue-Resident Peritoneal Macrophages in Homeostasis, Repair, Infection, and Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206617. [PMID: 36658699 PMCID: PMC10104642 DOI: 10.1002/advs.202206617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Large peritoneal macrophages (LPMs) are long-lived, tissue-resident macrophages, formed during embryonic life, developmentally and functionally confined to the peritoneal cavity. LPMs provide the first line of defense against life-threatening pathologies of the peritoneal cavity, such as abdominal sepsis, peritoneal metastatic tumor growth, or peritoneal injuries caused by trauma, or abdominal surgery. Apart from their primary phagocytic function, reminiscent of primitive defense mechanisms sustained by coelomocytes in the coelomic cavity of invertebrates, LPMs fulfill an essential homeostatic function by achieving an efficient clearance of apoptotic, that is crucial for the maintenance of self-tolerance. Research performed over the last few years, in mice, has unveiled the mechanisms by which LPMs fulfill a crucial role in repairing peritoneal injuries and controlling microbial and parasitic infections, reflecting that the GATA6-driven LPM transcriptional program can be modulated by extracellular signals associated with pathological conditions. In contrast, recent experimental evidence supports that peritoneal tumors can subvert LPM metabolism and function, leading to the acquisition of a tumor-promoting potential. The remarkable functional plasticity of LPMs can be nevertheless exploited to revert tumor-induced LPM protumor potential, providing the basis for the development of novel immunotherapeutic approaches against peritoneal tumor metastasis based on macrophage reprogramming.
Collapse
Affiliation(s)
- Carlos Ardavín
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Natalia Alvarez‐Ladrón
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Margarita Ferriz
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | | | - Adrián Vega‐Pérez
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
- Present address:
Sandra and Edward Meyer Cancer CenterWeill Cornell Medicine1300 York AvenueNew YorkNY10065USA
| |
Collapse
|
12
|
Lopez E, Kamboj S, Chen C, Wang Z, Kellouche S, Leroy-Dudal J, Carreiras F, Lambert A, Aimé C. In Vitro Models of Ovarian Cancer: Bridging the Gap between Pathophysiology and Mechanistic Models. Biomolecules 2023; 13:biom13010103. [PMID: 36671488 PMCID: PMC9855568 DOI: 10.3390/biom13010103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer (OC) is a disease of major concern with a survival rate of about 40% at five years. This is attributed to the lack of visible and reliable symptoms during the onset of the disease, which leads over 80% of patients to be diagnosed at advanced stages. This implies that metastatic activity has advanced to the peritoneal cavity. It is associated with both genetic and phenotypic heterogeneity, which considerably increase the risks of relapse and reduce the survival rate. To understand ovarian cancer pathophysiology and strengthen the ability for drug screening, further development of relevant in vitro models that recapitulate the complexity of OC microenvironment and dynamics of OC cell population is required. In this line, the recent advances of tridimensional (3D) cell culture and microfluidics have allowed the development of highly innovative models that could bridge the gap between pathophysiology and mechanistic models for clinical research. This review first describes the pathophysiology of OC before detailing the engineering strategies developed to recapitulate those main biological features.
Collapse
Affiliation(s)
- Elliot Lopez
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sahil Kamboj
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Zixu Wang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Ambroise Lambert
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Carole Aimé
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022; 176:187-198. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/β-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| |
Collapse
|
14
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022; 86:207-223. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Lheureux
- University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Toronto, Ontario, Canada
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical unit Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Circuit-Based Design of Microfluidic Drop Networks. MICROMACHINES 2022; 13:mi13071124. [PMID: 35888941 PMCID: PMC9315978 DOI: 10.3390/mi13071124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Microfluidic-drop networks consist of several stable drops—interconnected through microfluidic channels—in which organ models can be cultured long-term. Drop networks feature a versatile configuration and an air–liquid interface (ALI). This ALI provides ample oxygenation, rapid liquid turnover, passive degassing, and liquid-phase stability through capillary pressure. Mathematical modeling, e.g., by using computational fluid dynamics (CFD), is a powerful tool to design drop-based microfluidic devices and to optimize their operation. Although CFD is the most rigorous technique to model flow, it falls short in terms of computational efficiency. Alternatively, the hydraulic–electric analogy is an efficient “first-pass” method to explore the design and operation parameter space of microfluidic-drop networks. However, there are no direct electric analogs to a drop, due to the nonlinear nature of the capillary pressure of the ALI. Here, we present a circuit-based model of hanging- and standing-drop compartments. We show a phase diagram describing the nonlinearity of the capillary pressure of a hanging drop. This diagram explains how to experimentally ensure drop stability. We present a methodology to find flow rates and pressures within drop networks. Finally, we review several applications, where the method, outlined in this paper, was instrumental in optimizing design and operation.
Collapse
|
16
|
Bourguignon N, Karp P, Attallah C, Chamorro DA, Oggero M, Booth R, Ferrero S, Bhansali S, Pérez MS, Lerner B, Helguera G. Large Area Microfluidic Bioreactor for Production of Recombinant Protein. BIOSENSORS 2022; 12:bios12070526. [PMID: 35884329 PMCID: PMC9313365 DOI: 10.3390/bios12070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
To produce innovative biopharmaceuticals, highly flexible, adaptable, robust, and affordable bioprocess platforms for bioreactors are essential. In this article, we describe the development of a large-area microfluidic bioreactor (LM bioreactor) for mammalian cell culture that works at laminar flow and perfusion conditions. The 184 cm2 32 cisterns LM bioreactor is the largest polydimethylsiloxane (PDMS) microfluidic device fabricated by photopolymer flexographic master mold methodology, reaching a final volume of 2.8 mL. The LM bioreactor was connected to a syringe pump system for culture media perfusion, and the cells’ culture was monitored by photomicrograph imaging. CHO-ahIFN-α2b adherent cell line expressing the anti-hIFN-a2b recombinant scFv-Fc monoclonal antibody (mAb) for the treatment of systemic lupus erythematosus were cultured on the LM bioreactor. Cell culture and mAb production in the LM bioreactor could be sustained for 18 days. Moreover, the anti-hIFN-a2b produced in the LM bioreactor showed higher affinity and neutralizing antiproliferative activity compared to those mAbs produced in the control condition. We demonstrate for the first-time, a large area microfluidic bioreactor for mammalian cell culture that enables a controlled microenvironment suitable for the development of high-quality biologics with potential for therapeutic use.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Paola Karp
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
| | - Carolina Attallah
- Centro Biotecnológico del Litoral, Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Santa Fe S3000ZAA, Provincia de Santa Fe, Argentina; (C.A.); (M.O.)
| | - Daniel A. Chamorro
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
| | - Marcos Oggero
- Centro Biotecnológico del Litoral, Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Santa Fe S3000ZAA, Provincia de Santa Fe, Argentina; (C.A.); (M.O.)
| | - Ross Booth
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA;
| | - Sol Ferrero
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Maximiliano S. Pérez
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Betiana Lerner
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
- Correspondence: (B.L.); (G.H.); Tel.:+5411-4343-1177 (ext. 1209) (B.L.); +54-11-4783-2869 (G.H.)
| | - Gustavo Helguera
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
- Correspondence: (B.L.); (G.H.); Tel.:+5411-4343-1177 (ext. 1209) (B.L.); +54-11-4783-2869 (G.H.)
| |
Collapse
|
17
|
Clark J, Fotopoulou C, Cunnea P, Krell J. Novel Ex Vivo Models of Epithelial Ovarian Cancer: The Future of Biomarker and Therapeutic Research. Front Oncol 2022; 12:837233. [PMID: 35402223 PMCID: PMC8990887 DOI: 10.3389/fonc.2022.837233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogenous disease associated with variations in presentation, pathology and prognosis. Advanced EOC is typified by frequent relapse and a historical 5-year survival of less than 30% despite improvements in surgical and systemic treatment. The advent of next generation sequencing has led to notable advances in the field of personalised medicine for many cancer types. Success in achieving cure in advanced EOC has however been limited, although significant prolongation of survival has been demonstrated. Development of novel research platforms is therefore necessary to address the rapidly advancing field of early diagnostics and therapeutics, whilst also acknowledging the significant tumour heterogeneity associated with EOC. Within available tumour models, patient-derived organoids (PDO) and explant tumour slices have demonstrated particular promise as novel ex vivo systems to model different cancer types including ovarian cancer. PDOs are organ specific 3D tumour cultures that can accurately represent the histology and genomics of their native tumour, as well as offer the possibility as models for pharmaceutical drug testing platforms, offering timing advantages and potential use as prospective personalised models to guide clinical decision-making. Such applications could maximise the benefit of drug treatments to patients on an individual level whilst minimising use of less effective, yet toxic, therapies. PDOs are likely to play a greater role in both academic research and drug development in the future and have the potential to revolutionise future patient treatment and clinical trial pathways. Similarly, ex vivo tumour slices or explants have also shown recent renewed promise in their ability to provide a fast, specific, platform for drug testing that accurately represents in vivo tumour response. Tumour explants retain tissue architecture, and thus incorporate the majority of tumour microenvironment making them an attractive method to re-capitulate in vivo conditions, again with significant timing and personalisation of treatment advantages for patients. This review will discuss the current treatment landscape and research models for EOC, their development and new advances towards the discovery of novel biomarkers or combinational therapeutic strategies to increase treatment options for women with ovarian cancer.
Collapse
Affiliation(s)
- James Clark
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.,West London Gynaecological Cancer Centre, Imperial College NHS Trust, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Gupta P, Miller A, Olayanju A, Madhuri TK, Velliou E. A Systematic Comparative Assessment of the Response of Ovarian Cancer Cells to the Chemotherapeutic Cisplatin in 3D Models of Various Structural and Biochemical Configurations-Does One Model Type Fit All? Cancers (Basel) 2022; 14:1274. [PMID: 35267582 PMCID: PMC8909317 DOI: 10.3390/cancers14051274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Epithelial Ovarian Cancer (EOC) is a silent, deadly and aggressive gynaecological disease with a relatively low survival rate. This has been attributed, to some extent, to EOC's high recurrence rate and resistance to currently available platinum-based chemotherapeutic treatment methods. Multiple groups have studied and reported the effect of chemotherapeutic agents on various EOC 3D in vitro models. However, there are very few studies wherein a direct comparative study has been carried out between the different in vitro 3D models of EOC and the effect of chemotherapy within them. Herein, we report, for the first time, a direct comprehensive systematic comparative study of three different 3D in vitro platforms, namely (i) spheroids, (ii) synthetic PeptiGels/hydrogels of various chemical configurations and (iii) polymeric scaffolds with coatings of various extracellular matrices (ECMs) on the cell growth and response to the chemotherapeutic (Cisplatin) for ovary-derived (A2780) and metastatic (SK-OV-3) EOC cell lines. We report that all three 3D models are able to support the growth of EOC, but for different time periods (varying from 7 days to 4 weeks). We have also reported that chemoresistance to Cisplatin, in vitro, observed especially for metastatic EOC cells, is platform-dependent, in terms of both the structural and biochemical composition of the model/platform. Our study highlights the importance of selecting an appropriate 3D platform for in vitro tumour model development. We have demonstrated that the selection of the best platform for producing in vitro tumour models depends on the cancer/cell type, the experimental time period and the application for which the model is intended.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK;
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Surrey GU2 7XH, UK
| | - Aline Miller
- Manchester BIOGEL, 19F4, Mereside, Alderley Park, Alderley Edge, Chesire SK10 4TG, UK; (A.M.); (A.O.)
| | - Adedamola Olayanju
- Manchester BIOGEL, 19F4, Mereside, Alderley Park, Alderley Edge, Chesire SK10 4TG, UK; (A.M.); (A.O.)
| | - Thumuluru Kavitha Madhuri
- Department of Gynaecological Oncology Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK;
- Honorary Senior Lecturer in Cancer Research, School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK;
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Surrey GU2 7XH, UK
| |
Collapse
|
19
|
Bileck A, Bortel P, Kriz M, Janker L, Kiss E, Gerner C, Del Favero G. Inward Outward Signaling in Ovarian Cancer: Morpho-Phospho-Proteomic Profiling Upon Application of Hypoxia and Shear Stress Characterizes the Adaptive Plasticity of OVCAR-3 and SKOV-3 Cells. Front Oncol 2022; 11:746411. [PMID: 35251951 PMCID: PMC8896345 DOI: 10.3389/fonc.2021.746411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
With the onset of resistance, ovarian cancer cells display almost unpredictable adaptive potential. This may derive from the tumor genetic ancestry and can be additionally tailored by post translational protein modifications (PTMs). In this study, we took advantage of high-end (phospho)-proteome analysis combined with multiparametric morphometric profiling in high-grade serous (OVCAR-3) and non-serous (SKOV-3) ovarian carcinoma cells. For functional experiments, we applied two different protocols, representing typical conditions of the abdominal cavity and of the growing tumor tissue: on the one side hypoxia (oxygen 1%) which develops within the tumor mass or is experienced during migration/extravasation in non-vascularized areas. On the other hand, fluid shear stress (250 rpm, 2.8 dyn/cm2) which affects tumor surface in the peritoneum or metastases in the bloodstream. After 3 hours incubation, treatment groups were clearly distinguishable by PCA analysis. Whereas basal proteome profiles of OVCAR-3 and SKOV-3 cells appeared almost unchanged, phosphoproteome analysis revealed multiple regulatory events. These affected primarily cellular structure and proliferative potential and consolidated in the proteome signature after 24h treatment. Upon oxygen reduction, metabolism switched toward glycolysis (e.g. upregulation hexokinase-2; HK2) and cell size increased, in concerted regulation of pathways related to Rho-GTPases and/or cytoskeletal elements, resembling a vasculogenic mimicry response. Shear stress regulated proteins governing cell cycle and structure, as well as the lipid metabolism machinery including the delta(14)-sterol reductase, kinesin-like proteins (KIF-22/20A) and the actin-related protein 2/3 complex. Independent microscopy-based validation experiments confirmed cell-type specific morphometric responses. In conclusion, we established a robust workflow enabling the description of the adaptive potential of ovarian cancer cells to physical and chemical stressors typical for the abdominal cavity and supporting the identification of novel molecular mechanisms sustaining tumor plasticity and pharmacologic resistance.
Collapse
Affiliation(s)
- Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Michelle Kriz
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| |
Collapse
|
20
|
Sun C, Yang X, Wang T, Cheng M, Han Y. Ovarian Biomechanics: From Health to Disease. Front Oncol 2022; 11:744257. [PMID: 35070963 PMCID: PMC8776636 DOI: 10.3389/fonc.2021.744257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Biomechanics is a physical phenomenon which mainly related with deformation and movement of life forms. As a mechanical signal, it participates in the growth and development of many tissues and organs, including ovary. Mechanical signals not only participate in multiple processes in the ovary but also play a critical role in ovarian growth and normal physiological functions. Additionally, the involvement of mechanical signals has been found in ovarian cancer and other ovarian diseases, prompting us to focus on the roles of mechanical signals in the process of ovarian health to disease. This review mainly discusses the effects and signal transduction of biomechanics (including elastic force, shear force, compressive stress and tensile stress) in ovarian development as a regulatory signal, as well as in the pathological process of normal ovarian diseases and cancer. This review also aims to provide new research ideas for the further research and treatment of ovarian-related diseases.
Collapse
Affiliation(s)
- Chenchen Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xiaoxu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Tianxiao Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Conrad C, Moore K, Polacheck W, Rizvi I, Scarcelli G. Mechanical Modulation of Ovarian Cancer Tumor Nodules Under Flow. IEEE Trans Biomed Eng 2022; 69:294-301. [PMID: 34170820 PMCID: PMC8750319 DOI: 10.1109/tbme.2021.3092641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Perfusion models are valuable tools to mimic complex features of the tumor microenvironment and to study cell behavior. In ovarian cancer, mimicking disease pathology of ascites has been achieved by seeding tumor nodules on a basement membrane and subjecting them to long-term continuous flow. In this scenario it is particularly important to study the role of mechanical stress on cancer progression. Mechanical cues are already known to be important in key cancer processes such as survival, proliferation, and migration. However, probing cell mechanical properties within microfluidic platforms has not been achievable with current technologies since samples are not easily accessible within most microfluidic channels. METHODS Here, to analyze the mechanical properties of cells within a perfusion chamber, we use Brillouin confocal microscopy, an all-optical technique that requires no contact or perturbation to the sample. RESULTS Our results indicate that ovarian cancer nodules under long-term continuous flow have a significantly lower longitudinal modulus compared to nodules maintained in a static condition. CONCLUSION We further dissect the role of distinct mechanical perturbations (e.g., shear flow, osmolality) on tumor nodule properties. SIGNIFICANCE In summary, the unique combination of a long-term microfluidic culture and noninvasive mechanical analysis technique provides insights on the effects of physical forces in ovarian cancer pathology.
Collapse
|
22
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
23
|
Rickard BP, Conrad C, Sorrin AJ, Ruhi MK, Reader JC, Huang SA, Franco W, Scarcelli G, Polacheck WJ, Roque DM, del Carmen MG, Huang HC, Demirci U, Rizvi I. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers (Basel) 2021; 13:4318. [PMID: 34503128 PMCID: PMC8430600 DOI: 10.3390/cancers13174318] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ascites refers to the abnormal accumulation of fluid in the peritoneum resulting from an underlying pathology, such as metastatic cancer. Among all cancers, advanced-stage epithelial ovarian cancer is most frequently associated with the production of malignant ascites and is the leading cause of death from gynecologic malignancies. Despite decades of evidence showing that the accumulation of peritoneal fluid portends the poorest outcomes for cancer patients, the role of malignant ascites in promoting metastasis and therapy resistance remains poorly understood. This review summarizes the current understanding of malignant ascites, with a focus on ovarian cancer. The first section provides an overview of heterogeneity in ovarian cancer and the pathophysiology of malignant ascites. Next, analytical methods used to characterize the cellular and acellular components of malignant ascites, as well the role of these components in modulating cell biology, are discussed. The review then provides a perspective on the pressures and forces that tumors are subjected to in the presence of malignant ascites and the impact of physical stress on therapy resistance. Treatment options for malignant ascites, including surgical, pharmacological and photochemical interventions are then discussed to highlight challenges and opportunities at the interface of drug discovery, device development and physical sciences in oncology.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Saha B, Mathur T, Tronolone JJ, Chokshi M, Lokhande GK, Selahi A, Gaharwar AK, Afshar-Kharghan V, Sood AK, Bao G, Jain A. Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor-antiplatelet therapy in ovarian cancer. SCIENCE ADVANCES 2021; 7:eabg5283. [PMID: 34290095 PMCID: PMC8294767 DOI: 10.1126/sciadv.abg5283] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/04/2021] [Indexed: 05/13/2023]
Abstract
Platelets extravasate from the circulation into tumor microenvironment, enable metastasis, and confer resistance to chemotherapy in several cancers. Therefore, arresting tumor-platelet cross-talk with effective and atoxic antiplatelet agents in combination with anticancer drugs may serve as an effective cancer treatment strategy. To test this concept, we create an ovarian tumor microenvironment chip (OTME-Chip) that consists of a platelet-perfused tumor microenvironment and which recapitulates platelet extravasation and its consequences. By including gene-edited tumors and RNA sequencing, this organ-on-chip revealed that platelets and tumors interact through glycoprotein VI (GPVI) and tumor galectin-3 under shear. Last, as proof of principle of a clinical trial, we showed that a GPVI inhibitor, Revacept, impairs metastatic potential and improves chemotherapy. Since GPVI is an antithrombotic target that does not impair hemostasis, it represents a safe cancer therapeutic. We propose that OTME-Chip could be deployed to study other vascular and hematological targets in cancer.
Collapse
Affiliation(s)
- Biswajit Saha
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Mithil Chokshi
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Giriraj K Lokhande
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Amirali Selahi
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station TX 77840, USA
| | - Vahid Afshar-Kharghan
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
| |
Collapse
|
25
|
Lee HR, Kim DW, Jones VO, Choi Y, Ferry VE, Geller MA, Azarin SM. Sonosensitizer-Functionalized Graphene Nanoribbons for Adhesion Blocking and Sonodynamic Ablation of Ovarian Cancer Spheroids. Adv Healthc Mater 2021; 10:e2001368. [PMID: 34050609 PMCID: PMC8550295 DOI: 10.1002/adhm.202001368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Advanced stage ovarian cancer is challenging to treat due to widespread seeding of tumor spheroids throughout the mesothelial lining of the peritoneal cavity. In this work, a therapeutic strategy using graphene nanoribbons (GNR) functionalized with 4-arm polyethylene glycol (PEG) and chlorin e6 (Ce6), a sonosensitizer, to target metastatic ovarian cancer spheroids is reported. GNR-PEG-Ce6 adsorbs onto the spheroids and disrupts their adhesion to extracellular matrix proteins or LP-9 mesothelial cells. Furthermore, for spheroids that do adhere, GNR-PEG-Ce6 delays spheroid disaggregation and spreading as well as mesothelial clearance, key metastatic processes following adhesion. Owing to the sonodynamic effects of Ce6 and its localized delivery via the biomaterial, GNR-PEG-Ce6 can kill ovarian cancer spheroids adhered to LP-9 cell monolayers when combined with mild ultrasound irradiation. The interaction with GNR-PEG-Ce6 also loosens cell-cell adhesions within the spheroids, rendering them more susceptible to treatment with the chemotherapeutic agents cisplatin and paclitaxel, which typically have difficulty in penetrating ovarian cancer spheroids. Thus, this material can facilitate effective chemotherapeutic and sonodynamic combination therapies. Finally, the adhesion inhibiting and sonodynamic effects of GNR-PEG-Ce6 are also validated with tumor spheroids derived from the ascites fluid of ovarian cancer patients, providing evidence of the translational potential of this biomaterial approach.
Collapse
Affiliation(s)
- Hak Rae Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Victoria O Jones
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
26
|
OvCa-Chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian cancer. Blood Adv 2021; 4:3329-3342. [PMID: 32717032 DOI: 10.1182/bloodadvances.2020001632] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In ovarian cancer, platelet extravasation into the tumor and resulting metastasis is thought to be regulated mostly by the vascular endothelium. Because it is difficult to dissect complex underlying events in murine models, organ-on-a-chip methodology is applied to model vascular and platelet functions in ovarian cancer. This system (OvCa-Chip) consists of microfluidic chambers that are lined by human ovarian tumor cells interfaced with a 3-dimensional endothelialized lumen. Subsequent perfusion with human platelets within the device's vascular endothelial compartment under microvascular shear conditions for 5 days uncovered organ-to-molecular-level contributions of the endothelium to triggering platelet extravasation into tumors. Further, analysis of effluents available from the device's individual tumor and endothelial chambers revealed temporal dynamics of vascular disintegration caused by cancer cells, a differential increase in cytokine expression, and an alteration of barrier maintenance genes in endothelial cells. These events, when analyzed within the device over time, made the vascular tissue leaky and promoted platelet extravasation. Atorvastatin treatment of the endothelial cells within the OvCa-Chip revealed improved endothelial barrier function, reduction in inflammatory cytokines and, eventually, arrest of platelet extravasation. These data were validated through corresponding observations in patient-derived tumor samples. The OvCa-Chip provides a novel in vitro dissectible platform to model the mechanisms of the cancer-vascular-hematology nexus and the analyses of potential therapeutics.
Collapse
|
27
|
Martinez A, Buckley M, Scalise CB, Katre AA, Dholakia JJ, Crossman D, Birrer MJ, Berry JL, Arend RC. Understanding the effect of mechanical forces on ovarian cancer progression. Gynecol Oncol 2021; 162:154-162. [PMID: 33888338 DOI: 10.1016/j.ygyno.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mechanical forces including tension, compression, and shear stress are increasingly implicated in tumor progression and metastasis. Understanding the mechanisms behind epithelial ovarian cancer (EOC) progression and metastasis is critical, and this study aimed to elucidate the effect of oscillatory and constant tension on EOC. METHODS SKOV-3 and OVCAR-8 EOC cell lines were placed under oscillatory tension for 3 days and compared to cells placed under no tension. Cell proliferation, migration, and invasion were analyzed while RNAseq and Western Blots helped investigate the biological mechanisms underlying the increasingly aggressive state of the experimental cells. Finally, in vivo experiments using SCID mice assisted in confirming the in vitro results. RESULTS Oscillatory tension (OT) and constant tension (CT) significantly increased SKOV-3 proliferation, while OT caused a significant increase in proliferative genes, migration, and invasion in this cell line. CT did not cause significant increases in these areas. Neither OT nor CT increased proliferation or invasion in OVCAR-8 cells, while both tension types significantly increased cellular migration. Two proteins involved in metastasis, E-cadherin and Snail, were both significantly affected by OT in both cell lines, with E-cadherin levels decreasing and Snail levels increasing. In vivo, tumor growth and weight for both cell types were significantly increased, and ascites development was significantly higher in the experimental OVCAR-8 group than in the control group. CONCLUSIONS This study found that mechanical forces are influential in EOC progression and metastasis. Further analysis of downstream mechanisms involved in EOC metastasis will be critical for improvements in EOC treatment.
Collapse
Affiliation(s)
- A Martinez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - M Buckley
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - C B Scalise
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - A A Katre
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - J J Dholakia
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - D Crossman
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL 35294, USA
| | - M J Birrer
- University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, Little Rock, AR 72205, USA
| | - J L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - R C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
28
|
Nagase K, Akutagawa T, Rikitake-Yamamoto M, Morito S, Futamata M, Tobu S, Noguchi M, Toda S, Aoki S. Cellular and physical microenvironments regulate the aggressiveness and sunitinib chemosensitivity of clear cell renal cell carcinoma. J Pathol 2021; 254:46-56. [PMID: 33512712 PMCID: PMC8248239 DOI: 10.1002/path.5630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Renal cell carcinoma (RCC) is the most predominant type of kidney cancer in adults and is responsible for approximately 85% of clinical cases. The tumor‐specific microenvironment includes both cellular and physical factors, and it regulates the homeostasis and function of cancer cells. Perirenal adipose tissue and tumor‐associated macrophages are the major cellular components of the RCC microenvironment. The RCC microvasculature network generates interstitial fluid flow, which is the movement of fluid through the extracellular compartments of tissues. This fluid flow is a specific physical characteristic of the microenvironment of RCC. We hypothesized that there may be an interaction between the cellular and physical microenvironments and that these two factors may play an important role in regulating the behavior of RCC. To elucidate the effects of adipose tissue, macrophages, and fluid flow stimulation on RCC and to investigate the relationships between these factors, we used a collagen gel culture method to generate cancer–stroma interactions and a gyratory shaker to create fluid flow stimulation. Adipose‐related cells, monocytes, and fluid flow influenced the proliferative potential and invasive capacity of RCC cells. Extracellular signal‐regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interactions between RCC and adipose tissue fragments or macrophages. Fluid flow stimulation synergistically enhanced the anti‐proliferative effect of sunitinib on RCC cells, but macrophages abolished the synergistic anti‐proliferative effect related to fluid flow stimulation. In conclusion, we established a reconstructed model to investigate the cellular and physical microenvironments of RCC in vitro. Our alternative culture model may provide a promising tool for further therapeutic investigations into many types of cancer. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kei Nagase
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.,Department of Urology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takashi Akutagawa
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mihoko Rikitake-Yamamoto
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Sayuri Morito
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Maki Futamata
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shohei Tobu
- Department of Urology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mitsuru Noguchi
- Department of Urology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuji Toda
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shigehisa Aoki
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
29
|
Novak CM, Horst EN, Lin E, Mehta G. Compressive Stimulation Enhances Ovarian Cancer Proliferation, Invasion, Chemoresistance, and Mechanotransduction via CDC42 in a 3D Bioreactor. Cancers (Basel) 2020; 12:cancers12061521. [PMID: 32532057 PMCID: PMC7352213 DOI: 10.3390/cancers12061521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
This report investigates the role of compressive stress on ovarian cancer in a 3D custom built bioreactor. Cells within the ovarian tumor microenvironment experience a range of compressive stimuli that contribute to mechanotransduction. As the ovarian tumor expands, cells are exposed to chronic load from hydrostatic pressure, displacement of surrounding cells, and growth induced stress. External dynamic stimuli have been correlated with an increase in metastasis, cancer stem cell marker expression, chemoresistance, and proliferation in a variety of cancers. However, how these compressive stimuli contribute to ovarian cancer progression is not fully understood. In this report, high grade serous ovarian cancer cell lines were encapsulated within an ECM mimicking hydrogel comprising of agarose and collagen type I, and stimulated with confined cyclic or static compressive stresses for 24 and 72 h. Compression stimulation resulted in a significant increase in proliferation, invasive morphology, and chemoresistance. Additionally, CDC42 was upregulated in compression stimulated conditions, and was necessary to drive increased proliferation and chemoresistance. Inhibition of CDC42 lead to significant decrease in proliferation, survival, and increased chemosensitivity. In summary, the dynamic in vitro 3D platform developed in this report, is ideal for understanding the influence of compressive stimuli, and can be widely applicable to any epithelial cancers. This work reinforces the critical need to consider compressive stimulation in basic cancer biology and therapeutic developments.
Collapse
Affiliation(s)
- Caymen M. Novak
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.M.N.); (E.N.H.); (E.L.)
| | - Eric N. Horst
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.M.N.); (E.N.H.); (E.L.)
| | - Emily Lin
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.M.N.); (E.N.H.); (E.L.)
| | - Geeta Mehta
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.M.N.); (E.N.H.); (E.L.)
- Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957
| |
Collapse
|
30
|
Elad D, Zaretsky U, Kuperman T, Gavriel M, Long M, Jaffa A, Grisaru D. Tissue engineered endometrial barrier exposed to peristaltic flow shear stresses. APL Bioeng 2020; 4:026107. [PMID: 32548541 PMCID: PMC7269682 DOI: 10.1063/5.0001994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclic myometrial contractions of the non-pregnant uterus induce intra-uterine peristaltic flows, which have important roles in transport of sperm and embryos during early stages of reproduction. Hyperperistalsis in young females may lead to migration of endometrial cells and development of adenomyosis or endometriosis. We conducted an in vitro study of the biological response of a tissue engineered endometrial barrier exposed to peristaltic wall shear stresses (PWSSs). The endometrial barrier model was co-cultured of endometrial epithelial cells on top of myometrial smooth muscle cells (MSMCs) in custom-designed wells that can be disassembled for mechanobiology experiments. A new experimental setup was developed for exposing the uterine wall in vitro model to PWSSs that mimic the in vivo intra-uterine environment. Peristaltic flow was induced by moving a belt with bulges to deform the elastic cover of a fluid filled chamber that held the uterine wall model at the bottom. The in vitro biological model was exposed to peristaltic flows for 60 and 120 min and then stained for immunofluorescence studies of alternations in the cytoskeleton. Quantification of the F-actin mass in both layers revealed a significant increase with the length of exposure to PWSSs. Moreover, the inner layer of MSMCs that were not in direct contact with the fluid also responded with an increase in the F-actin mass. This new experimental approach can be expanded to in vitro studies of multiple structural changes and genetic expressions, while the tissue engineered uterine wall models are tested under conditions that mimic the in vivo physiological environment.
Collapse
Affiliation(s)
- David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tatyana Kuperman
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mark Gavriel
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mian Long
- Center of Biomechanics and Bioengineering and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
31
|
Hiraiwa T, Yamada TG, Miki N, Funahashi A, Hiroi N. Activation of cell migration via morphological changes in focal adhesions depends on shear stress in MYCN-amplified neuroblastoma cells. J R Soc Interface 2020; 16:20180934. [PMID: 30836897 PMCID: PMC6451396 DOI: 10.1098/rsif.2018.0934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma is the most common solid tumour of childhood, and it metastasizes to distant organs. However, the mechanism of metastasis, which generally depends on the cell motility of the neuroblastoma, remains unclear. In many solid tumours, it has been reported that shear stress promotes metastasis. Here, we investigated the relationship between shear stress and cell motility in the MYCN-amplified human neuroblastoma cell line IMR32, using a microfluidic device. We confirmed that most of the cells migrated downstream, and cell motility increased dramatically when the cells were exposed to a shear stress of 0.4 Pa, equivalent to that expected in vivo. We observed that the morphological features of focal adhesion were changed under a shear stress of 0.4 Pa. We also investigated the relationship between malignancy and the motility of IMR32 cells under shear stress. Decreasing the expression of MYCN in IMR32 cells via siRNA transfection inhibited cell motility by a shear stress of 0.4 Pa. These results suggest that MYCN-amplified neuroblastoma cells under high shear stress migrate to distant organs due to high cell motility, allowing cell migration to lymphatic vessels and venules.
Collapse
Affiliation(s)
- Takumi Hiraiwa
- 1 Department of Biosciences and Informatics, Keio University , Kanagawa , Japan
| | - Takahiro G Yamada
- 1 Department of Biosciences and Informatics, Keio University , Kanagawa , Japan
| | - Norihisa Miki
- 2 Department of Mechanical Engineering, Keio University , Kanagawa , Japan
| | - Akira Funahashi
- 1 Department of Biosciences and Informatics, Keio University , Kanagawa , Japan
| | - Noriko Hiroi
- 3 Department of Pharmacy, Sanyo-Onoda City University , Yamaguchi , Japan
| |
Collapse
|
32
|
Novak CM, Horst EN, Taylor CC, Liu CZ, Mehta G. Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor. Biotechnol Bioeng 2019; 116:3084-3097. [PMID: 31317530 DOI: 10.1002/bit.27119] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023]
Abstract
Breast cancer cells experience a range of shear stresses in the tumor microenvironment (TME). However most current in vitro three-dimensional (3D) models fail to systematically probe the effects of this biophysical stimuli on cancer cell metastasis, proliferation, and chemoresistance. To investigate the roles of shear stress within the mammary and lung pleural effusion TME, a bioreactor capable of applying shear stress to cells within a 3D extracellular matrix was designed and characterized. Breast cancer cells were encapsulated within an interpenetrating network hydrogel and subjected to shear stress of 5.4 dynes cm-2 for 72 hr. Finite element modeling assessed shear stress profiles within the bioreactor. Cells exposed to shear stress had significantly higher cellular area and significantly lower circularity, indicating a motile phenotype. Stimulated cells were more proliferative than static controls and showed higher rates of chemoresistance to the anti-neoplastic drug paclitaxel. Fluid shear stress-induced significant upregulation of the PLAU gene and elevated urokinase activity was confirmed through zymography and activity assay. Overall, these results indicate that pulsatile shear stress promotes breast cancer cell proliferation, invasive potential, chemoresistance, and PLAU signaling.
Collapse
Affiliation(s)
- Caymen M Novak
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan
| | - Charles C Taylor
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Catherine Z Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan.,Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Sun L, Wen J, Wang L, Wen Q, Wu J, Bie M. Fluid shear stress-induced IL-8/CXCR signaling in human ovarian cancer cells. Transl Cancer Res 2019; 8:1591-1601. [PMID: 35116902 PMCID: PMC8798993 DOI: 10.21037/tcr.2019.08.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 02/05/2023]
Abstract
Background Interleukin-8 (IL-8) released from mechanosensitive cancer cells plays a key role in the inflammation and metastasis of solid carcinomas. In this study, we have explored IL-8 and its receptors signal transduction process of human ovarian cancer cells under conditions of FSS. Methods After the fluid shear stress was loaded, LightCycler™ system and quantitative sandwich ELISA were employed to assay the IL-8 mRNA expression and protein production, respectively. IL-8 reporter gene pEGFP1-IL8USCS was constructed for determining IL-8 gene transcriptional activation through gene transfer and flow cytometric analysis. NF-κB nuclear translocation was observed by immunocytofluorescent staining. Western blot was used to examine IκB phosphorylation and degradation. RT-PCR, Northern blot and immunofluorescence were used to determine the expression of a cell-surface chemokine receptor CXCR2 at mRNA and protein levels. Results IL-8 mRNA expression and protein production had biphasic responses to low shear stress (1.5 dyne/cm2), with the peaks at 1 and 2 h respectively. There was an increase in enhanced green fluorescent protein expression in pEGFP1-IL8USCS-transfected SKOV3 cells subjected to a fluid shear stress of 1.5 dyne/cm2 for 2 h. Following the application of shear stress of 1.5 dyne/cm2, NF-κB p65 became detectable in the cell nuclei, and Phosphorylated IκB in cell lysates increased significantly. CXCR2, which was constitutively present on the surface of SKOV3 cells, increased following exposure to fluid shear stress for 60 min. Conclusions Fluid shear stress triggered IL-8/CXCR2 signaling of SKOV3 cells is an early gene activation, and the activation can be mediated through NF-κB. This observation suggested that fluid shear stress-induced IL-8 activation and the downstream signal pathways may have an important contribution to the pathogenesis and development of both inflammation and metastasis of ovarian carcinomas.
Collapse
Affiliation(s)
- Lei Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jirui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingjiang Bie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.,Editorial Board of Journal of Sichuan University (Medical Science Edition), Chengdu 610041, China
| |
Collapse
|
34
|
Bregenzer ME, Horst EN, Mehta P, Novak CM, Repetto T, Mehta G. The Role of Cancer Stem Cells and Mechanical Forces in Ovarian Cancer Metastasis. Cancers (Basel) 2019; 11:E1008. [PMID: 31323899 PMCID: PMC6679114 DOI: 10.3390/cancers11071008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is an extremely lethal gynecologic disease; with the high-grade serous subtype predominantly associated with poor survival rates. Lack of early diagnostic biomarkers and prevalence of post-treatment recurrence, present substantial challenges in treating ovarian cancers. These cancers are also characterized by a high degree of heterogeneity and protracted metastasis, further complicating treatment. Within the ovarian tumor microenvironment, cancer stem-like cells and mechanical stimuli are two underappreciated key elements that play a crucial role in facilitating these outcomes. In this review article, we highlight their roles in modulating ovarian cancer metastasis. Specifically, we outline the clinical relevance of cancer stem-like cells, and challenges associated with their identification and characterization and summarize the ways in which they modulate ovarian cancer metastasis. Further, we review the mechanical cues in the ovarian tumor microenvironment, including, tension, shear, compression and matrix stiffness, that influence (cancer stem-like cells and) metastasis in ovarian cancers. Lastly, we outline the challenges associated with probing these important modulators of ovarian cancer metastasis and provide suggestions for incorporating these cues in basic biology and translational research focused on metastasis. We conclude that future studies on ovarian cancer metastasis will benefit from the careful consideration of mechanical stimuli and cancer stem cells, ultimately allowing for the development of more effective therapies.
Collapse
Affiliation(s)
- Michael E Bregenzer
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric N Horst
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA
| | - Pooja Mehta
- Department of Materials Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USAeering
| | - Caymen M Novak
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor Repetto
- Department of Materials Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USAeering
| | - Geeta Mehta
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Materials Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USAeering.
- Macromolecular Science and Engineering; University of Michigan, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Masiello T, Dhall A, Hemachandra LPM, Tokranova N, Melendez JA, Castracane J. A Dynamic Culture Method to Produce Ovarian Cancer Spheroids under Physiologically-Relevant Shear Stress. Cells 2018; 7:E277. [PMID: 30572633 PMCID: PMC6316168 DOI: 10.3390/cells7120277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
The transcoelomic metastasis pathway is an alternative to traditional lymphatic/hematogenic metastasis. It is most frequently observed in ovarian cancer, though it has been documented in colon and gastric cancers as well. In transcoelomic metastasis, primary tumor cells are released into the abdominal cavity and form cell aggregates known as spheroids. These spheroids travel through the peritoneal fluid and implant at secondary sites, leading to the formation of new tumor lesions in the peritoneal lining and the organs in the cavity. Models of this process that incorporate the fluid shear stress (FSS) experienced by these spheroids are few, and most have not been fully characterized. Proposed herein is the adaption of a known dynamic cell culture system, the orbital shaker, to create an environment with physiologically-relevant FSS for spheroid formation. Experimental conditions (rotation speed, well size and cell density) were optimized to achieve physiologically-relevant FSS while facilitating the formation of spheroids that are also of a physiologically-relevant size. The FSS improves the roundness and size consistency of spheroids versus equivalent static methods and are even comparable to established high-throughput arrays, while maintaining nearly equivalent viability. This effect was seen in both highly metastatic and modestly metastatic cell lines. The spheroids generated using this technique were fully amenable to functional assays and will allow for better characterization of FSS's effects on metastatic behavior and serve as a drug screening platform. This model can also be built upon in the future by adding more aspects of the peritoneal microenvironment, further enhancing its in vivo relevance.
Collapse
Affiliation(s)
- Timothy Masiello
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| | - Atul Dhall
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| | | | - Natalya Tokranova
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| |
Collapse
|
36
|
Triantafillu UL, Park S, Kim Y. Fluid Shear Stress Induces Drug Resistance to Doxorubicin and Paclitaxel in the Breast Cancer Cell Line MCF7. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ursula Lea Triantafillu
- Department of Chemical and Biological Engineering The University of Alabama Box 870203, Tuscaloosa AL 35487‐0203 USA
| | - Seungjo Park
- Department of Chemical and Biological Engineering The University of Alabama Box 870203, Tuscaloosa AL 35487‐0203 USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering The University of Alabama Box 870203, Tuscaloosa AL 35487‐0203 USA
| |
Collapse
|
37
|
Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Commun Biol 2018; 1:170. [PMID: 30345394 PMCID: PMC6191446 DOI: 10.1038/s42003-018-0180-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
The internal organs embedded in the cavities are lined by an epithelial monolayer termed the mesothelium. The mesothelium is increasingly implicated in driving various internal organ pathologies, as many of the normal embryonic developmental pathways acting in mesothelial cells, such as those regulating epithelial-to-mesenchymal transition, also drive disease progression in adult life. Here, we summarize observations from different animal models and organ systems that collectively point toward a central role of epithelial-to-mesenchymal transition in driving tissue fibrosis, acute scarring, and cancer metastasis. Thus, drugs targeting pathways of mesothelium’s transition may have broad therapeutic benefits in patients suffering from these diseases. Tim Koopmans and Yuval Rinkevich review recent findings linking the mesothelium’s embryonic programs that drive epithelial-to-mesenchyme transition with adult pathologies, such as fibrosis, acute scarring, and cancer metastasis. They highlight new avenues for drug development that would target pathways of the mesothelium’s mesenchymal transition.
Collapse
|
38
|
Novak C, Horst E, Mehta G. Review: Mechanotransduction in ovarian cancer: Shearing into the unknown. APL Bioeng 2018; 2:031701. [PMID: 31069311 PMCID: PMC6481715 DOI: 10.1063/1.5024386] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer remains a deadly diagnosis with an 85% recurrence rate and a 5-year survival rate of only 46%. The poor outlook of this disease has improved little over the past 50 years owing to the lack of early detection, chemoresistance and the complex tumor microenvironment. Within the peritoneal cavity, the presence of ascites stimulates ovarian tumors with shear stresses. The stiff environment found within the tumor extracellular matrix and the peritoneal membrane are also implicated in the metastatic potential and epithelial to mesenchymal transition (EMT) of ovarian cancer. Though these mechanical cues remain highly relevant to the understanding and treatment of ovarian cancers, our current knowledge of their biological processes and their clinical relevance is deeply lacking. Seminal studies on ovarian cancer mechanotransduction have demonstrated close ties between mechanotransduction and ovarian cancer chemoresistance, EMT, enhanced cancer stem cell populations, and metastasis. This review summarizes our current understanding of ovarian cancer mechanotransduction and the gaps in knowledge that exist. Future investigations on ovarian cancer mechanotransduction will greatly improve clinical outcomes via systematic studies that determine shear stress magnitude and its influence on ovarian cancer progression, metastasis, and treatment.
Collapse
Affiliation(s)
- Caymen Novak
- Department of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109-2800,
USA
| | | | - Geeta Mehta
- Author to whom correspondence should be addressed:
| |
Collapse
|
39
|
Fluid shear stress impacts ovarian cancer cell viability, subcellular organization, and promotes genomic instability. PLoS One 2018; 13:e0194170. [PMID: 29566010 PMCID: PMC5864000 DOI: 10.1371/journal.pone.0194170] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/26/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer cells are exposed to physical stress in the peritoneal cavity during both tumor growth and dissemination. Ascites build-up in metastatic ovarian cancer further increases the exposure to fluid shear stress. Here, we used a murine, in vitro ovarian cancer progression model in parallel with immortalized human cells to investigate how ovarian cancer cells of increasing aggressiveness respond to <1dynecm2 of fluid-induced shear stress. This biophysical stimulus significantly reduced cell viability in all cells exposed, independent of disease stage. Fluid shear stress induced spheroid formation and altered cytoskeleton organization in more tumorigenic cell lines. While benign ovarian cells appeared to survive in higher numbers under the influence of fluid shear stress, they exhibited severe morphological changes and chromosomal instability. These results suggest that exposure of benign cells to low magnitude fluid shear stress can induce phenotypic changes that are associated with transformation and ovarian cancer progression. Moreover, exposure of tumorigenic cells to fluid shear stress enhanced anchorage-independent survival, suggesting a role in promoting invasion and metastasis.
Collapse
|
40
|
Arellano JA, Howell TA, Gammon J, Cho S, Janát-Amsbury MM, Gale B. Use of a highly parallel microfluidic flow cell array to determine therapeutic drug dose response curves. Biomed Microdevices 2017; 19:25. [PMID: 28378146 DOI: 10.1007/s10544-017-0166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A high-throughput, microfluidic flow cell array (MFCA) system has been modified to enable drug screening against small-volume cell-, and tissue cultures. The MFCA is composed of a 3D channel network that simultaneously flows fluids through forty-eight 830 μm by 500 μm flow cells, which physically divide and fluidically seal an existing culture into multiple compartments when docked onto the surface of a cell or tissue culture dish. The modified system provides temperature (37 °C) and CO2/pH level controls, while continuously flowing solutions (media or other liquid such as drug suspensions) over the cells/tissues. These assays were enhanced and validated using inverted microscopy and fluorescent staining techniques which also allow real time viability and toxicity assessments. This work presents the results of this new generation in vitro drug testing assay performed using this modified MFCA system. This setup allows the testing of 48 drug combinations on 48 different cell-, tissue specimen at once under flow conditions. All 48 flow cells were utilized to test 5 different concentrations of cisplatin (CDDP). CDDP solutions in various concentrations were continually flowed over cultured human ovarian cancer cells for 48 h. Viability assessments were performed using red-orange calcein and SYTOX ® Green nucleic acid stains. Cells were imaged at the beginning and end of the experiment (48 h). In order to compare and validate MFCAs suitability as drug screening assay, MTT assays were performed on cells. We found that both, MTT and MFCA assays generated dose-response curves with similar profiles. Innovative advantages of the MFCA system include the ability of handling smaller amounts of solutions compared to conventional and current state of the art drug screening and cell viability/toxicity methods. It also provides the ability to continually deliver fresh solution to the cell samples, while eliminating wastes that are produced. Based on our here reported findings MFCA may have a strong potential of providing a more physiological model than current state of the art static MTT assays.
Collapse
Affiliation(s)
- Jesús A Arellano
- Department of Bioengineering, University of Utah, 36 S Wasatch Drive Room 3100, Salt Lake City, 84112, UT, USA.
| | - Taylor A Howell
- Department of Mechanical Engineering, University of Utah, 1495 E 100 S Room 1550 MEK, Salt Lake City, 84112, UT, USA
| | - James Gammon
- Department of Mechanical Engineering, University of Utah, 1495 E 100 S Room 1550 MEK, Salt Lake City, 84112, UT, USA
| | - Sungpil Cho
- Obstetrics and Gynecology, University of Utah, 30 N 1900 E Room 2B200, Salt Lake City, 84132-2101, UT, USA
| | - Margit M Janát-Amsbury
- Department of Bioengineering, University of Utah, 36 S Wasatch Drive Room 3100, Salt Lake City, 84112, UT, USA.,Obstetrics and Gynecology, University of Utah, 30 N 1900 E Room 2B200, Salt Lake City, 84132-2101, UT, USA
| | - Bruce Gale
- Department of Bioengineering, University of Utah, 36 S Wasatch Drive Room 3100, Salt Lake City, 84112, UT, USA.,Department of Mechanical Engineering, University of Utah, 1495 E 100 S Room 1550 MEK, Salt Lake City, 84112, UT, USA
| |
Collapse
|
41
|
Li SS, Ip CKM, Tang MYH, Sy SKH, Yung S, Chan TM, Yang M, Shum HC, Wong AST. Modeling Ovarian Cancer Multicellular Spheroid Behavior in a Dynamic 3D Peritoneal Microdevice. J Vis Exp 2017. [PMID: 28287578 DOI: 10.3791/55337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is characterized by extensive peritoneal metastasis, with tumor spheres commonly found in the malignant ascites. This is associated with poor clinical outcomes and currently lacks effective treatment. Both the three-dimensional (3D) environment and the dynamic mechanical forces are very important factors in this metastatic cascade. However, traditional cell cultures fail to recapitulate this natural tumor microenvironment. Thus, in vivo-like models that can emulate the intraperitoneal environment are of obvious importance. In this study, a new microfluidic platform of the peritoneum was set up to mimic the situation of ovarian cancer spheroids in the peritoneal cavity during metastasis. Ovarian cancer spheroids generated under a non-adherent condition were cultured in microfluidic channels coated with peritoneal mesothelial cells subjected to physiologically relevant shear stress. In summary, this dynamic 3D ovarian cancer-mesothelium microfluidic platform can provide new knowledge on basic cancer biology and serve as a platform for potential drug screening and development.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Biological Sciences, University of Hong Kong
| | - Carman K M Ip
- School of Biological Sciences, University of Hong Kong
| | | | - Samuel K H Sy
- Department of Mechanical Engineering, University of Hong Kong
| | - Susan Yung
- Department of Medicine, University of Hong Kong
| | | | - Mengsu Yang
- Department of Biomedical Sciences, Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong;
| | | |
Collapse
|
42
|
Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow. Sci Rep 2016; 6:38221. [PMID: 27910892 PMCID: PMC5133540 DOI: 10.1038/srep38221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.
Collapse
|
43
|
Stemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress. Sci Rep 2016; 6:26788. [PMID: 27245437 PMCID: PMC4887794 DOI: 10.1038/srep26788] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
One of greatest challenges to the successful treatment of cancer is drug resistance. An exciting approach is the eradication of cancer stem cells (CSCs). However, little is known about key signals regulating the formation and expansion of CSCs. Moreover, lack of a reliable predictive preclinical model has been a major obstacle to discover new cancer drugs and predict their clinical activity. Here, in ovarian cancer, a highly chemoresistant tumor that is rapidly fatal, we provide the first evidence demonstrating the causal involvement of mechanical stimulus in the CSC phenotype using a customizable microfluidic platform and three-dimensional spheroids, which most closely mimic tumor behavior. We found that ovarian cancer cells significantly acquired the expression of epithelial-to-mesenchymal transition and CSC markers and a remarkable chemoresistance to clinically relevant doses of frontline chemotherapeutic drugs cisplatin and paclitaxel when grown under fluid shear stress, which corroborates with the physiological attainable levels in the malignant ascites, but not under static condition. Furthermore, we uncovered a new link of microRNA-199a-3p, phosphatidylinositol 3-kinase/Akt, and multidrug transporter activation in shear stress-induced CSC enrichment. Our findings shed new light on the significance of hydrodynamics in cancer progression, emphasizing the need of a flow-informed framework in the development of therapeutics.
Collapse
|
44
|
A Reservoir of Mature Cavity Macrophages that Can Rapidly Invade Visceral Organs to Affect Tissue Repair. Cell 2016; 165:668-78. [PMID: 27062926 DOI: 10.1016/j.cell.2016.03.009] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
A key feature of inflammation is the timely recruitment of leukocytes, including monocytes, from blood into tissues, the latter maturing into macrophages over a period of 2-3 days. Using multi-channel spinning disk microscopy, we identified a rapid pathway of macrophage recruitment into an injured organ via a non-vascular route requiring no maturation from monocytes. In response to a sterile injury in liver, a reservoir of fully mature F4/80(hi)GATA6(+) peritoneal cavity macrophages rapidly invaded into afflicted tissue via direct recruitment across the mesothelium. The invasion was dependent on CD44 and DAMP molecule ATP and resulted in rapid replication and switching of macrophage toward an alternatively activated phenotype. These macrophages dismantled the nuclei of necrotic cells releasing DNA and forming a cover across the injury site. Rapid invasion of mature macrophages from body cavity with capacity for induction of reparative phenotype may impact altered tissues ranging from trauma to infections to cancer. VIDEO ABSTRACT.
Collapse
|
45
|
Munson JM, Shieh AC. Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res 2014; 6:317-28. [PMID: 25170280 PMCID: PMC4144982 DOI: 10.2147/cmar.s65444] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As cancer progresses, a dynamic microenvironment develops that creates and responds to cellular and biophysical cues. Increased intratumoral pressure and corresponding increases in interstitial flow from the tumor bulk to the healthy stroma is an observational hallmark of progressing cancers. Until recently, the role of interstitial flow was thought to be mostly passive in the transport and dissemination of cancer cells to metastatic sites. With research spanning the past decade, we have seen that interstitial flow has a promigratory effect on cancer cell invasion in multiple cancer types. This invasion is one mechanism by which cancers can resist therapeutics and recur, but the role of interstitial flow in cancer therapy is limited to the understanding of transport of therapeutics. Here we outline the current understanding of the role of interstitial flow in cancer and the tumor microenvironment through cancer progression and therapy. We also discuss the current role of fluid flow in the treatment of cancer, including drug transport and therapeutic strategies. By stating the current understanding of interstitial flow in cancer progression, we can begin exploring its role in therapeutic failure and treatment resistance.
Collapse
Affiliation(s)
- Jennifer M Munson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Adrian C Shieh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Fuller ES, Howell VM. Culture models to define key mediators of cancer matrix remodeling. Front Oncol 2014; 4:57. [PMID: 24724052 PMCID: PMC3971193 DOI: 10.3389/fonc.2014.00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
High grade serous epithelial ovarian cancer (HG-SOC) is one of the most devastating gynecological cancers affecting women worldwide, with a poor survival rate despite clinical treatment advances. HG-SOC commonly metastasizes within the peritoneal cavity, primarily to the mesothelial cells of the omentum, which regulate an extracellular matrix rich in collagens type I, III, and IV along with laminin, vitronectin, and fibronectin. Cancer cells depend on their ability to penetrate and invade secondary tissue sites to spread, however a detailed understanding of the molecular mechanisms underlying these processes remain largely unknown. Given the high metastatic potential of HG-SOC and the associated poor clinical outcome, it is extremely important to identify the pathways and the components of which that are responsible for the progression of this disease. In vitro methods of recapitulating human disease processes are the critical first step in such investigations. In this context, establishment of an in vitro “tumor-like” micro-environment, such as 3D culture, to study early disease and metastasis of human HG-SOC is an important and highly insightful method. In recent years, many such methods have been established to investigate the adhesion and invasion of human ovarian cancer cell lines. The aim of this review is to summarize recent developments in ovarian cancer culture systems and their use to investigate clinically relevant findings concerning the key players in driving human HG-SOC.
Collapse
Affiliation(s)
- Emily Suzanne Fuller
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St. Leonards, NSW , Australia
| | - Viive Maarika Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St. Leonards, NSW , Australia
| |
Collapse
|
47
|
Berntsson J, Lundgren S, Nodin B, Uhlén M, Gaber A, Jirström K. Expression and prognostic significance of the polymeric immunoglobulin receptor in epithelial ovarian cancer. J Ovarian Res 2014; 7:26. [PMID: 24568264 PMCID: PMC3938822 DOI: 10.1186/1757-2215-7-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High expression of the polymeric immunoglobulin receptor (PIGR) has previously been associated with a favourable prognosis in a few cancer forms, but its expression and relationship with clinical outcome in epithelial ovarian cancer (EOC) has not yet been reported. The aim of this study was therefore to examine the clinicopathological correlates and prognostic significance of PIGR expression in EOC. METHODS After an initial screening in the Human Protein Atlas portal, a validated antibody was selected for extended analysis of immunohistochemical PIGR expression in tissue microarrays with tumours from 154 incident cases of EOC from two pooled prospective population-based cohorts. Subsets of corresponding benign-appearing fallopian tubes (n = 38) and omental metastases (n = 33) were also analysed. Kaplan-Meier analysis and Cox regression analysis were applied to examine the impact of PIGR expression on overall survival (OS) and ovarian cancer-specific survival (OCSS). RESULTS PIGR expression was significantly higher in fallopian tubes compared to primary tumours and metastases (p < 0.001) and lower in carcinoma of the serous subtype compared to other carcinomas (p < 0.001). PIGR expression was significantly associated with lower grade (p = 0.001), mucinous histological subtype (p = 0.002), positive progesterone receptor expression (p = 0.009) and negative or low Ki-67 expression (p = 0.003). Kaplan-Meier analysis revealed a significantly improved OS (p = 0.013) and OCSS (p = 0.009) for patients with tumours displaying high expression of PIGR. These associations were confirmed in unadjusted Cox regression analysis (HR = 0.48; 95% CI 0.26-0.87; p = 0.015 for OS and HR = 0.43, 95% CI 0.22-0.82; p = 0.011 for OCSS) but did not remain significant after adjustment for age, grade and clinical stage. CONCLUSIONS This study provides a first demonstration of PIGR expression in human fallopian tubes, primary EOC tumours and metastases. High tumour-specific expression of PIGR was found to be associated with a favourable prognosis in unadjusted, but not in adjusted, analysis. These findings are novel and merit further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, 221 85 Lund, Sweden.
| |
Collapse
|
48
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|