1
|
Puyo M, Scalabrino L, Romanet R, Simonin S, Klein G, Alexandre H, Tourdot-Maréchal R. Competition for Nitrogen Resources: An Explanation of the Effects of a Bioprotective Strain Metschnikowia pulcherrima on the Growth of Hanseniaspora Genus in Oenology. Foods 2024; 13:724. [PMID: 38472837 DOI: 10.3390/foods13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
As a biological alternative to the antimicrobial action of SO2, bioprotection has been proposed to winemakers as a means to limit or prevent grape musts microbial alteration. Competition for nitrogenous nutrients and for oxygen are often cited as potential explanations for the effectiveness of bioprotection. This study analyses the effect of a bioprotective M. pulcherrima strain on the growth of one H. valbyensis strain and one H. uvarum strain. Bioprotection efficiency was observed only against H. valbyensis inoculated at the two lowest concentrations. These results indicate a potential species-dependent efficiency of the bioprotective strain and a strong impact of the initial ratio between bioprotective and apiculate yeasts. The analysis of the consumption of nitrogen compounds revealed that leucine, isoleucine, lysine and tryptophan were consumed preferentially by all three strains. The weaker assimilation percentages of these amino acids observed in H. valbyensis at 24 h growth suggest competition with M. pulcherrima that could negatively affects the growth of the apiculate yeast in co-cultures. The slowest rate of O2 consumption of H. valbyensis strain, in comparison with M. pulcherrima, was probably not involved in the bioprotective effect. Non-targeted metabolomic analyses of M. pulcherrima and H. valbyensis co-culture indicate that the interaction between both strains particularly impact lysin and tryptophan metabolisms.
Collapse
Affiliation(s)
- Maëlys Puyo
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Léa Scalabrino
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform, UMR Procédés Alimentaires et Microbiologiques, IUVV, 2 Rue 11 Claude Ladrey, 21000 Dijon, France
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Géraldine Klein
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| |
Collapse
|
2
|
Schwarz LV, Sandri FK, Scariot F, Delamare APL, Valera MJ, Carrau F, Echeverrigaray S. High nitrogen concentration causes G2/M arrest in Hanseniaspora vineae. Yeast 2023; 40:640-650. [PMID: 37997429 DOI: 10.1002/yea.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.
Collapse
Affiliation(s)
- Luisa Vivian Schwarz
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Knaach Sandri
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernando Scariot
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Maria Jose Valera
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Francisco Carrau
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Characterization and Role of Sterols in Saccharomyces cerevisiae during White Wine Alcoholic Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Responsible for plasma membrane structure maintenance in eukaryotic organisms, sterols are essential for yeast development. The role of two sterol sources in Saccharomyces cerevisiae during wine fermentation is highlighted in this review: ergosterol (yeast sterol produced by yeast cells under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts in the absence of oxygen). These compounds are responsible for the maintenance of yeast cell viability during white wine fermentation under stress conditions, such as ethanol stress and sterol starvation, to avoid sluggish and stuck fermentations.
Collapse
|
4
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and Carbohydrates in Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13849-13858. [PMID: 34779198 DOI: 10.1021/acs.jafc.1c05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sucrose nonfermenting protein kinase 1 (SNF1) complex is an important metabolic regulator in fungi that is critical to cell metabolism and stress response. In this study, the role of an SNF1 β-subunit in the oleaginous fungus Mortierella alpina (MaSip2) was investigated. The MaSip2 contained a glycogen-binding domain and a conserved SNF1-complex interaction region; its transcriptional level during lipogenesis shared high consistency with a previously reported SNF1 γ-subunit (MaSnf4). Overexpression of MaSip2 in M. alpina significantly promoted glucose uptake and resulted in 34.1% increased total biomass, leading to 44.8% increased arachidonic acid yield after 7 day fermentation. MaSip2 also regulated the balance between polyunsaturated fatty acids and carbohydrates in M. alpina. Intracellular metabolite analysis revealed increased carbohydrate-related metabolite accumulation in MaSip2 overexpression strains. On the contrary, knockdown of MaSip2 increased the total fatty acid unsaturation degree, especially under low-temperature conditions. This research improved our knowledge of SNF1 complex in M. alpina and provided a target gene for enhancing glucose utilization and modulating fatty acid composition for better application of oleaginous fungi.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
5
|
Yusof TY, Lian MQ, Ong EBB, Teh AH. Enhancing yeast growth with carboxylates under multiple nutrient limitations. 3 Biotech 2021; 11:409. [PMID: 34471591 DOI: 10.1007/s13205-021-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Yeast cell death is triggered when essential nutrients such as potassium and lipid are limited but ammonium is in excess. When ammonium and glucose were maintained at 100% of the normal concentration while all the other essential nutrients in yeast nitrogen base (YNB) were reduced to 2%, yeast growth was halted by ammonium toxicity. Yeast started to grow again when either ammonium was also reduced to 2% or gluconate was added, but simultaneously adding gluconate as well as reducing all the nutrients except glucose 50-fold revived yeast growth to a greater extent, i.e. a quarter of the normal growth. Gluconate, as well as formate and alginate, stimulated yeast growth by buffering the drop in pH. Yeast cells were seemingly more susceptible to low pH under the nutrient-limited conditions, entering the stationary phase at pH higher than that of the normal condition. Carboxylate salts may prove a cost-efficient replacement for large proportions of the essential nutrients as yeast cells, in the presence of 2 mg ml-1 gluconate, could still achieve nearly 90% of the normal growth when cultured in only 10% of the normal YNB concentration.
Collapse
Affiliation(s)
- Tengku Yasmin Yusof
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Melissa Qianyue Lian
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Eugene Boon Beng Ong
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
6
|
Mardones W, Villarroel CA, Abarca V, Urbina K, Peña TA, Molinet J, Nespolo RF, Cubillos FA. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microb Biotechnol 2021; 15:967-984. [PMID: 33755311 PMCID: PMC8913853 DOI: 10.1111/1751-7915.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/02/2023] Open
Abstract
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time‐course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off‐flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in ‘fast motion’ in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Carlos A Villarroel
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Valentina Abarca
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Kamila Urbina
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Tomás A Peña
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Jennifer Molinet
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Roberto F Nespolo
- Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile.,Institute of Environmental and Evolutionary Science, Universidad Austral de Chile, Valdivia, 5110566, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| |
Collapse
|
7
|
Large-Scale Screening of Thiol and Fermentative Aroma Production during Wine Alcoholic Fermentation: Exploring the Effects of Assimilable Nitrogen and Peptides. FERMENTATION 2020. [DOI: 10.3390/fermentation6040098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In alcoholic fermentation, under oenological conditions, the environmental parameters impacting fermentation kinetics and aroma production have been widely studied. The nitrogen content of grape must was found to be one of the most important parameters for both of these aspects of fermentation. Many studies have been performed on the effect of mineral nitrogen addition. However, it has increasingly been observed that the nature of the nitrogen added leads to different results. Our work focused on the effects of peptide addition on both fermentation kinetics and aroma production. Peptides are one of the less well understood sources of assimilable nitrogen, as their incorporation by yeast remains unclear. In this study, we compared the effect of the addition of a “classic” assimilable nitrogen source (ammonium + amino acids) with that of peptide addition in both white and red must fermentation by screening 18 Saccharomyces cerevisiae strains in total. Our data show that peptide addition enhances fermentation kinetics and leads to specific changes in the production of fermentative aromas. The impact of peptides on thiol synthesis is rather limited.
Collapse
|
8
|
Eldarov MA, Mardanov AV. Metabolic Engineering of Wine Strains of Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E964. [PMID: 32825346 PMCID: PMC7565949 DOI: 10.3390/genes11090964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Modern industrial winemaking is based on the use of starter cultures of specialized wine strains of Saccharomyces cerevisiae yeast. Commercial wine strains have a number of advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality, it has become increasingly critical to develop new wine strains and winemaking technologies. Novel opportunities for precise wine strain engineering based on detailed knowledge of the molecular nature of a particular trait or phenotype have recently emerged due to the rapid progress in genomic and "postgenomic" studies with wine yeast strains. The review summarizes the current achievements of the metabolic engineering of wine yeast, the results of recent studies and the prospects for the application of genomic editing technologies for improving wine S. cerevisiae strains.
Collapse
Affiliation(s)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
9
|
Vallejo B, Peltier E, Garrigós V, Matallana E, Marullo P, Aranda A. Role of Saccharomyces cerevisiae Nutrient Signaling Pathways During Winemaking: A Phenomics Approach. Front Bioeng Biotechnol 2020; 8:853. [PMID: 32793580 PMCID: PMC7387434 DOI: 10.3389/fbioe.2020.00853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyzed. The results indicate that the cAMP-dependent PKA pathway is the most relevant regardless of fermentation conditions, while mutations on TOR pathways display an effect that depends on nitrogen availability. The production of metabolites of interest, such as glycerol, acetic acid and pyruvate, is controlled in a coordinated manner by the contribution of several components of different pathways. Ras GTPase Ras2, a stimulator of cAMP production, is a key factor for achieving fermentation, and is also relevant for sensing nitrogen availability. Increasing cAMP concentrations by deleting an enzyme used for its degradation, phosphodiesterase Pde2, proved a good way to increase fermentation kinetics, and offered keys for biotechnological improvement. Surprisingly glucose repression protein kinase Snf1 and Nitrogen Catabolite Repression transcription factor Gln3 are relevant in fermentation, even in the absence of starvation. Gln3 proved essential for respiration in several genetic backgrounds, and its presence is required to achieve full glucose de-repression. Therefore, most pathways sense different types of nutrients and only their coordinated action can ensure successful wine fermentation.
Collapse
Affiliation(s)
- Beatriz Vallejo
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Emilien Peltier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Strasbourg, France.,ISVV UR Oenology, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,Biolaffort, Bordeaux, France
| | - Victor Garrigós
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Philippe Marullo
- ISVV UR Oenology, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,Biolaffort, Bordeaux, France
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| |
Collapse
|
10
|
Fungal Diversity Analysis of Grape Musts from Central Valley-Chile and Characterization of Potential New Starter Cultures. Microorganisms 2020; 8:microorganisms8060956. [PMID: 32599933 PMCID: PMC7356840 DOI: 10.3390/microorganisms8060956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/16/2023] Open
Abstract
Autochthonous microorganisms are an important source of the distinctive metabolites that influence the chemical profile of wine. However, little is known about the diversity of fungal communities associated with grape musts, even though they are the source of local yeast strains with potential capacities to become starters during fermentation. By using internal transcribed spacer (ITS) amplicon sequencing, we identified the taxonomic structure of the yeast community in unfermented and fermented musts of a typical Vitis vinifera L. var. Sauvignon blanc from the Central Valley of Chile throughout two consecutive seasons of production. Unsurprisingly, Saccharomyces represented the most abundant fungal genus in unfermented and fermented musts, mainly due to the contribution of S. uvarum (42.7%) and S. cerevisiae (80%). Unfermented musts were highly variable between seasons and showed higher values of fungal diversity than fermented musts. Since microbial physiological characterization is primarily achieved in culture, we isolated nine species belonging to six genera of fungi from the unfermented must samples. All isolates were characterized for their potential capacities to be used as new starters in wine. Remarkably, only Metschnikowia pulcherrima could co-exist with a commercial Saccharomyces cerevisiae strain under fermentative conditions, representing a feasible candidate strain for wine production.
Collapse
|
11
|
Vallejo B, Matallana E, Aranda A. Saccharomyces cerevisiae nutrient signaling pathways show an unexpected early activation pattern during winemaking. Microb Cell Fact 2020; 19:124. [PMID: 32505207 PMCID: PMC7275465 DOI: 10.1186/s12934-020-01381-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
Background Saccharomyces cerevisiae wine strains can develop stuck or sluggish fermentations when nutrients are scarce or suboptimal. Nutrient sensing and signaling pathways, such as PKA, TORC1 and Snf1, work coordinately to adapt growth and metabolism to the amount and balance of the different nutrients in the medium. This has been exhaustively studied in laboratory strains of S. cerevisiae and laboratory media, but much less under industrial conditions. Results Inhibitors of such pathways, like rapamycin or 2-deoxyglucose, failed to discriminate between commercial wine yeast strains with different nutritional requirements, but evidenced genetic variability among industrial isolates, and between laboratory and commercial strains. Most signaling pathways involve events of protein phosphorylation that can be followed as markers of their activity. The main pathway to promote growth in the presence of nitrogen, the TORC1 pathway, measured by the phosphorylation of Rps6 and Par32, proved active at the very start of fermentation, mainly on day 1, and ceased soon afterward, even before cellular growth stopped. Transcription factor Gln3, which activates genes subject to nitrogen catabolite repression, was also active for the first hours, even when ammonium and amino acids were still present in media. Snf1 kinase was activated only when glucose was exhausted under laboratory conditions, but was active from early fermentation stages. The same results were generally obtained when nitrogen was limiting, which indicates a unique pathway activation pattern in winemaking. As PKA remained active throughout fermentation, it could be the central pathway that controls others, provided sugars are present. Conclusions Wine fermentation is a distinct environmental situation from growth in laboratory media in molecular terms. The mechanisms involved in glucose and nitrogen repression respond differently under winemaking conditions.
Collapse
Affiliation(s)
- Beatriz Vallejo
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Parc Cientific UV. Av. Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Parc Cientific UV. Av. Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Agustín Aranda
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Parc Cientific UV. Av. Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
12
|
Tesnière C. Importance and role of lipids in wine yeast fermentation. Appl Microbiol Biotechnol 2019; 103:8293-8300. [PMID: 31402425 DOI: 10.1007/s00253-019-10029-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023]
Abstract
This review summarizes the current knowledge on the importance and role of lipids in wine yeast fermentation. Lipids play an important role in membrane structure, adaptation to stress, or as signaling molecules. They are also essential nutrients whose availability can vary depending on winemaking technology, with major effects on yeast alcoholic fermentation. Moreover, lipid supplementation can greatly stimulate the formation of yeast volatile metabolites.
Collapse
Affiliation(s)
- Catherine Tesnière
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Transcriptomic Response of Saccharomyces cerevisiae during Fermentation under Oleic Acid and Ergosterol Depletion. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Under anaerobic/hypoxic conditions, Saccharomyces cerevisiae relies on external lipid supplements to modulate membrane lipid fraction in response to different stresses. Here, transcriptomic responses of two S. cerevisiae wine strains were evaluated during hypoxic fermentation of a synthetic must with/without ergosterol and oleic acid supplementation. In the absence of lipids, the two strains, namely EC1118 and M25, showed different behaviour, with M25 significantly decreasing its fermentation rate from the 72 h after inoculum. At this time point, the whole genome transcriptomic analysis revealed common and strain-specific responses to the lack of lipid supplementation. Common responses included the upregulation of the genes involved in ergosterol biosynthesis, as well as the seripauperin and the heat shock protein multigene families. In addition, the upregulation of the aerobic isoforms of genes involved in mitochondrial electron transport is compatible with the previously observed accumulation of reactive oxygen species in the two strains during growth in absence of lipids. Considering the strain-specific responses, M25 downregulated the transcription of genes involved in glucose transport, methionine biosynthesis and of those encoding mannoproteins required for adaptation to low temperatures and hypoxia. The identification of these pathways, which are presumably involved in yeast resistance to stresses, will assist industrial strain selection.
Collapse
|
14
|
Huang CJ, Lu MY, Chang YW, Li WH. Experimental Evolution of Yeast for High-Temperature Tolerance. Mol Biol Evol 2019; 35:1823-1839. [PMID: 29684163 DOI: 10.1093/molbev/msy077] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thermotolerance is a polygenic trait that contributes to cell survival and growth under unusually high temperatures. Although some genes associated with high-temperature growth (Htg+) have been identified, how cells accumulate mutations to achieve prolonged thermotolerance is still mysterious. Here, we conducted experimental evolution of a Saccharomyces cerevisiae laboratory strain with stepwise temperature increases for it to grow at 42 °C. Whole genome resequencing of 14 evolved strains and the parental strain revealed a total of 153 mutations in the evolved strains, including single nucleotide variants, small INDELs, and segmental duplication/deletion events. Some mutations persisted from an intermediate temperature to 42 °C, so they might be Htg+ mutations. Functional categorization of mutations revealed enrichment of exonic mutations in the SWI/SNF complex and F-type ATPase, pointing to their involvement in high-temperature tolerance. In addition, multiple mutations were found in a general stress-associated signal transduction network consisting of Hog1 mediated pathway, RAS-cAMP pathway, and Rho1-Pkc1 mediated cell wall integrity pathway, implying that cells can achieve Htg+ partly through modifying existing stress regulatory mechanisms. Using pooled segregant analysis of five Htg+ phenotype-orientated pools, we inferred causative mutations for growth at 42 °C and identified those mutations with stronger impacts on the phenotype. Finally, we experimentally validated a number of the candidate Htg+ mutations. This study increased our understanding of the genetic basis of yeast tolerance to high temperature.
Collapse
Affiliation(s)
- Chih-Jen Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Wen Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
15
|
Abstract
Yeasts are very important microorganisms for food production. The high fermentative capacity, mainly of the species of the genus Saccharomyces, is a key factor for their biotechnological use, particularly to produce alcoholic beverages. As viability and vitality are essential to ensure their correct performance in industry, this review addresses the main aspects related to the cellular aging of these fungi as their senescence impacts their proper functioning. Laboratory strains of S. cerevisiae have proven a very successful model for elucidating the molecular mechanisms that control life span. Those mechanisms are shared by all eukaryotic cells. S. cerevisiae has two models of aging, replicative and chronological. Replicative life span is measured by the number of daughter cells a mother can produce. This kind of aging is relevant when the yeast biomass is reused, as in the case of beer fermentations. Chronological life span is measured by the time cells are viable in the stationary phase, and this is relevant for batch fermentations when cells are most of the time in a non-dividing state, such as wine fermentations. The molecular causes and pathways regulating both types of aging are explained in this review.
Collapse
|
16
|
Gobert A, Tourdot-Maréchal R, Sparrow C, Morge C, Alexandre H. Influence of nitrogen status in wine alcoholic fermentation. Food Microbiol 2019; 83:71-85. [PMID: 31202421 DOI: 10.1016/j.fm.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. cerevisiae has highlighted that the concept of "preferred" versus "non-preferred" nitrogen sources is extremely variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of lipids in nitrogen regulation in S. cerevisiae and their involvement in the mechanism of cell death. New winemaking strategies using non-Saccharomyces yeast strains in co- or sequential fermentation improve nitrogen management. Indeed, recent studies show that non-Saccharomyces yeasts have significant and specific needs for nitrogen. Moreover, sluggish fermentation can occur when they are associated with S. cerevisiae, necessitating nitrogen addition. In this context, we will present the consequences of nitrogen addition, discussing the sources, time of addition, transcriptome changes, and effect on volatile compound composition.
Collapse
Affiliation(s)
- Antoine Gobert
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Céline Sparrow
- SAS Sofralab, 79, Av. A.A. Thévenet, BP 1031, Magenta, France
| | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
17
|
Blondin B, Duc C, Noble J, Pradal M, Tesnière C. Study of the mortality mechanisms of yeasts in fermentation: Role of micronutrients limitations and nitrogen. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191502023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yeast cell death can occur during wine alcoholic fermentation and lead to sluggish or stuck fermentations. The mechanisms underlying cell death during yeast starvation in alcoholic fermentations remain unclear. In this work we addressed yeast cell death using conceptual framework from ageing studies showing that yeast resistance to starvation can be influenced by the nature of the nutrient limiting cell growth. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a set of nutrient limitations. We show that several micronutrients limitations (oleic acid, ergosterol, pantothenic acid and nicotinic acid) trigger cell death in a nitrogen-dependent manner. We provide evidence that the nitrogen Tor/Sch9 signaling pathway is involved in triggering cell death. In such conditions, yeast cells fail to acquire stress resistance given a restriction at a post-transcriptional level. We have examined the ability of different nitrogen sources to trigger cell death and show that they impact differentially on cell death and that NH4 + had a strong death inducing capacity. Finally, the QTLs approaches allowed the mapping of a set of loci controlling cell death under oleic acid and pantothenic acid starvation consistent with a multigenic control.
Collapse
|
18
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
19
|
Deroite A, Legras JL, Rigou P, Ortiz-Julien A, Dequin S. Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. AMB Express 2018; 8:130. [PMID: 30097818 PMCID: PMC6086921 DOI: 10.1186/s13568-018-0657-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids are typically used for white wine fermentation because of their cryotolerance. One group of these hybrids presents a unique ability to release thiol varietal aroma products as well as excessive amounts of acetic acid under specific conditions, which is detrimental for wine organoleptic quality. The aim of this work is to better assess the effects of lipids, sugar concentrations and temperature on the production of acetic acid and thiols during wine fermentation. To this end, we used a Box–Behnken experimental design and response surface modeling on the production of acetic acid and thiols in S. cerevisiae × S. kudriavzevii hybrids from the Eg8 family during fermentation of a synthetic must. We showed that these hybrids produced lower levels of acetic acid when the initial lipid concentration was increased, whereas they produced greater levels when the initial sugar concentration was high. Moreover, we found that lipids had a positive impact on the final concentrations of 4-methyl-4-mercaptopentan-2-one and 3-mercaptohexan-1-ol (3MH), giving box tree and citrus flavors, respectively. The increase of 3MH was concomitant with a decrease of 3-mercaptohexyl acetate (3MHA) characterized by a passion fruit aroma, indicating that lipid addition reduces the rate of 3MH acetylation into 3MHA. These results highlight the key role of lipid management in acetic acid metabolism and thiol release by S. cerevisiae × S. kudriavzevii hybrids and underline its technological interest in alcoholic fermentation to avoid the overproduction of volatile acidity while favoring the release of volatile thiols.
Collapse
|
20
|
Interactions between carbon and nitrogen sources depend on RIM15 and determine fermentative or respiratory growth in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2018; 102:4535-4548. [DOI: 10.1007/s00253-018-8951-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/29/2022]
|
21
|
Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil KR. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Syst 2017; 5:345-357.e6. [PMID: 28964698 PMCID: PMC5660601 DOI: 10.1016/j.cels.2017.09.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023]
Abstract
Many microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria through endogenous, multi-component, cross-feeding in a readily established community. In nitrogen-rich environments, Saccharomyces cerevisiae adjusts its metabolism by secreting a pool of metabolites, especially amino acids, and thereby enables survival of Lactobacillus plantarum and Lactococcus lactis. Quantity of the available nitrogen sources and the status of nitrogen catabolite repression pathways jointly modulate this niche creation. We demonstrate how nitrogen overflow by yeast benefits L. plantarum in grape juice, and contributes to emergence of mutualism with L. lactis in a medium with lactose. Our results illustrate how metabolic decisions of an individual species can benefit others.
Collapse
Affiliation(s)
- Olga Ponomarova
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Daniel C Sévin
- Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Michael Mülleder
- Department of Biochemistry, University of Cambridge, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Sergej Andrejev
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Eleni Kafkia
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, The Francis Crick Institute, London, NW1 1AT, UK
| | | |
Collapse
|
22
|
Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One 2017; 12:e0184838. [PMID: 28922393 PMCID: PMC5602661 DOI: 10.1371/journal.pone.0184838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.
Collapse
Affiliation(s)
- Camille Duc
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,Lallemand SAS, Blagnac, France
| | - Martine Pradal
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Isabelle Sanchez
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Catherine Tesnière
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Bruno Blondin
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth. Metab Eng 2017; 41:46-56. [DOI: 10.1016/j.ymben.2017.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
|
24
|
Martins F, Mamede MEDO, Silva AFD, Guerreiro J, Lima STDC. Ultraestrutura celular e expressão de proteínas de leveduras hanseniaspora sob efeito do estresse etanólico. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.6516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo deste estudo foi avaliar a resposta de Hanseniaspora opuntiae (Ho41) e H. guilliermondii (Hg43) ao estresse etanólico, observando a ultraestrutura e o perfil de expressão proteica em concentrações crescentes de etanol. A ultraestrutura foi analisada por microscopia eletrônica de varredura (MEV) e a expressão proteica, pelo perfil eletroforético (SDS-PAGE). Na análise microscópica, as cepas em meio Yeast Malt Agar sem etanol mostraram células jovens com morfologia apiculada, brotamento bilateral e polos distais côncavos. Com o início do estresse, a 3% de etanol, as células apresentaram múltiplas cicatrizes em forma de anéis e, com 6%, alterações na integridade da parede celular, plasmólise e ativação da autólise. Na análise eletroforética, observou-se, tanto para Ho41 quanto para Hg43, aumento na expressão de um peptídeo de 100 kDa, com aumento do etanol no meio, indicando ser uma proteína de choque térmico (HSP). As HSPs vêm sendo patenteadas como marcadores de organismos de interesse biotecnológico, já que as condições necessárias para obtenção de bioprodutos muitas vezes requerem cultivo sob estresse. Neste contexto, esta proteína pode ser indicada como marcador molecular para bioprospecção ou melhoramento genético de cepas não-saccharomyces mais resistentes aos processos de fermentação, na fabricação de vinhos.
Collapse
|
25
|
Longin C, Petitgonnet C, Guilloux-Benatier M, Rousseaux S, Alexandre H. Application of flow cytometry to wine microorganisms. Food Microbiol 2016; 62:221-231. [PMID: 27889152 DOI: 10.1016/j.fm.2016.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/20/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology.
Collapse
Affiliation(s)
- Cédric Longin
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Clément Petitgonnet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Michèle Guilloux-Benatier
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Sandrine Rousseaux
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| |
Collapse
|
26
|
Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 2015. [DOI: 10.1007/s00253-015-6810-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Abstract
Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. This review summarizes current knowledge and recent advances on the diversity and evolutionary history of Saccharomyces cerevisiae wine yeasts, focusing on the domestication fingerprints identified in these strains.
Collapse
Affiliation(s)
- Souhir Marsit
- INRA, UMR1083, SPO, F-34060 Montpellier, France Montpellier SupAgro, UMR1083, SPO, F-34060 Montpellier, France Montpellier University, UMR1083, SPO, F-34060 Montpellier, France
| | - Sylvie Dequin
- INRA, UMR1083, SPO, F-34060 Montpellier, France Montpellier SupAgro, UMR1083, SPO, F-34060 Montpellier, France Montpellier University, UMR1083, SPO, F-34060 Montpellier, France
| |
Collapse
|
28
|
Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS One 2015; 10:e0122709. [PMID: 25884705 PMCID: PMC4401569 DOI: 10.1371/journal.pone.0122709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations.
Collapse
|
29
|
Della Corte A, Chitarrini G, Di Gangi IM, Masuero D, Soini E, Mattivi F, Vrhovsek U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta 2015; 140:52-61. [PMID: 26048823 DOI: 10.1016/j.talanta.2015.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
The abundance of lipids in plants is influenced by genotype and phenotype. Despite being a very important class of plant metabolites, knowledge of grape lipids is still very limited to date, with the exception of those located in seeds. Few investigations of grape lipids have shown that their profile depends on grape maturity, the variety and their location in the berry. Recent advances in liquid chromatography coupled to mass spectrometry have paved the way for faster analysis of lipids with minimal sample preparation. Here we describe a validation method for the extraction, identification and quantification of different classes of grape lipids: fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids using liquid chromatographic electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The method was validated for 33 lipids, with linearity range (R(2)=0.95-1.00), LOQ (0.003-14.88 ng mL(-1)) and intraday and interday repeatability being evaluated for each lipid. The lipid profiling method developed was successfully applied to the analysis of 18 grape samples (10 red grape and 8 white grape varieties) from 4 different genetic groups: Vitis vinifera, Vitis non-vinifera, Muscat and hybrid; 33 lipids were identified and quantified. This method, which can be easily expanded to include further compounds and other plant tissues, is the starting point for analysis of the lipid profile in different grape tissues, an essential goal for better understanding the role of lipids in grape physiology.
Collapse
Affiliation(s)
- Anna Della Corte
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy
| | - Giulia Chitarrini
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy
| | - Iole Maria Di Gangi
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy
| | - Domenico Masuero
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy
| | - Evelyn Soini
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all'Adige, Trento, Italy.
| |
Collapse
|
30
|
Interplay among Gcn5, Sch9 and mitochondria during chronological aging of wine yeast is dependent on growth conditions. PLoS One 2015; 10:e0117267. [PMID: 25658705 PMCID: PMC4319768 DOI: 10.1371/journal.pone.0117267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022] Open
Abstract
Saccharomyces cerevisiae chronological life span (CLS) is determined by a wide variety of environmental and genetic factors. Nutrient limitation without malnutrition, i.e. dietary restriction, expands CLS through the control of nutrient signaling pathways, of which TOR/Sch9 has proven to be the most relevant, particularly under nitrogen deprivation. The use of prototrophic wine yeast allows a better understanding of the role of nitrogen in longevity in natural and more demanding environments, such as grape juice fermentation. We previously showed that acetyltransferase Gcn5, a member of the SAGA complex, has opposite effects on CLS under laboratory and winemaking conditions, and is detrimental under the latter. Here we demonstrate that integrity of the SAGA complex is necessary for prolonged longevity, as its dismantling by SPT20 deletion causes a drop in CLS under both laboratory and winemaking conditions. The sch9Δ mutant is long-lived in synthetic SC medium, as expected, and the combined deletion of GCN5 partially suppresses this phenotype. However it is short-lived in grape juice, likely due to its low nitrogen/carbon ratio. Therefore, unbalance of nutrients can be more relevant for life span than total amounts of them. Deletion of RTG2, which codes for a protein associated with Gcn5 and is a component of the mitochondrial retrograde signal, and which communicates mitochondrial dysfunction to the nucleus, is detrimental under laboratory, but not under winemaking conditions, where respiration seems not so relevant for longevity. Transcription factor Rgm1 was found to be a novel CLS regulator Sch9-dependently.
Collapse
|
31
|
Marchal A, Marullo P, Durand C, Moine V, Dubourdieu D. Fermentative conditions modulating sweetness in dry wines: genetics and environmental factors influencing the expression level of the Saccharomyces cerevisiae HSP12 gene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:304-311. [PMID: 25524156 DOI: 10.1021/jf504408t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yeast lees influence the organoleptic properties of wines by increasing their sweet taste. This effect is in part due to the protein Hsp12p, which is regulated by different stress response pathways in Saccharomyces cerevisiae. This work investigated the genetics and environmental factors influencing the expression level of the HSP12 gene in an enological context. RT-qPCR confirmed that the HSP12 expression level is regulated by temperature change and ethanol content during the alcoholic fermentation but not by the sugar content. Moreover, this gene shows an important variation according to the yeast strain used. For the first time yeast strain is demonstrated to play an important role in the perception of sweetness in red wine due to post-fermentation lees autolysis. Interestingly, a correlation between the expression level of HSP12 and the sweetness perception was found using yeast strains of different origins. All of the findings provide new insights on the contribution of yeast to wine taste.
Collapse
|
32
|
Brion C, Ambroset C, Delobel P, Sanchez I, Blondin B. Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression. BMC Genomics 2014; 15:1085. [PMID: 25494835 PMCID: PMC4299793 DOI: 10.1186/1471-2164-15-1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3. RESULTS We deciphered here the source of these regulatory variations of the THI and PDC genes. We showed that alteration of THI3 results in reduced expression of the genes involved in thiamine biosynthesis (THI11/12/13 and THI74) and increased expression of the pyruvate decarboxylase gene PDC1. Functional analysis of the allelic effect of THI3 confirmed the control of the THI and PDC1 genes. We observed, however, only a small effect of the THI3 on fermentation kinetics. We demonstrated that the expression levels of several THI genes are correlated with fermentation rate, suggesting that decarboxylation activity could drive gene expression through a modulation of thiamine content. Our data also reveals a new role of Thi3p in the regulation of the main pyruvate decarboxylase gene, PDC1. CONCLUSIONS This highlights a switch from PDC1 to PDC5 gene expression during thiamine deficiency, which may improve the thiamine affinity or conservation during the enzymatic reaction. In addition, we observed that the lab allele of THI3 and of the thiamin transporter THI7 have diverged from the original alleles, consistent with an adaptation of lab strains to rich media containing an excess of thiamine.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Blondin
- INRA, UMR1083, Science pour l'Œnologie, 2 Place Viala, F-34060, Montpellier, France.
| |
Collapse
|
33
|
Fuzi SFZM, Razali F, Jahim JM, Rahman RA, Illias RM. Simplified feeding strategies for the fed-batch cultivation of Kluyveromyces lactis GG799 for enhanced recombinant xylanase production. Bioprocess Biosyst Eng 2014; 37:1887-98. [DOI: 10.1007/s00449-014-1163-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/26/2014] [Indexed: 12/19/2022]
|