1
|
Imbs AB, Dembitsky VM. Coral Lipids. Mar Drugs 2023; 21:539. [PMID: 37888474 PMCID: PMC10608786 DOI: 10.3390/md21100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Reef-building corals, recognized as cornerstone species in marine ecosystems, captivate with their unique duality as both symbiotic partners and autotrophic entities. Beyond their ecological prominence, these corals produce a diverse array of secondary metabolites, many of which are poised to revolutionize the domains of pharmacology and medicine. This exhaustive review delves deeply into the multifaceted world of coral-derived lipids, highlighting both ubiquitous and rare forms. Within this spectrum, we navigate through a myriad of fatty acids and their acyl derivatives, encompassing waxes, sterol esters, triacylglycerols, mono-akyl-diacylglycerols, and an array of polar lipids such as betaine lipids, glycolipids, sphingolipids, phospholipids, and phosphonolipids. We offer a comprehensive exploration of the intricate biochemical variety of these lipids, related fatty acids, prostaglandins, and both cyclic and acyclic oxilipins. Additionally, the review provides insights into the chemotaxonomy of these compounds, illuminating the fatty acid synthesis routes inherent in corals. Of particular interest is the symbiotic bond many coral species nurture with dinoflagellates from the Symbiodinium group; their lipid and fatty acid profiles are also detailed in this discourse. This exploration accentuates the vast potential and intricacy of coral lipids and underscores their profound relevance in scientific endeavors.
Collapse
Affiliation(s)
- Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia
| | - Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
2
|
Rivera HE, Tramonte CA, Samaroo J, Dickerson H, Davies SW. Heat challenge elicits stronger physiological and gene expression responses than starvation in symbiotic Oculina arbuscula. J Hered 2023; 114:312-325. [PMID: 36921030 DOI: 10.1093/jhered/esac068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023] Open
Abstract
Heterotrophy has been shown to mitigate coral-algal dysbiosis (coral bleaching) under heat challenge, but the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, we quantified coral physiology and gene expression of fragments from 13 genotypes of symbiotic Oculina arbuscula after a 28-d feeding experiment under (1) fed, ambient (24 °C); (2) unfed, ambient; (3) fed, heated (ramp to 33 °C); and (4) unfed, heated treatments. We monitored algal photosynthetic efficiency throughout the experiment, and after 28 d, profiled coral and algal carbohydrate and protein reserves, coral gene expression, algal cell densities, and chlorophyll-a and chlorophyll-c2 pigments. Contrary to previous findings, heterotrophy did little to mitigate the impacts of temperature, and we observed few significant differences in physiology between fed and unfed corals under heat challenge. Our results suggest the duration and intensity of starvation and thermal challenge play meaningful roles in coral energetics and stress response; future work exploring these thresholds and how they may impact coral responses under changing climate is urgently needed. Gene expression patterns under heat challenge in fed and unfed corals showed gene ontology enrichment patterns consistent with classic signatures of the environmental stress response. While gene expression differences between fed and unfed corals under heat challenge were subtle: Unfed, heated corals uniquely upregulated genes associated with cell cycle functions, an indication that starvation may induce the previously described, milder "type B" coral stress response. Future studies interested in disentangling the influence of heterotrophy on coral bleaching would benefit from leveraging the facultative species studied here, but using the coral in its symbiotic and aposymbiotic states.
Collapse
Affiliation(s)
- Hanny E Rivera
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Jason Samaroo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Sun F, Yang H, Zhang X, Shi Q. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160019. [PMID: 36356778 DOI: 10.1016/j.scitotenv.2022.160019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Coral bleaching significantly affects the function and health of coral reef ecosystems; however, the mechanisms underlying metabolism and transcription in corals remain unclear. In this study, untargeted metabolomics and metatranscriptomic analyses were performed to analyze the differences between unbleached and bleached Pocillopora corals during the most severe marine heatwaves. Difference analysis showed that bleached corals had significant metabolomic characteristics compared with those in unbleached corals. These differences were significant (p < 0.05) according to partial least squares discriminant analysis (PLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolites were significantly enriched in numerous pathways in bleached or unbleached corals, such as steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism. Bleaching greatly affects coral reproduction as well as the tolerance of coral symbionts to heat stress. In metatranscriptomic analysis, we observed large gene expression differences between unbleached and bleached corals. Three Gene Ontology directed acyclic graphs (DAGs) were constructed to show the significantly differentially expressed genes (DEGs). Many biological and molecular processes were significantly enriched between bleached corals to unbleached corals, such as metabolic processes, lipid metabolic processes, oxidation-reduction processes, single-organism metabolic processes, and protein metabolic processes. Metabolome and metatranscriptome analyses showed that bleaching caused substantial physiological damage to corals. This study provides insight into the metabolic and transcriptional changes that occur in corals during bleaching.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
4
|
Lock C, Bentlage B, Raymundo LJ. Calcium homeostasis disruption initiates rapid growth after micro-fragmentation in the scleractinian coral Porites lobata. Ecol Evol 2022; 12:e9345. [PMID: 36188520 PMCID: PMC9502066 DOI: 10.1002/ece3.9345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Coral reefs are ecosystems under increasing threat from global climate change. Coral restoration is a tool for preserving the biological and ecological function of coral reefs by mitigating coral loss and maintaining the structural integrity and complexity of reefs. To generate the necessary stock for coral restoration, larger coral colonies are usually fragmented to generate smaller specimens for outplanting, taking advantage of the high regenerative ability of corals. In this study, we utilized RNA-seq technology to understand the physiological responses of Porites lobata colonies to physical fragmentation and outplanting, which have thus far not been characterized. Our results demonstrate that P. lobata fragments undergoing physical injury recover through two distinct phases: rapid wound regeneration of the cut margins, followed by a slower growth phase that cements the colony to the substrate. Our study found rapid physiological responses to acute physical injury and outplanting in the coral host that involved significantly increased energy production, calcium homeostasis disruption, and endoplasmic reticulum (ER) stress leading to increased antioxidant expression and rates of protein turnover. Our results suggest that phosphoinositide-mediated acute calcium homeostasis disruption stimulates wound recovery processes in response to physical injury. Symbiont gene expression revealed extremely low gene differences in response to fragmentation, growth, and outplanting. These results provide insight into the physiological mechanisms that allow for rapid wound healing and stabilization in response to physical injury in corals.
Collapse
Affiliation(s)
- Colin Lock
- Marine LaboratoryUniversity of GuamMangilaoGuamUSA
| | | | | |
Collapse
|
5
|
Studivan MS, Voss JD. Transcriptomic plasticity of mesophotic corals among natural populations and transplants of
Montastraea cavernosa
in the Gulf of Mexico and Belize. Mol Ecol 2020; 29:2399-2415. [DOI: 10.1111/mec.15495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Michael S. Studivan
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
- Cooperative Institute for Marine and Atmospheric Studies University of Miami Rosenstiel School of Marine and Atmospheric Sciences Miami FL USA
| | - Joshua D. Voss
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
| |
Collapse
|
6
|
Matsuda SB, Huffmyer AS, Lenz EA, Davidson JM, Hancock JR, Przybylowski A, Innis T, Gates RD, Barott KL. Coral Bleaching Susceptibility Is Predictive of Subsequent Mortality Within but Not Between Coral Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
van der Zande RM, Achlatis M, Bender-Champ D, Kubicek A, Dove S, Hoegh-Guldberg O. Paradise lost: End-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. GLOBAL CHANGE BIOLOGY 2020; 26:2203-2219. [PMID: 31955493 DOI: 10.1111/gcb.14998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business-as-usual representative concentration pathway (RCP) 8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end-of-century RCP8.5 conditions for temperature and pCO2 (3.5°C and 570 ppm above present-day, respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral-dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business-as-usual CO2 emission scenarios will likely extirpate thermally sensitive coral species before the end of the century, while slowing the recovery of more thermally tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.
Collapse
Affiliation(s)
- Rene M van der Zande
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Michelle Achlatis
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Dorothea Bender-Champ
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Andreas Kubicek
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Sophie Dove
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Ove Hoegh-Guldberg
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
- Global Change Institute, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
8
|
Traylor-Knowles N. Heat stress compromises epithelial integrity in the coral, Acropora hyacinthus. PeerJ 2019; 7:e6510. [PMID: 30828497 PMCID: PMC6396749 DOI: 10.7717/peerj.6510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
It is well understood that heat stress causes bleaching in corals. Much work has focused on the way heat stress disrupts corals’ symbiotic relationship with endosymbiotic algal dinoflagellate, Symbiodiniaceae, a process called bleaching. However, the damage to the coral tissue that occurs during the bleaching process and, importantly, the factors that contribute to subsequent recovery, are not well understood. I hypothesize that the host tissue damage created by heat stress initiates cascades of wound healing factors that maintain epithelial integrity. These factors may be found to contribute to the coral’s potential capacity to recover. In this study, I present evidence that heat stress causes damage to the coral host tissue and that collagen is present in the gastrodermis of heat-stressed corals. I found that, during the early stages of bleaching, an important transcription factor for wound healing, Grainyhead, is expressed throughout the gastrodermis, where the cellular and tissue rearrangements occur. Lastly, using phylogenetics, I found that cnidarian Grainyhead proteins evolved three distinct groups and that evolution of this protein family likely happened within each taxonomic group. These findings have important implications for our study of coral resiliency in the face of climate change.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL, United States of America
| |
Collapse
|
9
|
Lee MC, Park JC, Lee JS. Effects of environmental stressors on lipid metabolism in aquatic invertebrates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:83-92. [PMID: 29727774 DOI: 10.1016/j.aquatox.2018.04.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO2, and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Overmans S, Nordborg M, Díaz-Rúa R, Brinkman DL, Negri AP, Agustí S. Phototoxic effects of PAH and UVA exposure on molecular responses and developmental success in coral larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:165-174. [PMID: 29550714 DOI: 10.1016/j.aquatox.2018.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Exposure to polycyclic aromatic carbons (PAHs) poses a growing risk to coral reefs due to increasing shipping and petroleum extraction in tropical waters. Damaging effects of specific PAHs can be further enhanced by the presence of ultraviolet radiation, known as phototoxicity. We tested phototoxic effects of the PAHs anthracene and phenanthrene on larvae of the scleractinian coral Acropora tenuis in the presence and absence of UVA (320-400 nm). Activity of superoxide dismutase (SOD) enzyme was reduced by anthracene while phenanthrene and UVA exposure did not have any effect. Gene expression of MnSod remained constant across all treatments. The genes Catalase, Hsp70 and Hsp90 showed increased expression levels in larvae exposed to anthracene, but not phenanthrene. Gene expression of p53 was upregulated in the presence of UVA, but downregulated when exposed to PAHs. The influence on stress-related biochemical pathways and gene expresson in A. tenuis larvae was considerably greater for anthracene than phenanthrene, and UVA-induced phototoxicity was only evident for anthracene. The combined effects of UVA and PAH exposure on larval survival and metamorphosis paralleled the sub-lethal stress responses, clearly highlighting the interaction of UVA on anthracene toxicity and ultimately the coral's development.
Collapse
Affiliation(s)
- Sebastian Overmans
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Mikaela Nordborg
- Australian Institute of Marine Science (AIMS), Townsville 4810, Queensland, Australia; James Cook University (JCU), Townsville, Queensland 4811, Australia
| | - Rubén Díaz-Rúa
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Diane L Brinkman
- Australian Institute of Marine Science (AIMS), Townsville 4810, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville 4810, Queensland, Australia
| | - Susana Agustí
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
11
|
Velliquette RA, Rajgopal A, Rebhun J, Glynn K. Lithospermum erythrorhizon Root and its Naphthoquinones Repress SREBP1c and Activate PGC1α Through AMPKα. Obesity (Silver Spring) 2018; 26:126-134. [PMID: 29165897 DOI: 10.1002/oby.22061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To examine specific molecular mechanisms involved in modulating hepatic lipogenesis and mitochondria biogenesis signals by Lithospermum erythrorhizon (gromwell) root extract. METHODS Stable cell lines with luciferase reporter constructs were generated to examine sterol regulatory element binding protein 1c (SREBP1c) and peroxisome proliferator-activated receptor gamma, coactivator 1 (PGC1) α promoter activity and estrogen-related receptor (ERR) α response element activity. Gene expression of SREBP1c, stearoyl coenzyme A desaturase 1, and PGC1α was measured by using reverse transcription polymerase chain reaction. Lipogenesis was measured in human hepatoma cells with Nile red staining and flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) α was determined by using ELISA and Western blot. RESULTS Gromwell root extract and its naphthoquinones dose-dependently repressed high glucose and liver X receptor α induction of SREBP1c promoter activity and gene expression. Hepatic lipogenesis was repressed, and PGC1α promoter and gene expression and ERRα response element activity were increased by gromwell root extract. Gromwell root extract, shikonin, and α-methyl-n-butyrylshikonin increased AMPKα phosphorylation, and inhibition of AMPK blunted the repression in SREBP1c promoter activity by gromwell root extract and its naphthoquinones. CONCLUSIONS Data suggest that gromwell root extract and its naphthoquinones repress lipogenesis by increasing the phosphorylated state of AMPKα and stimulating mitochondrial biogenesis signals.
Collapse
Affiliation(s)
| | | | - John Rebhun
- Amway Research and Development, Ada, Michigan, USA
| | - Kelly Glynn
- Amway Research and Development, Ada, Michigan, USA
| |
Collapse
|
12
|
Baghdasarian G, Osberg A, Mihora D, Putnam H, Gates RD, Edmunds PJ. Effects of Temperature and pCO 2 on Population Regulation of Symbiodinium spp. in a Tropical Reef Coral. THE BIOLOGICAL BULLETIN 2017; 232:123-139. [PMID: 28654331 DOI: 10.1086/692718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study tested the bleaching response of the Pacific coral Seriatopora caliendrum to short-term exposure to high temperature and elevated partial pressure of carbon dioxide (pCO2). Juvenile colonies collected from Nanwan Bay, Taiwan, were used in a factorial experimental design in which 2 temperatures (∼27.6 °C and ∼30.4 °C) and 2 pCO2 values (∼47.2 Pa and ∼90.7 Pa) were crossed to evaluate, over 12 days, the effects on the densities and physiology of the symbiotic dinoflagellates (Symbiodinium) in the corals. Thermal bleaching, as defined by a reduction of Symbiodinium densities at high temperature, was unaffected by high pCO2. The division, or mitotic index (MI), of Symbiodinium remaining in thermally bleached corals was about 35% lower than in control colonies, but they contained about 53% more chlorophyll. Bleaching was highly variable among colonies, but the differences were unrelated to MI or pigment content of Symbiodinium remaining in the coral host. At the end of the study, all of the corals contained clade C Symbiodinium (either C1d or C15), and the genetic variation of symbionts did not account for among-colony bleaching differences. These results showed that high temperature causes coral bleaching independent of pCO2, and underscores the potential role of the coral host in driving intraspecific variation in coral bleaching.
Collapse
|
13
|
Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PLoS One 2017; 12:e0171456. [PMID: 28199351 PMCID: PMC5310758 DOI: 10.1371/journal.pone.0171456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors.
Collapse
Affiliation(s)
- Davide Poli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
- * E-mail:
| |
Collapse
|
14
|
Levy O, Karako-Lampert S, Waldman Ben-Asher H, Zoccola D, Pagès G, Ferrier-Pagès C. Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata. Proc Biol Sci 2017; 283:rspb.2015.3025. [PMID: 27122555 DOI: 10.1098/rspb.2015.3025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/31/2016] [Indexed: 12/18/2022] Open
Abstract
Corals acquire nutrients via the transfer of photosynthates by their endosymbionts (autotrophy), or via zooplankton predation by the animal (heterotrophy). During stress events, corals lose their endosymbionts, and undergo starvation, unless they increase their heterotrophic capacities. Molecular mechanisms by which heterotrophy sustains metabolism in stressed corals remain elusive. Here for the first time, to the best of our knowledge, we identified specific genes expressed in heterotrophically fed and unfed colonies of the scleractinian coral Stylophora pistillata, maintained under normal and light-stress conditions. Physiological parameters and gene expression profiling demonstrated that fed corals better resisted stress than unfed ones by exhibiting less oxidative damage and protein degradation. Processes affected in light-stressed unfed corals (HLU), were related to energy and metabolite supply, carbohydrate biosynthesis, ion and nutrient transport, oxidative stress, Ca(2+) homeostasis, metabolism and calcification (carbonic anhydrases, calcium-transporting ATPase, bone morphogenetic proteins). Two genes (cp2u1 and cp1a2), which belong to the cytochrome P450 superfamily, were also upregulated 249 and 10 times, respectively, in HLU corals. In contrast, few of these processes were affected in light-stressed fed corals (HLF) because feeding supplied antioxidants and energetic molecules, which help repair oxidative damage. Altogether, these results show that heterotrophy helps prevent the cascade of metabolic problems downstream of oxidative stress.
Collapse
Affiliation(s)
- Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Sarit Karako-Lampert
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000 Monaco, Monaco
| | - Gilles Pagès
- Université de Nice-Sophia Antipolis, Institut de Recherche sur le Cancer et le Veillissement, IRCAN, CNRS-UMR 7284, INSERM U1081, Nice, France
| | | |
Collapse
|
15
|
Rocker MM, Noonan S, Humphrey C, Moya A, Willis BL, Bay LK. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora. Mar Genomics 2015; 24 Pt 3:313-8. [PMID: 26275825 DOI: 10.1016/j.margen.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
Abstract
Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments.
Collapse
Affiliation(s)
- Melissa M Rocker
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia; AIMS@JCU, Australian Institute of Marine Science, James Cook University, Townsville, QLD 4811, Australia; College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Sam Noonan
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia
| | - Craig Humphrey
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Line K Bay
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
16
|
Pratlong M, Haguenauer A, Chabrol O, Klopp C, Pontarotti P, Aurelle D. The red coral (Corallium rubrum) transcriptome: a new resource for population genetics and local adaptation studies. Mol Ecol Resour 2015; 15:1205-15. [PMID: 25648864 DOI: 10.1111/1755-0998.12383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
The question of species survival and evolution in heterogeneous environments has long been a subject for study. Indeed, it is often difficult to identify the molecular basis of adaptation to contrasted environments, and nongenetic effects increase the difficulty to disentangle fixed effects, such as genetic adaptation, from variable effects, such as individual phenotypic plasticity, in adaptation. Nevertheless, this question is also of great importance for understanding the evolution of species in a context of climate change. The red coral (Corallium rubrum) lives in the Mediterranean Sea, where at depths ranging from 5 to 600 m, it meets very contrasted thermal conditions. The shallowest populations of this species suffered from mortality events linked with thermal anomalies that have highlighted thermotolerance differences between individuals. We provide here a new transcriptomic resource, as well as candidate markers for the study of local adaptation. We sequenced the transcriptome of six individuals from 5 m and six individuals from 40 m depth at the same site of the Marseilles bay, after a period of common garden acclimatization. We found differential expression maintained between the two depths even after common garden acclimatization, and we analysed the polymorphism pattern of these samples. We highlighted contigs potentially implicated in the response to thermal stress, which could be good candidates for the study of thermal adaptation for the red coral. Some of these genes are also involved in the response to thermal stress in other corals. Our method enables the identification of candidate loci of local adaptation useful for other nonmodel organisms.
Collapse
Affiliation(s)
- M Pratlong
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, 13397, Marseille, France.,Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, 13453, Marseille, France
| | - A Haguenauer
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, 13397, Marseille, France
| | - O Chabrol
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, 13453, Marseille, France
| | - C Klopp
- Plateforme Bioinformatique Toulouse Midi-Pyrénées, UR 875 UMIAT, INRA, Auzeville Castanet-Tolosan, France
| | - P Pontarotti
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, Equipe Evolution Biologique et Modélisation, 13453, Marseille, France
| | - D Aurelle
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, 13397, Marseille, France
| |
Collapse
|
17
|
Hemond EM, Kaluziak ST, Vollmer SV. The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 2014; 15:1133. [PMID: 25519925 PMCID: PMC4320547 DOI: 10.1186/1471-2164-15-1133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Results Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct “staghorn” versus “elkhorn” morphologies of these two sister species. Conclusions The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1133) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Shearer TL, Snell TW, Hay ME. Gene expression of corals in response to macroalgal competitors. PLoS One 2014; 9:e114525. [PMID: 25500576 PMCID: PMC4264762 DOI: 10.1371/journal.pone.0114525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.
Collapse
Affiliation(s)
- Tonya L. Shearer
- Georgia Institute of Technology, School of Biology, 310 Ferst Dr., Atlanta, GA, 30332, United States of America
| | - Terry W. Snell
- Georgia Institute of Technology, School of Biology, 310 Ferst Dr., Atlanta, GA, 30332, United States of America
| | - Mark E. Hay
- Georgia Institute of Technology, School of Biology, 310 Ferst Dr., Atlanta, GA, 30332, United States of America
- * E-mail:
| |
Collapse
|