1
|
Yang R, Xiao T, Cheng Y, Li A, Qu J, Liang R, Bao S, Wang X, Wang J, Suo J, Luo Q, Dai Q. Sharing massive biomedical data at magnitudes lower bandwidth using implicit neural function. Proc Natl Acad Sci U S A 2024; 121:e2320870121. [PMID: 38959033 PMCID: PMC11252806 DOI: 10.1073/pnas.2320870121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Efficient storage and sharing of massive biomedical data would open up their wide accessibility to different institutions and disciplines. However, compressors tailored for natural photos/videos are rapidly limited for biomedical data, while emerging deep learning-based methods demand huge training data and are difficult to generalize. Here, we propose to conduct Biomedical data compRession with Implicit nEural Function (BRIEF) by representing the target data with compact neural networks, which are data specific and thus have no generalization issues. Benefiting from the strong representation capability of implicit neural function, BRIEF achieves 2[Formula: see text]3 orders of magnitude compression on diverse biomedical data at significantly higher fidelity than existing techniques. Besides, BRIEF is of consistent performance across the whole data volume, and supports customized spatially varying fidelity. BRIEF's multifold advantageous features also serve reliable downstream tasks at low bandwidth. Our approach will facilitate low-bandwidth data sharing and promote collaboration and progress in the biomedical field.
Collapse
Affiliation(s)
- Runzhao Yang
- Department of Automation, Tsinghua University, Beijing100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing100084, China
- Shanghai Artificial Intelligence Laboratory, Shanghai200232, China
| | - Tingxiong Xiao
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Yuxiao Cheng
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Anan Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou215123, China
| | - Jinyuan Qu
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Rui Liang
- School of Biomedical Engineering, Hainan University, Haikou570228, China
| | - Shengda Bao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xiaofeng Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jue Wang
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Jinli Suo
- Department of Automation, Tsinghua University, Beijing100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing100084, China
- Shanghai Artificial Intelligence Laboratory, Shanghai200232, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou570228, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
2
|
Lin B, Shah VS, Chernoff C, Sun J, Shipkovenska GG, Vinarsky V, Waghray A, Xu J, Leduc AD, Hintschich CA, Surve MV, Xu Y, Capen DE, Villoria J, Dou Z, Hariri LP, Rajagopal J. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 2024; 629:869-877. [PMID: 38693267 PMCID: PMC11890216 DOI: 10.1038/s41586-024-07377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA.
| | - Viral S Shah
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chaim Chernoff
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA
| | - Jiawei Sun
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Gergana G Shipkovenska
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Andrew D Leduc
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Constantin A Hintschich
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA
- Department of Otorhinolaryngology, Regensburg University Hospital, Regensburg, Germany
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Manalee Vishnu Surve
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Diane E Capen
- Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Lida P Hariri
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Manubens-Gil L, Zhou Z, Chen H, Ramanathan A, Liu X, Liu Y, Bria A, Gillette T, Ruan Z, Yang J, Radojević M, Zhao T, Cheng L, Qu L, Liu S, Bouchard KE, Gu L, Cai W, Ji S, Roysam B, Wang CW, Yu H, Sironi A, Iascone DM, Zhou J, Bas E, Conde-Sousa E, Aguiar P, Li X, Li Y, Nanda S, Wang Y, Muresan L, Fua P, Ye B, He HY, Staiger JF, Peter M, Cox DN, Simonneau M, Oberlaender M, Jefferis G, Ito K, Gonzalez-Bellido P, Kim J, Rubel E, Cline HT, Zeng H, Nern A, Chiang AS, Yao J, Roskams J, Livesey R, Stevens J, Liu T, Dang C, Guo Y, Zhong N, Tourassi G, Hill S, Hawrylycz M, Koch C, Meijering E, Ascoli GA, Peng H. BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets. Nat Methods 2023; 20:824-835. [PMID: 37069271 DOI: 10.1038/s41592-023-01848-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Zhi Zhou
- Microsoft Corporation, Redmond, WA, USA
| | | | - Arvind Ramanathan
- Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, USA
| | | | - Yufeng Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | | | - Todd Gillette
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Zongcai Ruan
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Jian Yang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | | | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Li Cheng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Qu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Anhui University, Hefei, China
| | | | - Kristofer E Bouchard
- Scientific Data Division and Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
- Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience, UC Berkeley, Berkeley, CA, USA
| | - Lin Gu
- RIKEN AIP, Tokyo, Japan
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Weidong Cai
- School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Shuiwang Ji
- Texas A&M University, College Station, TX, USA
| | - Badrinath Roysam
- Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hongchuan Yu
- National Centre for Computer Animation, Bournemouth University, Poole, UK
| | | | - Daniel Maxim Iascone
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL, USA
| | | | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Paulo Aguiar
- i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Xiang Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujie Li
- Allen Institute for Brain Science, Seattle, WA, USA
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Pascal Fua
- Computer Vision Laboratory, EPFL, Lausanne, Switzerland
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hai-Yan He
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August- University Göttingen, Goettingen, Germany
| | - Manuel Peter
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michel Simonneau
- 42 ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marcel Oberlaender
- Max Planck Group: In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Gregory Jefferis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Institute for Quantitative Biosciences, University of Tokyo, Tokyo, Japan
- Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | | | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Edwin Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Jane Roskams
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rick Livesey
- Zayed Centre for Rare Disease Research, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Janine Stevens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Chinh Dang
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Yike Guo
- Data Science Institute, Imperial College London, London, UK
| | - Ning Zhong
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
| | | | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Non-viral 2A-like sequences for protein coexpression. J Biotechnol 2022; 358:1-8. [PMID: 35995093 DOI: 10.1016/j.jbiotec.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Simultaneous coexpression of multiple proteins is essential for biotechnology and synthetic biology. Currently, the most popular polyprotein coexpression system utilizes the foot-and-mouth disease virus (FMDV) 2A peptide that mediates translational ribosome-skipping events. However, due to unfavorable consumer acceptance of transgenic products containing animal-virus sequences, novel non-viral 2A-like peptides from purple sea urchin (Strongylcentrotus purpuratus) and California sea slug (Aplysia californica) were investigated for polyprotein coexpression in this study. We demonstrated that these non-viral 2A sequences functioned similarly to their viral counterpart in polyprotein processing, in both plant and mammalian cells, and were successfully used to express a functional recombinant antibody. The new non-viral 2A-like sequences offer an alternative tool for engineering multigenic traits or production of protein complexes as biomedicine via coexpression of protein subunits.
Collapse
|
5
|
Farrelly O, Suzuki-Horiuchi Y, Brewster M, Kuri P, Huang S, Rice G, Bae H, Xu J, Dentchev T, Lee V, Rompolas P. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell 2021; 28:1233-1247.e4. [PMID: 33984283 DOI: 10.1016/j.stem.2021.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
The functional heterogeneity of resident stem cells that support adult organs is incompletely understood. Here, we directly visualize the corneal limbus in the eyes of live mice and identify discrete stem cell niche compartments. By recording the life cycle of individual stem cells and their progeny, we directly analyze their fates and show that their location within the tissue can predict their differentiation status. Stem cells in the inner limbus undergo mostly symmetric divisions and are required to sustain the population of transient progenitors that support corneal homeostasis. Using in situ photolabeling, we captured their progeny exiting the niche before moving centripetally in unison. The long-implicated slow-cycling stem cells are functionally distinct and display local clonal dynamics during homeostasis but can contribute to corneal regeneration after injury. This study demonstrates how the compartmentalized organization of functionally diverse stem cell populations supports the maintenance and regeneration of an adult organ.
Collapse
Affiliation(s)
- Olivia Farrelly
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yoko Suzuki-Horiuchi
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Megan Brewster
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Paola Kuri
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sixia Huang
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriella Rice
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hyunjin Bae
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzvete Dentchev
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vivian Lee
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Peter M, Aschauer DF, Rose R, Sinning A, Grössl F, Kargl D, Kraitsy K, Burkard TR, Luhmann HJ, Haubensak W, Rumpel S. Rapid nucleus-scale reorganization of chromatin in neurons enables transcriptional adaptation for memory consolidation. PLoS One 2021; 16:e0244038. [PMID: 33951054 PMCID: PMC8099114 DOI: 10.1371/journal.pone.0244038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
The interphase nucleus is functionally organized in active and repressed territories defining the transcriptional status of the cell. However, it remains poorly understood how the nuclear architecture of neurons adapts in response to behaviorally relevant stimuli that trigger fast alterations in gene expression patterns. Imaging of fluorescently tagged nucleosomes revealed that pharmacological manipulation of neuronal activity in vitro and auditory cued fear conditioning in vivo induce nucleus-scale restructuring of chromatin within minutes. Furthermore, the acquisition of auditory fear memory is impaired after infusion of a drug into auditory cortex which blocks chromatin reorganization in vitro. We propose that active chromatin movements at the nucleus scale act together with local gene-specific modifications to enable transcriptional adaptations at fast time scales. Introducing a transgenic mouse line for photolabeling of histones, we extend the realm of systems available for imaging of chromatin dynamics to living animals.
Collapse
Affiliation(s)
- Manuel Peter
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Dominik F. Aschauer
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Renata Rose
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Florian Grössl
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Klaus Kraitsy
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Preclinical Phenotyping, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Thomas R. Burkard
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Heiko J. Luhmann
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Wulf Haubensak
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Heinrich R, Hussein W, Berlin S. Photo-transformable genetically-encoded optical probes for functional highlighting in vivo. J Neurosci Methods 2021; 355:109129. [PMID: 33711357 DOI: 10.1016/j.jneumeth.2021.109129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Studying the brain requires knowledge about both structure (i.e., connectome) and function of its constituents (neurons and glia alike). This need has prompted the development of novel tools and techniques, in particular optical techniques to examine cells remotely. Early works (1900's) led to the development of novel cell-staining techniques that, when combined with the use of a very simple light microscope, visualized individual neurons and their subcellular compartments in fixed tissues. Today, highlighting of structure and function can be performed on live cells, notably in vivo, owing to discovery of GFP and subsequent development of genetically encoded fluorescent optical tools. In this review, we focus our attention on a subset of optical biosensors, namely probes whose emission can be modified by light. We designate them photo-transformable genetically encoded probes. The family of photo-transformable probes embraces current probes that undergo photoactivation (PA), photoconversion (PC) or photoswitching (PS). We argue that these are particularly suited for studying multiple features of neurons, such as structure, connectivity and function concomitantly, for functional highlighting of neurons in vivo.
Collapse
Affiliation(s)
- Ronit Heinrich
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wessal Hussein
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Ebner C, Ledderose J, Zolnik TA, Dominiak SE, Turko P, Papoutsi A, Poirazi P, Eickholt BJ, Vida I, Larkum ME, Sachdev RNS. Optically Induced Calcium-Dependent Gene Activation and Labeling of Active Neurons Using CaMPARI and Cal-Light. Front Synaptic Neurosci 2019; 11:16. [PMID: 31178713 PMCID: PMC6542986 DOI: 10.3389/fnsyn.2019.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/03/2019] [Indexed: 02/03/2023] Open
Abstract
The advent of optogenetic methods has made it possible to use endogeneously produced molecules to image and manipulate cellular, subcellular, and synaptic activity. It has also led to the development of photoactivatable calcium-dependent indicators that mark active synapses, neurons, and circuits. Furthermore, calcium-dependent photoactivation can be used to trigger gene expression in active neurons. Here we describe two sets of protocols, one using CaMPARI and a second one using Cal-Light. CaMPARI, a calcium-modulated photoactivatable ratiometric integrator, enables rapid network-wide, tunable, all-optical functional circuit mapping. Cal-Light, a photoactivatable calcium sensor, while slower to respond than CaMPARI, has the capacity to trigger the expression of genes, including effectors, activators, indicators, or other constructs. Here we describe the rationale and provide procedures for using these two calcium-dependent constructs (1) in vitro in dissociated primary neuronal cell cultures (CaMPARI & Cal-Light); (2) in vitro in acute brain slices for circuit mapping (CaMPARI); (3) in vivo for triggering photoconversion or gene expression (CaMPARI & Cal-Light); and finally, (4) for recovering photoconverted neurons post-fixation with immunocytochemistry (CaMPARI). The approaches and protocols we describe are examples of the potential uses of both CaMPARI & Cal-Light. The ability to mark and manipulate neurons that are active during specific epochs of behavior has a vast unexplored experimental potential.
Collapse
Affiliation(s)
- Christian Ebner
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Ledderose
- Institute for Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy A Zolnik
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sina E Dominiak
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul Turko
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Athanasia Papoutsi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Britta J Eickholt
- Institute for Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew E Larkum
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
10
|
Weiler S, Bauer J, Hübener M, Bonhoeffer T, Rose T, Scheuss V. High-yield in vitro recordings from neurons functionally characterized in vivo. Nat Protoc 2018; 13:1275-1293. [DOI: 10.1038/nprot.2018.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 2018; 358:111-116. [PMID: 28983053 DOI: 10.1126/science.aam9690] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Neutrophils have been implicated as harmful cells in a variety of inappropriate inflammatory conditions where they injure the host, leading to the death of the neutrophils and their subsequent phagocytosis by monocytes and macrophages. Here we show that in a fully repairing sterile thermal hepatic injury, neutrophils also penetrate the injury site and perform the critical tasks of dismantling injured vessels and creating channels for new vascular regrowth. Upon completion of these tasks, they neither die at the injury site nor are phagocytosed. Instead, many of these neutrophils reenter the vasculature and have a preprogrammed journey that entails a sojourn in the lungs to up-regulate CXCR4 (C-X-C motif chemokine receptor 4) before entering the bone marrow, where they undergo apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Division of Inflammation Biology, Tokushima University, Tokushima 7708503, Japan.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mokarram Hossain
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ajitha Thanabalasuriar
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen 45147, Germany
| | - Cynthia Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada. .,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
Lanshakov DA, Drozd US, Dygalo NN. Optogenetic Stimulation Increases Level of Antiapoptotic Protein Bcl-xL in Neurons. BIOCHEMISTRY (MOSCOW) 2017; 82:340-344. [PMID: 28320275 DOI: 10.1134/s0006297917030129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The antiapoptotic protein Bcl-xL is associated with several neuroplastic processes such as formation of synapses, regulation of spontaneous and evoked synaptic responses, and release of neurotransmitters. Dependence of expression on activity of neurons is characteristic for many proteins participating in regulation of neuroplasticity. Whether such property is exhibited by the Bcl-xL protein was analyzed using in vivo optogenetic stimulation of hippocampal glutamatergic neurons expressing channelrhodopsin ChR2H134 under CAMKIIa promoter in the adeno-associated viral vector, followed by immunohistochemical determination of the level of Bcl-xL protein in these neurons and surrounding cells. Increase in the level of early response c-Fos protein following illumination with blue light was indicative of activation of these hippocampal neurons. The optogenetic activation of hippocampus resulted in a significant increase in the level of antiapoptotic protein Bcl-xL in the photosensitive neurons as well as in the surrounding cells. The dependence of the level of expression of Bcl-xL protein on the activity of neurons indicates that this protein possesses one more important property that is essential for participation in neuroplastic processes in the brain.
Collapse
Affiliation(s)
- D A Lanshakov
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
13
|
Lanshakov DA, Sukhareva EV, Kalinina TS, Dygalo NN. Dexamethasone-induced acute excitotoxic cell death in the developing brain. Neurobiol Dis 2016; 91:1-9. [DOI: 10.1016/j.nbd.2016.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 01/04/2023] Open
|
14
|
Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM, Kallman B, Rockwell NC, Martin SS, Lagarias JC, Isacoff EY. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods 2015; 12:852-8. [PMID: 26167640 PMCID: PMC4597790 DOI: 10.1038/nmeth.3480] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Circuit mapping requires knowledge of both structural and functional connectivity between cells. Although optical tools have been made to assess either the morphology and projections of neurons or their activity and functional connections, few probes integrate this information. We have generated a family of photoactivatable genetically encoded Ca(2+) indicators that combines attributes of high-contrast photolabeling with high-sensitivity Ca(2+) detection in a single-color protein sensor. We demonstrated in cultured neurons and in fruit fly and zebrafish larvae how single cells could be selected out of dense populations for visualization of morphology and high signal-to-noise measurements of activity, synaptic transmission and connectivity. Our design strategy is transferrable to other sensors based on circularly permutated GFP (cpGFP).
Collapse
Affiliation(s)
- Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Zachary L Newman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Hitomi O Okada
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Carson M Quinn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Benjamin Kallman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Roux L, Stark E, Sjulson L, Buzsáki G. In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Curr Opin Neurobiol 2014; 26:88-95. [PMID: 24440414 PMCID: PMC4024355 DOI: 10.1016/j.conb.2013.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/15/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Identification and manipulation of different GABAergic interneuron classes in the behaving animal are important to understand their role in circuit dynamics and behavior. The combination of optogenetics and large-scale neuronal recordings allows specific interneuron populations to be identified and perturbed for circuit analysis in intact animals. A crucial aspect of this approach is coupling electrophysiological recording with spatially and temporally precise light delivery. Focal multisite illumination of neuronal activators and silencers in predetermined temporal configurations or a closed loop manner opens the door to addressing many novel questions. Recent progress demonstrates the utility and power of this novel technique for interneuron research.
Collapse
Affiliation(s)
- Lisa Roux
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, United States
| | - Eran Stark
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, United States
| | - Lucas Sjulson
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, United States; Department of Psychiatry, New York University Medical Center, New York, NY 10016, United States
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, United States.
| |
Collapse
|
16
|
Munz M, Gobert D, Schohl A, Poquerusse J, Podgorski K, Spratt P, Ruthazer ES. Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 2014; 344:904-9. [DOI: 10.1126/science.1251593] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality. Nat Neurosci 2014; 17:240-7. [PMID: 24441682 DOI: 10.1038/nn.3626] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022]
Abstract
The neuron-specific transcription factor T-box brain 1 (TBR1) regulates brain development. Disruptive mutations in the TBR1 gene have been repeatedly identified in patients with autism spectrum disorders (ASDs). Here, we show that Tbr1 haploinsufficiency results in defective axonal projections of amygdalar neurons and the impairment of social interaction, ultrasonic vocalization, associative memory and cognitive flexibility in mice. Loss of a copy of the Tbr1 gene altered the expression of Ntng1, Cntn2 and Cdh8 and reduced both inter- and intra-amygdalar connections. These developmental defects likely impair neuronal activation upon behavioral stimulation, which is indicated by fewer c-FOS-positive neurons and lack of GRIN2B induction in Tbr1(+/-) amygdalae. We also show that upregulation of amygdalar neuronal activity by local infusion of a partial NMDA receptor agonist, d-cycloserine, ameliorates the behavioral defects of Tbr1(+/-) mice. Our study suggests that TBR1 is important in the regulation of amygdalar axonal connections and cognition.
Collapse
|
18
|
Cruz FC, Koya E, Guez-Barber DH, Bossert JM, Lupica CR, Shaham Y, Hope BT. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 2013; 14:743-54. [PMID: 24088811 DOI: 10.1038/nrn3597] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.
Collapse
Affiliation(s)
- Fabio C Cruz
- Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Luke GA, Ryan MD. The protein coexpression problem in biotechnology and biomedicine: virus 2A and 2A-like sequences provide a solution. Future Virol 2013. [DOI: 10.2217/fvl.13.82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic biology enables us to create genes virtually at will. Ensuring that multiple genes are efficiently coexpressed within the same cell in order to assemble multimeric complexes, transfer biochemical pathways and transfer traits is more problematic. Viruses such as picornaviruses accomplish exactly this task: they generate multiple different proteins from a single open reading frame. The study of how foot-and-mouth disease virus controls its protein biogenesis led to the discovery of a short oligopeptide sequence, ‘2A’, that is able to mediate a cotranslational cleavage between proteins. 2A and ‘2A-like’ sequences (from other viruses and cellular sequences) can be used to concatenate multiple gene sequences into a single gene, ensuring their coexpression within the same cell. These sequences are now being used in the treatment of cancer, in the production of pluripotent stem cells, and to create transgenic plants and animals among a host of other biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Martin D Ryan
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| |
Collapse
|
20
|
|