1
|
Miller CWT, Kozak Z. Therapeutic and Structural Dimensions in Psychiatric Prescribing: Bridging Psychedelics and Antidepressants. Harv Rev Psychiatry 2025; 33:149-157. [PMID: 40095787 DOI: 10.1097/hrp.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ABSTRACT As practitioners seek more personalized approaches, exploring how patients' environments, relationship templates, and mindsets factor into symptom burden can help broaden understanding of how psychotropic medications facilitate recovery. Despite increasing focus on medications to provide relief, there is an important and undeniable influence the therapeutic environment has on shaping outcomes, particularly for the patient-clinician alliance. While environmental dimensions are relevant for informing possible placebo or nocebo responses, they also build upon the pharmacodynamic and neurobiological effects of medications. By heightening neuroplasticity, some antidepressants may amplify the effects of nonmedication factors in patients' lives, including the patient-prescriber therapeutic relationship. There are important parallels between antidepressants and psychedelics in emerging literature. For instance, the preparatory and integrative work with a provider can be crucial in determining outcomes. This paper will draw from the extant literature to discuss the therapeutic relationship in psychiatric practice, including in acute care settings and instances in which psychotropic prescribing is a key aspect of treatment.
Collapse
Affiliation(s)
- Christopher W T Miller
- From University of Maryland School of Medicine (Dr. Miller) and Sheppard Pratt Health System (Dr. Kozak), Baltimore, MD
| | | |
Collapse
|
2
|
Farinha-Ferreira M, Miranda-Lourenço C, Galipeau C, Lenkei Z, Sebastião AM. Concurrent stress modulates the acute and post-acute effects of psilocybin in a sex-dependent manner. Neuropharmacology 2025; 266:110280. [PMID: 39725123 DOI: 10.1016/j.neuropharm.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
There is renewed interest in psychedelics, such as psilocybin, as therapies for multiple difficult-to-treat psychiatric disorders. Even though psychedelics can induce highly pleasant or aversive experiences, depending on multiple personal and environmental factors, there is little research into how such experiences impact post-acute mood-altering actions. Here we aimed at offsetting this gap. First, we tested whether acute psilocybin effects differed between sexes. Adult male and female C57BL/6J mice received saline or psilocybin (5 mg/kg; i.p.), and head-twitch response (HTR) frequency was quantified. Notably, while psilocybin increased HTR frequency in both sexes, the effect was greater in females. We then tested if stress exposure during acute drug effects impacted post-acute psilocybin actions. Following drug treatment, mice were returned to their homecage or restrained for 1 h. Anxiety- and depression-like behaviors were assessed starting 24 h following drug administration, using the marble burying, novelty-suppressed feeding, and splash tests. Psilocybin induced anxiolytic-, but not antidepressant-like, which were fully blocked by stress in males, but only partially so in females. Lastly, we assessed the acute stress-psilocybin interaction on plasma corticosterone levels in a separate cohort of mice, treated as above. Both stress and psilocybin independently increased corticosterone levels, without additive or interactive effects being observed for either sex. Our data reveals the role of sex and peri-acute negative experiences in the acute and post-acute actions of psilocybin. These findings underline the importance of non-pharmacological factors, such as the quality of the psychedelic experience, in the mood-altering effects of psychedelics, holding significant for both their therapeutic and recreational use.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014, Paris, France
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | - Chloé Galipeau
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014, Paris, France
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
3
|
Lima J, Panayi MC, Sharp T, McHugh SB, Bannerman DM. More and Less Fear in Serotonin Transporter Knockout Mice. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70016. [PMID: 39917838 PMCID: PMC11803413 DOI: 10.1111/gbb.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Recent theories suggest that reduced serotonin transporter (5-HTT) function, which increases serotonin (5-HT) levels at the synapse, enhances neural plasticity and affects sensitivity to environmental cues. This may promote learning about emotionally relevant events. However, the boundaries that define such emotional learning remain to be established. This was investigated using 5-HTT knockout (5-HTTKO) mice which provide a model of long-term elevated 5-HT transmission and are associated with increased anxiety. Compared to wild-type controls, 5-HTTKO mice were faster to discriminate between an auditory cue that predicted footshock (CS+) and a cue predicting no footshock (CS-). Notably, this enhanced discrimination performance was driven not by faster learning that the CS+ predicted footshock, but rather by faster learning that the CS- cue signals the absence of footshock and thus provides temporary relief from fear/anxiety. Similarly, 5-HTTKO mice were also faster to reduce their fear of the CS+ cue during subsequent extinction. These findings are consistent with facilitated inhibitory learning that predicts the absence of potential threats in 5-HTTKO mice. However, 5-HTTKO mice also exhibited increased generalisation of fear learning about ambiguous aversive cues in a novel context, different from the training context. Thus, 5-HTTKO mice can exhibit both more and less fear compared to wild-type controls. Taken together, our results support the idea that loss of 5-HTT function, and corresponding increases in synaptic 5-HT availability, may facilitate learning by priming of aversive memories. This both facilitates inhibitory learning for fear memories but also enhances generalisation of fear.
Collapse
Affiliation(s)
- João Lima
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear MedicineCopenhagen University Hospital—Amager and HvidovreCopenhagenDenmark
| | - Marios C. Panayi
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of PsychologyUniversity of New South WalesSydneyNew South WalesAustralia
| | - Trevor Sharp
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Stephen B. McHugh
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- Medical Research Council Brain Network Dynamics UnitOxfordUK
| | | |
Collapse
|
4
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024; 29:3802-3813. [PMID: 38816586 PMCID: PMC11692567 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Kozak Z, Miller CWT. Beyond psychedelics: set and setting in general psychiatric practice. Int Rev Psychiatry 2024; 36:833-840. [PMID: 39980213 DOI: 10.1080/09540261.2024.2419662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/14/2024] [Indexed: 02/22/2025]
Abstract
Psychedelic compounds continue gaining scientific and regulatory traction as potential new treatments for psychiatric disorders. While most psychiatrists will likely not work directly with these compounds, psychedelic research practices provide insights that may improve conventional psychiatric care. Through its emphasis on 'set and setting' (mindset and environment, respectively), psychedelic research highlights the importance of non-pharmacologic factors maximizing therapeutic outcomes. While psychedelics and serotonergic antidepressants are distinctly different in their subjective experience, new findings suggest mechanistic overlap between them. Both have been found to modulate neurotrophins, enhance neuroplasticity, and reopen critical periods of learning, molded by the environmental context in which they are administered. This paper will argue that by integrating insights from psychedelic research (particularly set and setting), depression treatment outcomes in traditional psychiatric settings can improve by optimizing non-pharmacological factors in treatment, including the provision of high-quality psychotherapy.
Collapse
Affiliation(s)
- Zofia Kozak
- Department of Psychiatry, Sheppard Pratt Health System, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
6
|
Seblani M, Brezun JM, Féron F, Hoquet T. Rethinking plasticity: Analysing the concept of "destructive plasticity" in the light of neuroscience definitions. Eur J Neurosci 2024; 60:4798-4812. [PMID: 39092545 DOI: 10.1111/ejn.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
As a multilevel and multidisciplinary field, neuroscience is designed to interact with various branches of natural and applied sciences as well as with humanities and philosophy. The continental tradition in philosophy, particularly over the past 20 years, tended to establish strong connections with biology and neuroscience findings. This cross fertilization can however be impeded by conceptual intricacies, such as those surrounding the concept of plasticity. The use of this concept has broadened as scientists applied it to explore an ever-growing range of biological phenomena. Here, we examine the consequences of this ambiguity in an interdisciplinary context through the analysis of the concept of "destructive plasticity" in the philosophical writings of Catherine Malabou. The term "destructive plasticity" was coined by Malabou in 2009 to refer to all processes leading to psycho-cognitive and emotional alterations following traumatic or nontraumatic brain injuries or resulting from neurodevelopmental disorders. By comparing it with the neuroscientific definitions of plasticity, we discuss the epistemological obstacles and possibilities related to the integration of this concept into neuroscience. Improving interdisciplinary exchanges requires an advanced and sophisticated manipulation of neurobiological concepts. These concepts are not only intended to guide research programmes within neuroscience but also to organize and frame the dialogue between different theoretical backgrounds.
Collapse
Affiliation(s)
- Mostafa Seblani
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| | - Jean-Michel Brezun
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
| | - François Féron
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
| | - Thierry Hoquet
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| |
Collapse
|
7
|
Schwarting RKW, Wöhr M, Engler H, Sungur AÖ, Schedlowski M. Behaviorally conditioned effects of psychoactive drugs in experimental animals: What we have learned from nearly a century of research and what remains to be learned. Neurosci Biobehav Rev 2024; 162:105721. [PMID: 38754716 DOI: 10.1016/j.neubiorev.2024.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Continuous treatment with drugs is a crucial requirement for managing various clinical conditions, including chronic pain and neuropsychiatric disorders such as depression or schizophrenia. Associative learning processes, i.e. Pavlovian conditioning, can play an important role for the effects of drugs and could open new avenues for optimizing patient treatment. In this narrative literature review, we summarize available data in experimental animals regarding the behaviorally conditioned effects of psychostimulants such as d-amphetamine and cocaine, the dopamine receptor agonist apomorphine, the dopamine receptor antagonist haloperidol, morphine and antidepressant drugs. In each section, the drug under discussion is briefly introduced, followed by a detailed examination of conditioning features, including doses and dosing regimens, characteristics of the conditioning process such as test environments or specific conditioned stimuli, testing and conditioned response characteristics, possible extinction or reconditioning or reversal training, neural mechanisms, and finally, the potential clinical relevance of the research area related to the drug. We focus on key outcomes, delve into methodical issues, identify gaps in current knowledge, and suggest future research directions.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany
| | - Markus Wöhr
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Leuven B-3000, Belgium
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro-, and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany
| | - A Özge Sungur
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Leuven B-3000, Belgium
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro-, and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
8
|
Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, Kholghi G, Akhondzadeh S, Vaseghi S. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol 2024; 80:983-1016. [PMID: 38558317 DOI: 10.1007/s00228-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shataw Azadvar
- Department of Power Electronic, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahal Abbasi
- Department of Health Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Department of Psychiatry, Faculty of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 1419815477, Iran.
| |
Collapse
|
9
|
Poggini S, Matte Bon G, Ciano Albanese N, Karpova N, Castrén E, D'Andrea I, Branchi I. Subjective experience of the environment determines serotoninergic antidepressant treatment outcome in male mice. J Affect Disord 2024; 350:900-908. [PMID: 38246279 DOI: 10.1016/j.jad.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Matte Bon
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nina Karpova
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Ivana D'Andrea
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S 1270, Sorbonne Université, Sciences and Engineering Faculty, Institut du Fer à Moulin, Paris, France
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
10
|
Biskupiak Z, Ha VV, Rohaj A, Bulaj G. Digital Therapeutics for Improving Effectiveness of Pharmaceutical Drugs and Biological Products: Preclinical and Clinical Studies Supporting Development of Drug + Digital Combination Therapies for Chronic Diseases. J Clin Med 2024; 13:403. [PMID: 38256537 PMCID: PMC10816409 DOI: 10.3390/jcm13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Limitations of pharmaceutical drugs and biologics for chronic diseases (e.g., medication non-adherence, adverse effects, toxicity, or inadequate efficacy) can be mitigated by mobile medical apps, known as digital therapeutics (DTx). Authorization of adjunct DTx by the US Food and Drug Administration and draft guidelines on "prescription drug use-related software" illustrate opportunities to create drug + digital combination therapies, ultimately leading towards drug-device combination products (DTx has a status of medical devices). Digital interventions (mobile, web-based, virtual reality, and video game applications) demonstrate clinically meaningful benefits for people living with Alzheimer's disease, dementia, rheumatoid arthritis, cancer, chronic pain, epilepsy, depression, and anxiety. In the respective animal disease models, preclinical studies on environmental enrichment and other non-pharmacological modalities (physical activity, social interactions, learning, and music) as surrogates for DTx "active ingredients" also show improved outcomes. In this narrative review, we discuss how drug + digital combination therapies can impact translational research, drug discovery and development, generic drug repurposing, and gene therapies. Market-driven incentives to create drug-device combination products are illustrated by Humira® (adalimumab) facing a "patent-cliff" competition with cheaper and more effective biosimilars seamlessly integrated with DTx. In conclusion, pharma and biotech companies, patients, and healthcare professionals will benefit from accelerating integration of digital interventions with pharmacotherapies.
Collapse
Affiliation(s)
- Zack Biskupiak
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Vinh Ha
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Aarushi Rohaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
- The Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
12
|
Dandi Ε, Theotokis P, Petri MC, Sideropoulou V, Spandou E, Tata DA. Environmental enrichment initiated in adolescence restores the reduced expression of synaptophysin and GFAP in the hippocampus of chronically stressed rats in a sex-specific manner. Dev Psychobiol 2023; 65:e22422. [PMID: 37796476 DOI: 10.1002/dev.22422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023]
Abstract
This study aims at investigating whether environmental enrichment (EE) initiated in adolescence can alter chronic unpredictable stress (CUS)-associated changes in astroglial and synaptic plasticity markers in male and female rats. To this end, we studied possible alterations in hippocampal glial fibrillary acidic protein (GFAP) and synaptophysin (SYN) in CUS rats previously housed in EE. Wistar rats on postnatal day (PND) 23 were housed for 10 weeks in standard housing (SH) or enriched conditions. On PND 66, animals were exposed to CUS for 4 weeks. SYN and GFAP expressions were evaluated in CA1 and CA3 subfields and dentate gyrus (DG). CUS reduced the expression of SYN in all hippocampal areas, whereas lower GFAP expression was evident only in CA1 and CA3. The reduced expression of SYN in DG and CA3 was evident to male SH/CUS rats, whereas the reduced GFAP expression in CA1 and CA3 was limited to SH/CUS females. EE housing increased the hippocampal expression of both markers and protected against CUS-associated decreases. Our findings indicate that the decreases in the expression of SYN and GFAP following CUS are region and sex-specific and underline the neuroprotective role of EE against these CUS-associated changes.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Christina Petri
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vaia Sideropoulou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Steiner KM, Timmann D, Bingel U, Kunkel A, Spisak T, Schedlowski M, Benson S, Engler H, Scherbaum N, Koelkebeck K. Study protocol: effects of treatment expectation toward repetitive transcranial magnetic stimulation (rTMS) in major depressive disorder-a randomized controlled clinical trial. Trials 2023; 24:553. [PMID: 37620946 PMCID: PMC10464308 DOI: 10.1186/s13063-023-07579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Patients' expectations toward any given treatment are highly important for the effectiveness of such treatment, as has been demonstrated for several disorders. In particular, in major depressive disorder (MDD), one of the most frequent and most serious mental disorders with severe consequences for the affected, the augmentation of available treatment options could mean a ground-breaking success. Repetitive transcranial magnetic stimulation (rTMS), a new, non-invasive, and well-tolerated intervention with proven effects in the treatment of MDD, appears particularly suitable in this context as it is assumed to exert its effect via structures implicated in networks relevant for both expectation and depression. METHODS All patients will receive rTMS according to its approval. Half of the patients will be randomized to a psychological intervention, which is a comprehensive medical consultation aiming to improve positive treatment expectations; the control group will receive a conventional informed consent discussion (in the sense of a treatment-as-usual condition). As outcome parameters, instruments for both self-assessment and external assessment of depression symptoms will be applied. Furthermore, psycho-immunological parameters such as inflammation markers and the cortisol awakening response in saliva will be investigated. Resting-state functional magnetic resonance imaging (rs fMRI) will be performed to analyze functional connectivity, including the cerebellum, and to identify neuronal predictors of expectation effects. In addition, possible cerebellar involvement will be assessed based on a cerebellar-dependent motor learning paradigm (i.e., eyeblink conditioning). DISCUSSION In this study, the effects of treatment expectations towards rTMS are investigated in patients with MDD. The aim of this study is to identify the mechanisms underlying the expectation effects and, beyond that, to expand the potential of non-invasive and well-tolerated treatments of MDD. TRIAL REGISTRATION German Registry of Clinical Studies (DRKS DRKS00028017. Registered on 2022/03/07. URL: https://www.drks.de/drks_web/ .
Collapse
Affiliation(s)
- Katharina M Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-University-Hospital Essen, University of Duisburg-Essen, Virchowstr, 174, 45147, Essen, Germany.
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany.
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
| | - Ulrike Bingel
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
| | - Angelika Kunkel
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
| | - Tamas Spisak
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
| | - Manfred Schedlowski
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-University-Hospital Essen, University of Duisburg-Essen, Virchowstr, 174, 45147, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
| | - Katja Koelkebeck
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-University-Hospital Essen, University of Duisburg-Essen, Virchowstr, 174, 45147, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
| |
Collapse
|
14
|
Jones N, Zahid Z, Grady SM, Sultan ZW, Zheng Z, Razidlo J, Banks MI, Wenthur CJ. Transient Elevation of Plasma Glucocorticoids Supports Psilocybin-Induced Anxiolysis in Mice. ACS Pharmacol Transl Sci 2023; 6:1221-1231. [PMID: 37588757 PMCID: PMC10425994 DOI: 10.1021/acsptsci.3c00123] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/18/2023]
Abstract
While correlations between drug-induced cortisol elevation, self-reported anxiety, and treatment outcomes have been reported for human studies during psilocybin-assisted psychotherapy, the mechanistic relationship between psychedelic-associated alterations in plasma glucocorticoid responses and the time course of anxious responsiveness remains unclear. Using rodents, both time-bound manipulation of glucocorticoid concentrations and assessment of anxiety-like behaviors can be achieved. Here, 3 mg/kg IP psilocybin was found to have anxiolytic-like effects in C57BL/6 male mice at 4 h after treatment. These effects were not altered by pretreatment with a 5-HT2A antagonist but were blunted by pretreatment with a glucocorticoid receptor antagonist or suppression of psilocybin-induced corticosterone elevations. Anxiolytic-like effects were also observed at 4 h following treatment with the nonpsychedelic 5-HT2A agonist lisuride at a dose causing a similar increase in plasma glucocorticoids as that seen with psilocybin, as well as following stress-induced (via repeated injection) glucocorticoid release alone. Psilocybin's anxiolytic-like effects persisted at 7 days following administration. The long-term anxiolytic effects of psilocybin were lost when psilocybin was administered to animals with ongoing chronic elevations in plasma corticosterone concentrations. Overall, these experiments indicate that acute, resolvable psilocybin-induced glucocorticoid release drives the postacute anxiolytic-like effects of psilocybin in mice and that its long-term anxiolytic-like effects can be abolished in the presence of chronically elevated plasma glucocorticoid elevations.
Collapse
Affiliation(s)
- Nathan
T. Jones
- Molecular
and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zarmeen Zahid
- Neuroscience
Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sean M. Grady
- Department
of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziyad W. Sultan
- Department
of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zhen Zheng
- School
of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - John Razidlo
- Neuroscience
Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew I. Banks
- Neuroscience
Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Transdisciplinary
Center for Research in Psychoactive Substances, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Cody J. Wenthur
- Molecular
and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Neuroscience
Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- School
of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Transdisciplinary
Center for Research in Psychoactive Substances, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Dandi Ε, Spandou E, Dalla C, Tata DA. Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: A systematic review. Eur J Neurosci 2023; 58:3003-3025. [PMID: 37461295 DOI: 10.1111/ejn.16089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 08/16/2023]
Abstract
Environmental factors interact with biological and genetic factors influencing the development and well-being of an organism. The interest in better understanding the role of environment on behavior and physiology led to the development of animal models of environmental manipulations. Environmental enrichment (EE), an environmental condition that allows cognitive and sensory stimulation as well as social interaction, improves cognitive function, reduces anxiety and depressive-like behavior and promotes neuroplasticity. In addition, it exerts protection against neurodegenerative disorders, cognitive aging and deficits aggravated by stressful experiences. Given the beneficial effects of EE on the brain and behavior, preclinical studies have focused on its protective role as an alternative, non-invasive manipulation, to help an organism to cope better with stress. A valid, reliable and effective animal model of chronic stress that enhances anxiety and depression-like behavior is the chronic unpredictable mild stress (CUMS). The variety of stressors and the unpredictability in the time and sequence of exposure to prevent habituation, render CUMS an ethologically relevant model. CUMS has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis, elevation in the basal levels of stress hormones, reduction in brain volume, dendritic atrophy and alterations in markers of synaptic plasticity. Although numerous studies have underlined the compensatory role of EE against the negative effects of various chronic stress regimens (e.g. restraint and social isolation), research concerning the interaction between EE and CUMS is sparse. The purpose of the current systematic review is to present up-to-date research findings regarding the protective role of EE against the negative effects of CUMS.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Esalatmanesh S, Kashani L, Akhondzadeh S. Effects of Antidepressant Medication on Brain-derived Neurotrophic Factor Concentration and Neuroplasticity in Depression: A Review of Preclinical and Clinical Studies. Avicenna J Med Biotechnol 2023; 15:129-138. [PMID: 37538241 PMCID: PMC10634295 DOI: 10.18502/ajmb.v15i3.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 08/05/2023] Open
Abstract
Depression is the most prevalent and debilitating disease with great impact on societies. Evidence suggests Brain-Derived Neurotrophic Factor (BDNF) plays an important role in pathophysiology of depression. Depression is associated with altered synaptic plasticity and neurogenesis. BDNF is the main regulatory protein that affects neuronal plasticity in the hippocampus. A wealth of evidence shows decreased levels of BDNF in depressed patients. Important literature demonstrated that BDNF-TrkB signaling plays a key role in therapeutic action of antidepressants. Numerous studies have reported anti-depressant effects on serum/plasma levels of BDNF and neuroplasticity which may be related to improvement of depressive symptoms. Most of the evidence suggested increased levels of BDNF after antidepressant treatment. This review will summarize recent findings on the association between BDNF, neuroplasticity, and antidepressant response in depression. Also, we will review recent studies that evaluate the association between postpartum depression as a subtype of depression and BDNF levels in postpartum women.
Collapse
Affiliation(s)
| | - Ladan Kashani
- Arash Women Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ji X, Zhao Z. Exposure to enriched environment ameliorated chronic unpredictable mild stress-induced depression-like symptoms in rats via regulating the miR-92a-3p/kruppel-like factor 2 (KLF2) pathway. Brain Res Bull 2023; 195:14-24. [PMID: 36638871 DOI: 10.1016/j.brainresbull.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Silencing of miR-92a-3p may be beneficial in relieving depression of chronically stressed rats. The level of kruppel-like factor 2 (KLF2) was increased in the striatum of depressed rats after ketamine treatment. Enriched environment (EE) ameliorated depression-like behaviors in rats. However, the specific mechanism of EE treatment on depression induced by chronic unpredictable mild stress (CUMS) remains unclear. METHODS After CUMS-induced male Sprague Dawley rats were treated under EE or/and Adeno-Associated Virus (AAV)-miR-92a-3p, depression-like behaviors, cognitive ability, dendritic spine density, as well as levels of miR-92a-3p and KLF2 were detected by the behavioral tests, morris water maze test, Golgi staining, and quantitative real-time polymerase chain reaction (qRT-PCR) as needed. The body weight of rats was also measured. Next, primary hippocampal neurons were cultivated. The targeting relationship between miR-92a-3p and KLF2 was analyzed by TargetScan v7.2 and dual-luciferase reporter assay. After hippocampal neurons were transfected with miR-92a-3p mimic or/and overexpressed KLF2 vector, the cell viability, and apoptosis, together with the levels of KLF2, brain-derived neurotrophic factor (BDNF), phosphorylated (p)-tropomysin related kinase B (p-TrkB) and TrkB were determined by MTT assay, flow cytometry, qRT-PCR, and western blot as needed. RESULTS EE ameliorated CUMS-induced depression-like behaviors and cognitive ability, and elevated the neuronal dendritic spine density and KLF2 level, but reduced miR-92a-3p level in hippocampal tissues, while the above effects were reversed by AAV-miR-92a-3p. MiR-92a-3p mimic restrained cell viability, along with p-TrkB/ TrkB and BDNF levels, but promoted apoptosis in hippocampal neurons, which were reversed by overexpressed KLF2. CONCLUSION EE ameliorates CUMS-induced depression-like symptoms in rats via regulating the miR-92a-3p/KLF2 pathway.
Collapse
Affiliation(s)
- Xiao Ji
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhenwu Zhao
- Emergency Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China.
| |
Collapse
|
18
|
Poggini S, Banqueri M, Ciano Albanese N, Golia MT, Ibáñez FG, Limatola C, Furhmann M, Lalowski M, Tremblay ME, Maggi L, Kaminska B, Branchi I. Minocycline treatment improves cognitive and functional plasticity in a preclinical mouse model of major depressive disorder. Behav Brain Res 2023; 441:114295. [PMID: 36641083 DOI: 10.1016/j.bbr.2023.114295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a chronic, recurring, and potentially life-threatening illness, which affects over 300 million people worldwide. MDD affects not only the emotional and social domains but also cognition. However, the currently available treatments targeting cognitive deficits in MDD are limited. Minocycline, an antibiotic with anti-inflammatory properties recently identified as a potential antidepressant, has been shown to attenuate learning and memory deficits in animal models of cognitive impairment. Here, we explored whether minocycline recovers the deficits in cognition in a mouse model of depression. C57BL6/J adult male mice were exposed to two weeks of chronic unpredictable mild stress to induce a depressive-like phenotype. Immediately afterward, mice received either vehicle or minocycline for three weeks in standard housing conditions. We measured anhedonia as a depressive-like response, and place learning to assess cognitive abilities. We also recorded long-term potentiation (LTP) as an index of hippocampal functional plasticity and ran immunohistochemical assays to assess microglial proportion and morphology. After one week of treatment, cognitive performance in the place learning test was significantly improved by minocycline, as treated mice displayed a higher number of correct responses when learning novel spatial configurations. Accordingly, minocycline-treated mice displayed higher LTP compared to controls. However, after three weeks of treatment, no difference between treated and control animals was found for behavior, neural plasticity, and microglial properties, suggesting that minocycline has a fast but short effect on cognition, without lasting effects on microglia. These findings together support the usefulness of minocycline as a potential treatment for cognitive impairment associated with MDD.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Maria Banqueri
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; PhD program in Behavioral Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Teresa Golia
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | | | - Maciej Lalowski
- Helsinki Institute for Life Science (HiLIFE) and Faculty of Medicine, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki FI-00014, Finland
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
19
|
Delli Colli C, Borgi M, Poggini S, Chiarotti F, Cirulli F, Penninx BWJH, Benedetti F, Vai B, Branchi I. Time moderates the interplay between 5-HTTLPR and stress on depression risk: gene x environment interaction as a dynamic process. Transl Psychiatry 2022; 12:274. [PMID: 35821204 PMCID: PMC9276704 DOI: 10.1038/s41398-022-02035-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The serotonin-transporter-linked promoter region (5-HTTLPR) has been widely investigated as contributing to depression vulnerability. Nevertheless, empirical research provides wide contrasting findings regarding its involvement in the etiopathogenesis of the disorder. Our hypothesis was that such discrepancy can be explained considering time as moderating factor. We explored this hypothesis, exploiting a meta analytic approach. We searched PubMed, PsychoINFO, Scopus and EMBASE databases and 1096 studies were identified and screened, resulting in 22 studies to be included in the meta-analyses. The effect of the 5-HTTLPR x stress interaction on depression risk was found to be moderated by the following temporal factors: the duration of stress (i.e. chronic vs. acute) and the time interval between end of stress and assessment of depression (i.e. within 1 year vs. more than 1 year). When stratifying for the duration of stress, the effect of the 5-HTTLPR x stress interaction emerged only in the case of chronic stress, with a significant subgroup difference (p = 0.004). The stratification according to time interval revealed a significant interaction only for intervals within 1 year, though no difference between subgroups was found. The critical role of time interval clearly emerged when considering only chronic stress: a significant effect of the 5-HTTLPR and stress interaction was confirmed exclusively within 1 year and a significant subgroup difference was found (p = 0.01). These results show that the 5-HTTLPR x stress interaction is a dynamic process, producing different effects at different time points, and indirectly confirm that s-allele carriers are both at higher risk and more capable to recover from depression. Overall, these findings expand the current view of the interplay between 5-HTTLPR and stress adding the temporal dimension, that results in a three-way interaction: gene x environment x time.
Collapse
Affiliation(s)
- Claudia Delli Colli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- PhD program in Pharmacology and Toxicology, Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
20
|
Plasticity in mental health: A network theory. Neurosci Biobehav Rev 2022; 138:104691. [PMID: 35568207 DOI: 10.1016/j.neubiorev.2022.104691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
Plasticity is the ability to modify brain and behavior, ultimately promoting an amplification of the impact of the context on the individual's mental health. Thus, plasticity is not beneficial per se but its value depends on contextual factors, such as the quality of the living environment. High plasticity is beneficial in a favorable environment, but can be detrimental in adverse conditions, while the opposite applies to low plasticity. Resilience and vulnerability are not univocally associated to high or low plasticity. Consequently, individuals should undergo different preventive and therapeutic strategies according to their plasticity levels and living conditions. Here, an operationalization of plasticity relying on network theory is proposed: the strength of the connection among the network elements defining the individual, such as its symptoms, is a measure of plasticity. This theoretical framework represents a promising tool to investigate research questions related to changes in neural structure and activity and in behavior, and to improve therapeutic strategies for psychiatric disorders, such as major depression.
Collapse
|
21
|
Flores-Ramos M, Yoldi-Negrete M, Guiza-Zayas R, Ramírez-Rodríguez GB, Montes-Castrejón A, Fresán A. An Indicator of environmental enrichment to measure physical, social and cognitive activities in human daily life. BMC Psychiatry 2022; 22:295. [PMID: 35468768 PMCID: PMC9040238 DOI: 10.1186/s12888-022-03952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The concept of environmental enrichment (EE) encompasses complex physical, social, cognitive, motor, and somatosensory stimuli to which individuals are differentially exposed. An indicator of EE comprising these elements would facilitate the study of the impact of EE in diverse clinical settings by allowing an easy and comparable measurement. This study aimed to create and test such an EE indicator based on the Florida Cognitive Activities Scale (FCAS), the Multidimensional Social Integration in Later Life Scale (SILLS), and the International Physical Activity Questionnaire (IPAQ). METHODS Participants with major depression and control subjects were recruited in this cross-sectional comparative study. Depressive symptom severity was assessed with the Hamilton Depression Rating Scale (HAM-D). The EE indicator was used to evaluate cognitive, social, and physical activity. We divided the sample into three levels of cognitive and social activities to construct an EE indicator and compared the obtained scores between participants with major depression and control subjects. RESULTS 40 patients suffering from major depression and 50 control subjects were included. Higher HAM-D scores were associated with lower EE levels. Cognitive and social items exhibited adequate reliability. Control subjects reported higher scores in all three activities evaluated, except for some items of physical activities. This indicator of EE clearly differentiated between participants with major depression from control subjects. CONCLUSIONS FCAS, SILLS, and IPAQ used together are valid to evaluate EE. This EE indicator may be a useful tool during clinical practice. The cross-sectional design and the small sample size are limitations of the present study.
Collapse
Affiliation(s)
- Mónica Flores-Ramos
- grid.419154.c0000 0004 1776 9908Dirección de Enseñanza, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P, 14370 Ciudad de México, Mexico
| | - María Yoldi-Negrete
- grid.419154.c0000 0004 1776 9908Laboratorio de Epidemiología Clínica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P, 14370 Ciudad de México, Mexico
| | - Rodrigo Guiza-Zayas
- grid.419154.c0000 0004 1776 9908Dirección de Enseñanza, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P, 14370 Ciudad de México, Mexico
| | - Gerardo-Bernabé Ramírez-Rodríguez
- grid.419154.c0000 0004 1776 9908Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P, 14370 Ciudad de México, Mexico
| | - Adolfo Montes-Castrejón
- grid.419154.c0000 0004 1776 9908Dirección de Enseñanza, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P, 14370 Ciudad de México, Mexico
| | - Ana Fresán
- Laboratorio de Epidemiología Clínica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P, 14370, Ciudad de México, Mexico.
| |
Collapse
|
22
|
Tan T, Xu Z, Gao C, Shen T, Li L, Chen Z, Chen L, Xu M, Chen B, Liu J, Zhang Z, Yuan Y. Influence and interaction of resting state functional magnetic resonance and tryptophan hydroxylase-2 methylation on short-term antidepressant drug response. BMC Psychiatry 2022; 22:218. [PMID: 35337298 PMCID: PMC8957120 DOI: 10.1186/s12888-022-03860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most antidepressants have been developed on the basis of the monoamine deficiency hypothesis of depression, in which neuronal serotonin (5-HT) plays a key role. 5-HT biosynthesis is regulated by the rate-limiting enzyme tryptophan hydroxylase-2 (TPH2). TPH2 methylation is correlated with antidepressant effects. Resting-state functional MRI (rs-fMRI) is applied for detecting abnormal brain functional activity in patients with different antidepressant effects. We will investigate the effect of the interaction between rs-fMRI and TPH2 DNA methylation on the early antidepressant effects. METHODS A total of 300 patients with major depressive disorder (MDD) and 100 healthy controls (HCs) were enrolled, of which 60 patients with MDD were subjected to rs-fMRI. Antidepressant responses was assessed by a 50% reduction in 17-item Hamilton Rating Scale for Depression (HAMD-17) scores at baseline and after two weeks of medication. The RESTPlus software in MATLAB was used to analyze the rs-fMRI data. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), fractional ALFF (fALFF), and functional connectivity (FC) were used, and the above results were used as regions of interest (ROIs) to extract the average value of brain ROIs regions in the RESTPlus software. Generalized linear model analysis was performed to analyze the association between abnormal activity found in rs-fMRI and the effect of TPH2 DNA methylation on antidepressant responses. RESULTS Two hundred ninety-one patients with MDD and 100 HCs were included in the methylation statistical analysis, of which 57 patients were included in the further rs-fMRI analysis (3 patients were excluded due to excessive head movement). 57 patients were divided into the responder group (n = 36) and the non-responder group (n = 21). Rs-fMRI results showed that the ALFF of the left inferior frontal gyrus (IFG) was significantly different between the two groups. The results showed that TPH2-1-43 methylation interacted with ALFF of left IFG to affect the antidepressant responses (p = 0.041, false discovery rate (FDR) corrected p = 0.149). CONCLUSIONS Our study demonstrated that the differences in the ALFF of left IFG between the two groups and its association with TPH2 methylation affect short-term antidepressant drug responses.
Collapse
Affiliation(s)
- Tingting Tan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China. .,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Chenjie Gao
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Tian Shen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984Department of Psychiatric Rehabilitation, Wuxi Mental Health Center, Nanjing Medical University, WuXi, 214123 People’s Republic of China
| | - Lei Li
- grid.263826.b0000 0004 1761 0489School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zimu Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Lei Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,Department of Psychology and Psychiatry, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210018 People’s Republic of China
| | - Min Xu
- grid.263826.b0000 0004 1761 0489Department of Anatomy, Medical School, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Bingwei Chen
- grid.263826.b0000 0004 1761 0489Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Jiacheng Liu
- grid.452290.80000 0004 1760 6316Department of Nuclear Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhijun Zhang
- grid.452290.80000 0004 1760 6316Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Yonggui Yuan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
23
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
24
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Rosas-Sánchez GU, German-Ponciano LJ, Rodríguez-Landa JF. Considerations of Pool Dimensions in the Forced Swim Test in Predicting the Potential Antidepressant Activity of Drugs. Front Behav Neurosci 2022; 15:757348. [PMID: 35069137 PMCID: PMC8777187 DOI: 10.3389/fnbeh.2021.757348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gilberto Uriel Rosas-Sánchez
- Programa de Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Juan Francisco Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Juan Francisco Rodríguez-Landa
| |
Collapse
|
26
|
Pintori N, Piva A, Guardiani V, Marzo CM, Decimo I, Chiamulera C. The interaction between Environmental Enrichment and fluoxetine in inhibiting sucrose-seeking renewal in mice depend on social living condition. Psychopharmacology (Berl) 2022; 239:2351-2361. [PMID: 35353203 PMCID: PMC9205808 DOI: 10.1007/s00213-022-06124-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Several single or combined therapeutic approaches have been developed to treat addiction, however with partial efficacy in preventing relapse. Recently, the living environment has been suggested as a critical intervening factor determining the treatment outcomes. Despite accumulating evidence confirming a role of living conditions in the vulnerability to addictive behaviours, their impact on single or integrative therapeutic strategies preventing relapse is yet to be identified. OBJECTIVES Here, we explore the possible interaction between brief Environmental Enrichment (EE) exposure and acute fluoxetine administration in inhibiting sucrose-seeking behaviours, and whether this effect could be affected by living environment. METHODS Social and isolated adult male C57BL/6 mice were trained to sucrose self-administration associated to a specific conditioning context (CxA), followed by a 7-day extinction in a different context (CxB). Afterwards, mice were exposed for 22 h to EE and then injected with fluoxetine (10 mg/kg, i.p.) 1 h before a CxA-induced sucrose-seeking test. RESULTS Brief EE exposure and acute fluoxetine administration alone inhibited context-induced sucrose-seeking in both housing conditions; however, they exhibited additive properties only in social condition. CONCLUSIONS Our data show that social environment may influence the EE/fluoxetine interaction in inhibiting relapse to sucrose. These findings suggest that setting up proper living conditions to boost the efficacy of therapeutic approaches may represent a fundamental strategy to treat addiction disorders.
Collapse
Affiliation(s)
- N. Pintori
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy ,Department of Biomedical Sciences, Cittadella Universitaria Di Monserrato, University of Cagliari, S.P.8 km 0, 700-09042 Monserrato, Cagliari Italy
| | - A. Piva
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| | - V. Guardiani
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| | - C. M. Marzo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - I. Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| | - C. Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, Policlinico ‘GB Rossi’, P.le Scuro 10, University of Verona, 37134 Verona, Italy
| |
Collapse
|
27
|
Aucoin M, LaChance L, Naidoo U, Remy D, Shekdar T, Sayar N, Cardozo V, Rawana T, Chan I, Cooley K. Diet and Anxiety: A Scoping Review. Nutrients 2021; 13:4418. [PMID: 34959972 PMCID: PMC8706568 DOI: 10.3390/nu13124418] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022] Open
Abstract
Anxiety disorders are the most common group of mental disorders. There is mounting evidence demonstrating the importance of nutrition in the development and progression of mental disorders such as depression; however, less is known about the role of nutrition in anxiety disorders. This scoping review sought to systematically map the existing literature on anxiety disorders and nutrition in order to identify associations between dietary factors and anxiety symptoms or disorder prevalence as well as identify gaps and opportunities for further research. The review followed established methodological approaches for scoping reviews. Due to the large volume of results, an online program (Abstrackr) with artificial intelligence features was used. Studies reporting an association between a dietary constituent and anxiety symptoms or disorders were counted and presented in figures. A total of 55,914 unique results were identified. After a full-text review, 1541 articles met criteria for inclusion. Analysis revealed an association between less anxiety and more fruits and vegetables, omega-3 fatty acids, "healthy" dietary patterns, caloric restriction, breakfast consumption, ketogenic diet, broad-spectrum micronutrient supplementation, zinc, magnesium and selenium, probiotics, and a range of phytochemicals. Analysis revealed an association between higher levels of anxiety and high-fat diet, inadequate tryptophan and dietary protein, high intake of sugar and refined carbohydrates, and "unhealthy" dietary patterns. Results are limited by a large percentage of animal and observational studies. Only 10% of intervention studies involved participants with anxiety disorders, limiting the applicability of the findings. High quality intervention studies involving participants with anxiety disorders are warranted.
Collapse
Affiliation(s)
- Monique Aucoin
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
| | - Laura LaChance
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada;
- St. Mary’s Hospital Centre, Montreal, QC H3T 1M5, Canada
| | - Umadevi Naidoo
- Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Daniella Remy
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
- Anthrophi Technologies, Toronto, ON M6H1W2, Canada
| | - Tanisha Shekdar
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
| | - Negin Sayar
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
| | - Valentina Cardozo
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
| | - Tara Rawana
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
| | - Irina Chan
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada; (D.R.); (T.S.); (N.S.); (V.C.); (T.R.); (I.C.); (K.C.)
- School of Public Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Ultimo 2007, Australia
- Pacific College of Health Sciences, San Diego, CA 92108, USA
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore 2480, Australia
| |
Collapse
|
28
|
Reguilón MD, Ferrer-Pérez C, Manzanedo C, Miñarro J, Rodríguez-Arias M. Ethanol intake in male mice exposed to social defeat: Environmental enrichment potentiates resilience. Neurobiol Stress 2021; 15:100413. [PMID: 34815986 PMCID: PMC8591477 DOI: 10.1016/j.ynstr.2021.100413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Large preclinical evidence shows that exposure to social defeat (SD) increases vulnerability to drug abuse, increasing the consumption of ethanol. However, not all subjects are equally affected by the changes induced by stress. Previous reports have evidenced that the resilient phenotype to depressive-like behaviors after SD is associated with the resistant phenotype to cocaine-increased rewarding effects and the smaller neuroinflammatory response. The aim of the present study was to further clarify whether the resilient profile to depressive-like behavior also predicts a protection against the increase in ethanol intake induced by SD. The neuroinflammatory profile was studied after the end of the oral ethanol self-administration (SA) procedure, measuring levels of the pro-inflammatory cytokine IL-6 and the chemokine CX3CL1 or fractalkine in the striatum and prefrontal cortex. Previous studies have shown that environmental enrichment (EE) is an effective mechanism to dimish the detrimental effects of social stress. In a second study, we aimed to evaluate if EE housing before exposure to SD could potentiate resilience. Our results showed that mice with a phenotype susceptible to SD-induced depressive-like behaviors showed increased ethanol consumption and increased neuroinflammatory signaling. In contrast, despite the lack of effect on depressive-like behaviors, defeated mice previously housed under EE conditions did not show an increase in ethanol SA or an increase in immune response. To sum up, the resilient phenotype to SD develops at different levels, such as depressive-like behaviors, ethanol consumption and the neuroinflammatory response. Our results also point to the protective role of EE in potentiating resilience to SD effects.
Collapse
Affiliation(s)
- Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychology and Sociology, University of Zaragoza, C/ Ciudad Escolar s/n, 44003, Teruel, Spain
| | - Carmen Manzanedo
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| |
Collapse
|
29
|
Short Daily Exposure to Environmental Enrichment, Fluoxetine, or Their Combination Reverses Deterioration of the Coat and Anhedonia Behaviors with Differential Effects on Hippocampal Neurogenesis in Chronically Stressed Mice. Int J Mol Sci 2021; 22:ijms222010976. [PMID: 34681636 PMCID: PMC8535985 DOI: 10.3390/ijms222010976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Depression is a neuropsychiatric disorder with a high impact on the worldwide population. To overcome depression, antidepressant drugs are the first line of treatment. However, pre-clinical studies have pointed out that antidepressants are not entirely efficacious and that the quality of the living environment after stress cessation may play a relevant role in increasing their efficacy. As it is unknown whether a short daily exposure to environmental enrichment during chronic stress and antidepressant treatment will be more effective than just the pharmacological treatment, this study analyzed the effects of fluoxetine, environmental enrichment, and their combination on depressive-associated behavior. Additionally, we investigated hippocampal neurogenesis in mice exposed to chronic mild stress. Our results indicate that fluoxetine reversed anhedonia. Besides, fluoxetine reversed the decrement of some events of the hippocampal neurogenic process caused by chronic mild stress. Conversely, short daily exposure to environmental enrichment changed the deterioration of the coat and anhedonia. Although, this environmental intervention did not produce significant changes in the neurogenic process affected by chronic mild stress, fluoxetine plus environmental enrichment showed similar effects to those caused by environmental enrichment to reverse depressive-like behaviors. Like fluoxetine, the combination reversed the declining number of Ki67, doublecortin, calretinin cells and mature newborn neurons. Finally, this study suggests that short daily exposure to environmental enrichment improves the effects of fluoxetine to reverse the deterioration of the coat and anhedonia in chronically stressed mice. In addition, the combination of fluoxetine with environmental enrichment produces more significant effects than those caused by fluoxetine alone on some events of the neurogenic process. Thus, environmental enrichment improves the benefits of pharmacological treatment by mechanisms that need to be clarified.
Collapse
|
30
|
Picard K, Bisht K, Poggini S, Garofalo S, Golia MT, Basilico B, Abdallah F, Ciano Albanese N, Amrein I, Vernoux N, Sharma K, Hui CW, C Savage J, Limatola C, Ragozzino D, Maggi L, Branchi I, Tremblay MÈ. Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain Behav Immun 2021; 97:423-439. [PMID: 34343616 DOI: 10.1016/j.bbi.2021.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.
Collapse
Affiliation(s)
- Katherine Picard
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Molecular Medicine Department, Université Laval, Québec City, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Maria Teresa Golia
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Bernadette Basilico
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Fatima Abdallah
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zurich, Switzerland
| | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Chin Wai Hui
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Julie C Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Molecular Medicine Department, Université Laval, Québec City, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Barbosa-Méndez S, López-Morado C, Salazar-Juárez A. Mirtazapine-induced decrease in cocaine sensitization is enhanced by environmental enrichment in rats. Pharmacol Biochem Behav 2021; 208:173237. [PMID: 34274360 DOI: 10.1016/j.pbb.2021.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/03/2023]
Abstract
Several studies have reported that mirtazapine attenuated the induction and expression of cocaine-induced locomotor sensitization. Animals placed in enriched housing environments have shown a decrease in cocaine-induced locomotor activity and sensitization. In addition, it has been suggested that a pharmacological treatment combined with a behavioral intervention increases the efficacy of the former. Thus, the objective of this study was to determine if dosing of mirtazapine in an enriched housing environment enhanced the mirtazapine-induced decrease on the induction and expression of cocaine-induced locomotor sensitization. Wistar male rats were dosed with cocaine (10 mg/kg, i.p.). During the drug-withdrawal phase, mirtazapine (30 mg/kg, i.p.) was administered under standard and enriched housing environmental conditions. The environmental enrichment consisted of housing the animals in enclosures with plastic toys, tunnels, and running wheels. After each administration, locomotor activity for each animal was recorded for 30 min. The study found that treatment with mirtazapine in an enriched housing environment produced an enhanced and persistent attenuation of the induction and expression of cocaine-induced locomotor sensitization. Additionally, it reduced the duration of cocaine-induced locomotor activity in the expression phase of locomotor sensitization. Dosing of mirtazapine in an enriched housing environment enhanced the effectiveness of mirtazapine to decrease cocaine-induced locomotor sensitization. This suggests the potential use of enriched environments to enhance the effect of mirtazapine.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Casandra López-Morado
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico.
| |
Collapse
|
32
|
Berry A, Collacchi B, Capoccia S, D'Urso MT, Cecchetti S, Raggi C, Sestili P, Aricò E, Pontecorvi G, Puglisi R, Ortona E, Cirulli F. Chronic Isolation Stress Affects Central Neuroendocrine Signaling Leading to a Metabolically Active Microenvironment in a Mouse Model of Breast Cancer. Front Behav Neurosci 2021; 15:660738. [PMID: 34305544 PMCID: PMC8298821 DOI: 10.3389/fnbeh.2021.660738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Social isolation is a powerful stressor capable of affecting brain plasticity and function. In the case of breast cancer, previous data indicate that stressful experiences may contribute to a worse prognosis, activating neuroendocrine and metabolism pathways, although the mechanisms underlying these effects are still poorly understood. In this study, we tested the hypothesis that chronic isolation stress (IS) may boost hypothalamic–pituitary–adrenal (HPA) axis activity, leading to changes in the hypothalamic expression of genes modulating both mood and metabolism in an animal model of breast cancer. This centrally activated signaling cascade would, in turn, affect the mammary gland microenvironment specifically targeting fat metabolism, leading to accelerated tumor onset. MMTVNeuTg female mice (a model of breast cancer developing mammary hyperplasia at 5 months of age) were either group-housed (GH) or subjected to IS from weaning until 5 months of age. At this time, half of these subjects underwent acute restraint stress to assess corticosterone (CORT) levels, while the remaining subjects were characterized for their emotional profile in the forced swimming and saccharin preference tests. At the end of the procedures, all the mice were sacrificed to assess hypothalamic expression levels of Brain-derived neurotrophic factor (Bdnf), Neuropeptide Y (NpY), Agouti-Related Peptide (AgRP), and Serum/Glucocorticoid-Regulated Protein Kinase 1 (SgK1). Leptin and adiponectin expression levels, as well as the presence of brown adipose tissue (BAT), were assessed in mammary fat pads. The IS mice showed higher CORT levels following acute stress and decreased expression of NpY, AgRP, and SgK1, associated with greater behavioral despair in the forced swimming test. Furthermore, they were characterized by increased consumption of saccharin in a preference test, suggesting an enhanced hedonic profile. The IS mice also showed an earlier onset of breast lumps (assessed by palpation) accompanied by elevated levels of adipokines (leptin and adiponectin) and BAT in the mammary fat pads. Overall, these data point to IS as a pervasive stressor that is able to specifically target neuronal circuits, mastered by the hypothalamus, modulating mood, stress reactivity and energy homeostasis. The activation of such IS-driven machinery may hold main implications for the onset and maintenance of pro-tumorigenic environments.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Capoccia
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa D'Urso
- Animal Research and Welfare Center, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Sestili
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Pontecorvi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
33
|
Selecting antidepressants according to a drug-by-environment interaction: A comparison of fluoxetine and minocycline effects in mice living either in enriched or stressful conditions. Behav Brain Res 2021; 408:113256. [PMID: 33775780 DOI: 10.1016/j.bbr.2021.113256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder. It has been recently proposed that these drugs, by enhancing neural plasticity, amplify the influences of the living conditions on mood. Consequently, SSRI outcome depends on the quality of the environment, improving symptomatology mainly in individuals living in favorable conditions. In adverse conditions, drugs with a different mechanism of action might have higher efficacy. The antibiotic minocycline, with neuroprotective and anti-inflammatory properties, has been recently proposed as a novel potential antidepressant treatment. To explore the drug-by-environment interaction, we compared the effects on depressive-like behavior and neural plasticity of the SSRI fluoxetine and minocycline in enriched and stressful conditions. We first exposed C57BL/6 adult female mice to 14 days of chronic unpredictable mild stress to induce a depressive-like profile. Afterward, mice received vehicle, fluoxetine, or minocycline for 21 days, while exposed to either enriched or stressful conditions. During the first five days, fluoxetine led to an improvement in enrichment but not in stress. By contrast, minocycline led to an improvement in both conditions. After 21 days, all groups showed a significant improvement in enrichment while fluoxetine worsened the depressive like behavior in stress. The effects of the drugs on neural plasticity, measured as long-term potentiation, were also environment-dependent. Overall, we show that the environment affects fluoxetine but not minocycline outcome, indicating that the latter represents a potential alternative to SSRIs to treat depressed patients living in adverse conditions. From a translation perspective, our finding call for considering the drug-by-environment interaction to select the most effective pharmacological treatment.
Collapse
|
34
|
Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front Behav Neurosci 2021; 15:626906. [PMID: 33643008 PMCID: PMC7906965 DOI: 10.3389/fnbeh.2021.626906] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) affects millions of people worldwide and is a leading cause of disability. Several theories have been proposed to explain its pathological mechanisms, and the “neurotrophin hypothesis of depression” involves one of the most relevant pathways. Brain-derived neurotrophic factor (BDNF) is an important neurotrophin, and it has been extensively investigated in both experimental models and clinical studies of MDD. Robust empirical findings have indicated an association between increased BDNF gene expression and peripheral concentration with improved neuronal plasticity and neurogenesis. Additionally, several studies have indicated the blunt expression of BDNF in carriers of the Val66Met gene polymorphism and lower blood BDNF (serum or plasma) levels in depressed individuals. Clinical trials have yielded mixed results with different treatment options, peripheral blood BDNF measurement techniques, and time of observation. Previous meta-analyses of MDD treatment have indicated that antidepressants and electroconvulsive therapy showed higher levels of blood BDNF after treatment but not with physical exercise, psychotherapy, or direct current stimulation. Moreover, the rapid-acting antidepressant ketamine has presented an early increase in blood BDNF concentration. Although evidence has pointed to increased levels of BDNF after antidepressant therapy, several factors, such as heterogeneous results, low sample size, publication bias, and different BDNF measurements (serum or plasma), pose a challenge in the interpretation of the relation between peripheral blood BDNF and MDD. These potential gaps in the literature have not been properly addressed in previous narrative reviews. In this review, current evidence regarding BDNF function, genetics and epigenetics, expression, and results from clinical trials is summarized, putting the literature into a translational perspective on MDD. In general, blood BDNF cannot be recommended for use as a biomarker in clinical practice. Moreover, future studies should expand the evidence with larger samples, use the serum or serum: whole blood concentration of BDNF as a more accurate measure of peripheral BDNF, and compare its change upon different treatment modalities of MDD.
Collapse
Affiliation(s)
- Beatrice Arosio
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Richard C Oude Voshaar
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ivan Aprahamian
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Internal Medicine Department, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| |
Collapse
|
35
|
Branchi I, Giuliani A. Shaping therapeutic trajectories in mental health: Instructive vs. permissive causality. Eur Neuropsychopharmacol 2021; 43:1-9. [PMID: 33384216 DOI: 10.1016/j.euroneuro.2020.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
We are currently facing the challenge of improving treatments for psychiatric disorders such as major depression. Notably, antidepressants have an incomplete efficacy, mostly due to our limited knowledge of their action. Here we present a theoretical framework that considers the distinction between instructive and permissive causality, which allows formalizing and disentangling the effects exerted by different therapeutic strategies commonly used in psychiatry. Instructive causality implies that an action determines a specific effect while permissive causality allows an action to take effect or not. We posit that therapeutic strategies able to improve the quality of the living environment or the ability to face it, including changes in lifestyle and psychotherapeutic interventions, rely mainly on instructive causality and thus shape the individual's ability to face the psychopathology and build resilience. By contrast, pharmacological treatments, such as selective serotonin reuptake inhibitors, act primarily through a permissive causality: they boost neural plasticity, i.e. the ability of the brain to change itself, and therefore allow for instructive interventions to produce beneficial effects or not. The combination of an instructive and a permissive action represents the most promising approach since the quality of the living environment can shape the path leading to mental health while drug treatment can increase the likelihood of achieving such a goal.
Collapse
Affiliation(s)
- Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy.
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
36
|
Huzian O, Baka J, Csakvari E, Dobos N, Leranth C, Siklos L, Duman RS, Farkas T, Hajszan T. Stress Resilience is Associated with Hippocampal Synaptoprotection in the Female Rat Learned Helplessness Paradigm. Neuroscience 2021; 459:85-103. [PMID: 33524494 DOI: 10.1016/j.neuroscience.2021.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022]
Abstract
The synaptogenic hypothesis of major depressive disorder implies that preventing the onset of depressive-like behavior also prevents the loss of hippocampal spine synapses. By applying the psychoactive drugs, diazepam and fluoxetine, we investigated whether blocking the development of helpless behavior by promoting stress resilience in the rat learned helplessness paradigm is associated with a synaptoprotective action in the hippocampus. Adult ovariectomized and intact female Sprague-Dawley rats (n = 297) were treated with either diazepam, fluoxetine, or vehicle, exposed to inescapable footshocks or sham stress, and tested in an active escape task to assess helpless behavior. Escape-evoked corticosterone secretion, as well as remodeling of hippocampal spine synapses at a timepoint representing the onset of escape testing were also analyzed. In ovariectomized females, treatment with diazepam prior to stress exposure prevented helpless behavior, blocked the loss of hippocampal spine synapses, and muted the corticosterone surge evoked by escape testing. Although fluoxetine stimulated escape performance and hippocampal synaptogenesis under non-stressed conditions, almost all responses to fluoxetine were abolished following exposure to inescapable stress. Only a much higher dose of fluoxetine was capable of partly reproducing the strong protective actions of diazepam. Importantly, these protective actions were retained in the presence of ovarian hormones. Our findings indicate that stress resilience is associated with the preservation of spine synapses in the hippocampus, raising the possibility that, besides synaptogenesis, hippocampal synaptoprotection is also implicated in antidepressant therapy.
Collapse
Affiliation(s)
- Orsolya Huzian
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Judith Baka
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Eszter Csakvari
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Nikoletta Dobos
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - Laszlo Siklos
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, United States; Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Tamas Farkas
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged Faculty of Science and Informatics, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Tibor Hajszan
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States.
| |
Collapse
|
37
|
Borsoi M, Nunes LED, Barbosa AR, Lima MS, Medeiros I, Pranke MA, Antonio CB, Rates SMK, Neves GA. Intermittent repeated stress but not ketamine changes mice response to antidepressants. Neurosci Lett 2020; 741:135452. [PMID: 33166638 DOI: 10.1016/j.neulet.2020.135452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Discovery of the rapid antidepressant effect of ketamine has been considered one of the most important advances in major depressive disorder treatment. Several studies report a significant benefit to patients that lasts up to 19 days after treatment. However, concerns arise from the long-term use of ketamine, thus a safe and effective strategy for maintaining its antidepressant effect is still necessary. To this end, our work assessed the effects of imipramine and fluoxetine after repeated ketamine treatment in male mice. Ketamine (30 mg/kg/day for 14 days) induced an anti-immobility effect in the forced swimming (FS) paradigm, detected 1 and 3 days after treatment. Seven days after the last ketamine injection, mice received imipramine (20 mg/kg) or fluoxetine (30 mg/kg). Imipramine and fluoxetine did not change mice's immobility time, regardless of the pre-treatment (saline or ketamine). Since both drugs' anti-immobility effect was demonstrated in the classical FS test, we can assume that repeated exposure to intermittent stress inhibited the antidepressant drugs' anti-immobility effects. Moreover, pre-exposure to ketamine did not counteract stress-induced changes in mice response to antidepressants. Since exposure to forced swim and i.p. injections are stressful to rodents, each stressor's contribution to the blunted response to antidepressants was investigated. Our data demonstrated that both stressors (FS and i.p. injections) influenced the reported effect. In summary, our results showed that exposure to intermittent repeated stress inhibited the anti-immobility effect of imipramine and fluoxetine in mice and corroborated findings demonstrating that exposure to stress can blunt patients' response to antidepressants.
Collapse
Affiliation(s)
- Milene Borsoi
- Laboratory of Experimental Psychopharmacology, School of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, sala 503-B, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Luis Eduardo D Nunes
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco J, sala J1-029, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Amanda R Barbosa
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco J, sala J1-029, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Mariana S Lima
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco J, sala J1-029, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Isabelle Medeiros
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco J, sala J1-029, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Mariana A Pranke
- Laboratory of Experimental Psychopharmacology, School of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, sala 503-B, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Camila B Antonio
- Laboratory of Experimental Psychopharmacology, School of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, sala 503-B, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Stela M K Rates
- Laboratory of Experimental Psychopharmacology, School of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, sala 503-B, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Gilda A Neves
- Laboratory of Experimental Psychopharmacology, School of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, sala 503-B, Porto Alegre, RS, CEP 90610-000, Brazil; Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco J, sala J1-029, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| |
Collapse
|
38
|
Voikar V, Gaburro S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings, Refinement, and Reproducibility Based on Literature and Experience. Front Behav Neurosci 2020; 14:575434. [PMID: 33192366 PMCID: PMC7662686 DOI: 10.3389/fnbeh.2020.575434] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Animal models of neurodegenerative and neuropsychiatric disorders require extensive behavioral phenotyping. Currently, this presents several caveats and the most important are: (i) rodents are nocturnal animals, but mostly tested during the light period; (ii) the conventional behavioral experiments take into consideration only a snapshot of a rich behavioral repertoire; and (iii) environmental factors, as well as experimenter influence, are often underestimated. Consequently, serious concerns have been expressed regarding the reproducibility of research findings on the one hand, and appropriate welfare of the animals (based on the principle of 3Rs-reduce, refine and replace) on the other hand. To address these problems and improve behavioral phenotyping in general, several solutions have been proposed and developed. Undisturbed, 24/7 home-cage monitoring (HCM) is gaining increased attention and popularity as demonstrating the potential to substitute or complement the conventional phenotyping methods by providing valuable data for identifying the behavioral patterns that may have been missed otherwise. In this review, we will briefly describe the different technologies used for HCM systems. Thereafter, based on our experience, we will focus on two systems, IntelliCage (NewBehavior AG and TSE-systems) and Digital Ventilated Cage (DVC®, Tecniplast)-how they have been developed and applied during recent years. Additionally, we will touch upon the importance of the environmental/experimenter artifacts and propose alternative suggestions for performing phenotyping experiments based on the published evidence. We will discuss how the integration of telemetry systems for deriving certain physiological parameters can help to complement the description of the animal model to offer better translation to human studies. Ultimately, we will discuss how such HCM data can be statistically interpreted and analyzed.
Collapse
Affiliation(s)
- Vootele Voikar
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
39
|
Rief W. [The role of placebo and nocebo mechanisms in depressive diseases and their treatment]. DER NERVENARZT 2020; 91:675-683. [PMID: 32607602 DOI: 10.1007/s00115-020-00940-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND There is substantial evidence that placebo and nocebo effects occur during treatment with antidepressants. A better understanding of the underlying mechanisms of these effects is necessary to optimize the outcome of treatment and to make clinical studies more sensitive. METHODS Placebo and nocebo mechanisms were analyzed based on empirical studies and the results are summarized in a narrative review. RESULTS Clinical studies and also experimental mechanism-oriented studies underline the effects of placebo and nocebo mechanisms in the treatment with antidepressants. CONCLUSION The success of treatment in the use of antidepressants can be increased and the probability of side effects can be reduced by the effective use of placebo mechanisms and reduction of nocebo effects. The results emphasize the influence of clinician-patient interactions, the role of the treatment context and previous experiences with other treatments of the patient. Simultaneously, the results of this research field stimulate a new understanding of mental disorders, in particular depression and also provide points of reference for optimization of psychotherapeutic treatment.
Collapse
Affiliation(s)
- Winfried Rief
- Psychotherapie Ambulanz, Philipps Universität Marburg, Gutenbergstraße 18, 35032, Marburg, Deutschland.
| |
Collapse
|
40
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
41
|
de Abreu MS, Giacomini ACVV, Genario R, Rech N, Carboni J, Lakstygal AM, Amstislavskaya TG, Demin KA, Leonard BE, Vlok M, Harvey BH, Piato A, Barcellos LJG, Kalueff AV. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol Biochem Behav 2020; 193:172928. [PMID: 32289330 DOI: 10.1016/j.pbb.2020.172928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Acute and chronic stressors are common triggers of human mental illnesses. Experimental animal models and their cross-species translation to humans are critical for understanding of the pathogenesis of stress-related psychiatric disorders. Mounting evidence suggests that both pharmacological and non-pharmacological approaches can be efficient in treating these disorders. Here, we analyze human, rodent and zebrafish (Danio rerio) data to compare the impact of non-pharmacological and pharmacological therapies of stress-related psychopathologies. Emphasizing the likely synergism and interplay between pharmacological and environmental factors in mitigating daily stress both clinically and in experimental models, we argue that environmental enrichment emerges as a promising complementary therapy for stress-induced disorders across taxa. We also call for a broader use of novel model organisms, such as zebrafish, to study such treatments and their potential interplay.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália Rech
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Júlia Carboni
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia
| | - Brian E Leonard
- University College Galway, Pharmacology Department, Galway, Ireland
| | - Marli Vlok
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Angelo Piato
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Postgraduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
42
|
Hajszan T. Stress and remodeling of hippocampal spine synapses. VITAMINS AND HORMONES 2020; 114:257-279. [DOI: 10.1016/bs.vh.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
44
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
45
|
Metcalf CS, Huntsman M, Garcia G, Kochanski AK, Chikinda M, Watanabe E, Underwood T, Vanegas F, Smith MD, White HS, Bulaj G. Music-Enhanced Analgesia and Antiseizure Activities in Animal Models of Pain and Epilepsy: Toward Preclinical Studies Supporting Development of Digital Therapeutics and Their Combinations With Pharmaceutical Drugs. Front Neurol 2019; 10:277. [PMID: 30972009 PMCID: PMC6446215 DOI: 10.3389/fneur.2019.00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Digital therapeutics (software as a medical device) and mobile health (mHealth) technologies offer a means to deliver behavioral, psychosocial, disease self-management and music-based interventions to improve therapy outcomes for chronic diseases, including pain and epilepsy. To explore new translational opportunities in developing digital therapeutics for neurological disorders, and their integration with pharmacotherapies, we examined analgesic and antiseizure effects of specific musical compositions in mouse models of pain and epilepsy. The music playlist was created based on the modular progression of Mozart compositions for which reduction of seizures and epileptiform discharges were previously reported in people with epilepsy. Our results indicated that music-treated mice exhibited significant analgesia and reduction of paw edema in the carrageenan model of inflammatory pain. Among analgesic drugs tested (ibuprofen, cannabidiol (CBD), levetiracetam, and the galanin analog NAX 5055), music intervention significantly decreased paw withdrawal latency difference in ibuprofen-treated mice and reduced paw edema in combination with CBD or NAX 5055. To the best of our knowledge, this is the first animal study on music-enhanced antinociceptive activity of analgesic drugs. In the plantar incision model of surgical pain, music-pretreated mice had significant reduction of mechanical allodynia. In the corneal kindling model of epilepsy, the cumulative seizure burden following kindling acquisition was lower in animals exposed to music. The music-treated group also exhibited significantly improved survival, warranting further research on music interventions for preventing Sudden Unexpected Death in Epilepsy (SUDEP). We propose a working model of how musical elements such as rhythm, sequences, phrases and punctuation found in K.448 and K.545 may exert responses via parasympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. Based on our findings, we discuss: (1) how enriched environment (EE) can serve as a preclinical surrogate for testing combinations of non-pharmacological modalities and drugs for the treatment of pain and other chronic diseases, and (2) a new paradigm for preclinical and clinical development of therapies leading to drug-device combination products for neurological disorders, depression and cancer. In summary, our present results encourage translational research on integrating non-pharmacological and pharmacological interventions for pain and epilepsy using digital therapeutics.
Collapse
Affiliation(s)
- Cameron S. Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
| | - Merodean Huntsman
- Department of Medicinal Chemistry, University of Utah, Salt Lake, UT, United States
| | - Gerry Garcia
- Greatful Living Productions, Salt Lake, UT, United States
| | - Adam K. Kochanski
- Department of Atmospheric Sciences, University of Utah, Salt Lake, UT, United States
| | - Michael Chikinda
- The Gifted Music School, Salt Lake, UT, United States
- The School of Music, University of Utah, Salt Lake, UT, United States
| | | | - Tristan Underwood
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
| | - Fabiola Vanegas
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
| | - Misty D. Smith
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
- The School of Dentistry, University of Utah, Salt Lake, UT, United States
| | - H. Steve White
- School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, University of Utah, Salt Lake, UT, United States
| |
Collapse
|
46
|
Predicting antidepressant treatment outcome based on socioeconomic status and citalopram dose. THE PHARMACOGENOMICS JOURNAL 2019; 19:538-546. [DOI: 10.1038/s41397-019-0080-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
|
47
|
Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plast 2019; 2019:4651031. [PMID: 30804991 PMCID: PMC6360645 DOI: 10.1155/2019/4651031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of studies show that selective serotonin reuptake inhibitors (SSRIs) exert their therapeutic action, at least in part, by amplifying the influence of the living environment on mood. As a consequence, when administered in a favorable environment, SSRIs lead to a reduction of symptoms, but in stressful conditions, they show limited efficacy. Therefore, novel therapeutic approaches able to neutralize the influence of the stressful environment on treatment are needed. The aim of our study was to test whether, in a mouse model of depression, the combined administration of SSRI fluoxetine and metformin, a drug able to improve the metabolic profile, counteracts the limited efficacy of fluoxetine alone when administered in stressful conditions. Indeed, metabolic alterations are associated to both the onset of major depression and the antidepressant efficacy. To this goal, adult C57BL/6 male mice were exposed to stress for 6 weeks; the first two weeks was aimed at generating a mouse model of depression. During the remaining 4 weeks, mice received one of the following treatments: vehicle, fluoxetine, metformin, or a combination of fluoxetine and metformin. We measured liking- and wanting-type anhedonia as behavioral phenotypes of depression and assessed the expression levels of selected genes involved in major depressive disorder and antidepressant response in the dorsal and ventral hippocampus, which are differently involved in the depressive symptomatology. The combined treatment was more effective than fluoxetine alone in ameliorating the depressive phenotype after one week of treatment. This was associated to an increase in IGF2 mRNA expression and enhanced long-term potentiation, specifically in the dorsal hippocampus, at the end of treatment. Overall, the present results show that, when administered in stressful conditions, the combined fluoxetine and metformin treatment may represent a more effective approach than fluoxetine alone in a short term. Finally, our findings highlight the relevance of polypharmacological strategy as effective interventions to increase the efficacy of the antidepressant drugs currently available.
Collapse
|
48
|
Chronic stress sensitizes amphetamine-elicited 50-kHz calls in the rat: Dependence on positive affective phenotype and effects of long-term fluoxetine pretreatment. Pharmacol Biochem Behav 2018; 171:10-19. [DOI: 10.1016/j.pbb.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022]
|
49
|
Gosselin T, Le Guisquet AM, Brizard B, Hommet C, Minier F, Belzung C. Fluoxetine induces paradoxical effects in C57BL6/J mice: comparison with BALB/c mice. Behav Pharmacol 2018; 28:466-476. [PMID: 28609327 DOI: 10.1097/fbp.0000000000000321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The C57BL6/J mouse is the most commonly used strain in genetic investigations and behavioural tests. However, only a few studies have used C57BL6/J mice to assess the effects of antidepressant compounds. We carried out a study to compare the behavioural effects of fluoxetine (FLX) in a model of depression in two mice strains: C57BL6/J and BALB/c. We used an 8-week unpredictable chronic mild stress (UCMS) protocol during which FLX was administered (15 mg/kg, oral) from the third week to the end of the protocol. We found that UCMS induced degradation of the coat state in the two strains. Moreover, as expected, we observed that FLX elicited antidepressant-like effects in the BALB/c mice by reducing the coat state deterioration and the latency of grooming in splash test. However, in the C57BL6/J mice, it did not induce this action, but instead triggered an opposite effect: an increased sniffing latency in the novelty suppression of feeding test. We conclude that FLX exerts a paradoxical effect in the C57Bl6/J strain. This observation is consistent with some clinical features of hyper-reactivity to FLX observed in humans. Therefore, the UCMS protocol used in C57Bl6/J mice could be a good model to study the mechanisms of the paradoxical effects caused by selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Thomas Gosselin
- INSERM U930, Team 'Affective disorders', University of François Rabelais, Tours, France
| | | | | | | | | | | |
Collapse
|
50
|
Gałecki P, Mossakowska-Wójcik J, Talarowska M. The anti-inflammatory mechanism of antidepressants - SSRIs, SNRIs. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:291-294. [PMID: 28342944 DOI: 10.1016/j.pnpbp.2017.03.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
The cytokine theory of depression no longer brings about any doubts. Experiments and research studies conducted in the last ten years have confirmed that both physical and psychological (emotional) stress increases the likelihood of occurrence of mental disorders (including depressive disorders) owing to the action of a series of hormonal and biochemical mechanisms. Selective serotonin reuptake inhibitors (SSRI) as well as serotonin and norepinephrine reuptake inhibitors (SNRIs) are some of the most commonly applied drugs in the world during pharmacotherapy of recurrent depressive disorder. The underestimated anti-inflammatory and anti-oxidative effect may be one of the potential mechanisms of action of the preparations mentioned above. The detailed specificity of action of this mechanism still remains unknown. The aim of our work will be to perform a review of contemporary literature in order to present the latest scientific reports regarding the anti-inflammatory effects of SSRIs and SNRIs. The mechanism of anti-inflammatory action may serve as a possible explanation for the efficacy of antidepressants from the groups of SSRIs and SNRIs.
Collapse
Affiliation(s)
- Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | | | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|