1
|
Buccheri V, Pasulka J, Malik R, Loubalova Z, Taborska E, Horvat F, Roos Kulmann MI, Jenickova I, Prochazka J, Sedlacek R, Svoboda P. Functional canonical RNAi in mice expressing a truncated Dicer isoform and long dsRNA. EMBO Rep 2024; 25:2896-2913. [PMID: 38769420 PMCID: PMC11239679 DOI: 10.1038/s44319-024-00148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.
Collapse
Grants
- 20-03950X Czech Science Foundation
- 647403 EC | European Research Council (ERC)
- LO1419 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2018126 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2023036 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2023050 Ministry of Education, Youth, and Sports of the Czech Republic
- 90254 Ministry of Education, Youth, and Sports of the Czech Republic
- 90255 Ministry of Education, Youth, and Sports of the Czech Republic
- PhD fellowship Charles University
- RVO 68378050 Czech Academy of Sciences
Collapse
Affiliation(s)
- Valeria Buccheri
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Zuzana Loubalova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eliska Taborska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marcos Iuri Roos Kulmann
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Irena Jenickova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic.
| |
Collapse
|
2
|
Man HSJ, Moosa VA, Singh A, Wu L, Granton JT, Juvet SC, Hoang CD, de Perrot M. Unlocking the potential of RNA-based therapeutics in the lung: current status and future directions. Front Genet 2023; 14:1281538. [PMID: 38075698 PMCID: PMC10703483 DOI: 10.3389/fgene.2023.1281538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Awareness of RNA-based therapies has increased after the widespread adoption of mRNA vaccines against SARS-CoV-2 during the COVID-19 pandemic. These mRNA vaccines had a significant impact on reducing lung disease and mortality. They highlighted the potential for rapid development of RNA-based therapies and advances in nanoparticle delivery systems. Along with the rapid advancement in RNA biology, including the description of noncoding RNAs as major products of the genome, this success presents an opportunity to highlight the potential of RNA as a therapeutic modality. Here, we review the expanding compendium of RNA-based therapies, their mechanisms of action and examples of application in the lung. The airways provide a convenient conduit for drug delivery to the lungs with decreased systemic exposure. This review will also describe other delivery methods, including local delivery to the pleura and delivery vehicles that can target the lung after systemic administration, each providing access options that are advantageous for a specific application. We present clinical trials of RNA-based therapy in lung disease and potential areas for future directions. This review aims to provide an overview that will bring together researchers and clinicians to advance this burgeoning field.
Collapse
Affiliation(s)
- H. S. Jeffrey Man
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vaneeza A. Moosa
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Licun Wu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - John T. Granton
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Stephen C. Juvet
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marc de Perrot
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Vaillant A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022; 14:v14092052. [PMID: 36146858 PMCID: PMC9502277 DOI: 10.3390/v14092052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Three types of oligonucleotide-based medicines are under clinical development for the treatment of chronic HBV infection. Antisense oligonucleotides (ASOs) and synthetic interfering RNA (siRNA) are designed to degrade HBV mRNA, and nucleic acid polymers (NAPs) stop the assembly and secretion of HBV subviral particles. Extensive clinical development of ASOs and siRNA for a variety of liver diseases has established a solid understanding of their pharmacodynamics, accumulation in different tissue types in the liver, pharmacological effects, off-target effects and how chemical modifications and delivery approaches affect these parameters. These effects are highly conserved for all ASO and siRNA used in human studies to date. The clinical assessment of several ASO and siRNA compounds in chronic HBV infection in recent years is complicated by the different delivery approaches used. Moreover, these assessments have not considered the large clinical database of ASO/siRNA function in other liver diseases and known off target effects in other viral infections. The goal of this review is to summarize the current understanding of ASO/siRNA/NAP pharmacology and integrate these concepts into current clinical results for these compounds in the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
4
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
5
|
Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci 2020; 142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
6
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Meng Z, Lu M. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? Front Immunol 2017; 8:331. [PMID: 28386261 PMCID: PMC5362589 DOI: 10.3389/fimmu.2017.00331] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 12/24/2022] Open
Abstract
RNA interference (RNAi) is a natural cellular mechanism that inhibits gene expression in a sequence-specific manner. In the last decade, RNAi has become a cornerstone in basic biological systems research and drug development efforts. The RNAi-based manipulation of mammalian cells facilitates target identification and validation; assists in identifying human disease etiologies; and expedites the development of treatments for infectious diseases, cancer, and other conditions. Several RNAi-based approaches are currently undergoing assessment in phase I and II clinical trials. However, RNAi-associated immune stimulation might act as a hurdle to safe and effective RNAi, particularly in clinical applications. The induction of innate immunity may originate from small interfering RNA (siRNA) sequence-dependent delivery vehicles and even the RNAi process itself. However, in the case of antagonistic cancers and viral infection, immune activation is beneficial; thus, immunostimulatory small interfering RNAs were designed to create bifunctional small molecules with RNAi and immunostimulatory activities. This review summarizes the research studies of RNAi-associated immune stimulation and the approaches for manipulating immunostimulatory activities.
Collapse
Affiliation(s)
- Zhongji Meng
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Al‐Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5:e00293. [PMID: 28596841 PMCID: PMC5461643 DOI: 10.1002/prp2.293] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Emerging viruses such as HIV, dengue, influenza A, SARS coronavirus, Ebola, and other viruses pose a significant threat to human health. Majority of these viruses are responsible for the outbreaks of pathogenic lethal infections. To date, there are no effective therapeutic strategies available for the prophylaxis and treatment of these infections. Chloroquine analogs have been used for decades as the primary and most successful drugs against malaria. Concomitant with the emergence of chloroquine-resistant Plasmodium strains and a subsequent decrease in the use as antimalarial drugs, other applications of the analogs have been investigated. Since the analogs have interesting biochemical properties, these drugs are found to be effective against a wide variety of viral infections. As antiviral action, the analogs have been shown to inhibit acidification of endosome during the events of replication and infection. Moreover, immunomodulatory effects of analogs have been beneficial to patients with severe inflammatory complications of several viral diseases. Interestingly, one of the successful targeting strategies is the inhibition of HIV replication by the analogs in vitro which are being tested in several clinical trials. This review focuses on the potentialities of chloroquine analogs for the treatment of endosomal low pH dependent emerging viral diseases.
Collapse
|
9
|
Hsu WM, Huang CC, Lee HY, Wu PY, Wu MT, Chuang HC, Lin LL, Chuang JH. MDA5 complements TLR3 in suppression of neuroblastoma. Oncotarget 2015; 6:24935-46. [PMID: 26208481 PMCID: PMC4694805 DOI: 10.18632/oncotarget.4511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor3 (TLR3) has been confirmed to be differentially expressed in neuroblastoma (NB), and predicts a favorable prognosis with a high expression in tumor tissues. Treatment with TLR3 agonist--polyinosinic-polycytidylic acid [poly(I:C)] could induce significant but limited apoptosis in TLR3-expressing NB cells, suggesting that other viral RNA sensors, including melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) in the cytosolic compartment might also be implicated in poly(I:C)-induced NB cell death. MDA5 and RIG-I were induced by poly(I:C) to express in two of six NB cell lines, SK-N-AS (AS) and SK-N-FI, which were associated with up-regulation of caspase9 and active caspase3. While knockdown of either MDA5 or RIG-I alone is ineffective to decrease caspase9 and active caspase3, simultaneously targeting MDA5 and TLR3 showed the best effect to rescue poly(I:C) induced up-regulation of mitochondrial antiviral signaling protein (MAVS), caspase9, active caspase3, and apoptosis in AS cells. Over-expression of MDA5 in FaDu cells resulted in significantly less colony formation and more poly(I:C)-induced cell death. Further studies in human NB tissue samples revealed that MDA5 expression in NB tissues predicted a favorable prognosis synergistically with TLR3. Our findings indicate that MDA5 may serve as a complementary role in the TLR3 activated suppression of NB.
Collapse
Affiliation(s)
- Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Yu Lee
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yi Wu
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Min-Tsui Wu
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Ling Lin
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Liu C, Yamaguchi Y, Zhu X, Li Z, Ni Y, Dou X. Analysis of small interfering RNA by capillary electrophoresis in hydroxyethylcellulose solutions. Electrophoresis 2015; 36:1651-7. [PMID: 25867445 DOI: 10.1002/elps.201500018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 11/10/2022]
Abstract
The analysis of small interfering RNA (siRNA) is important for gene function studies and drug developments. We employed CE to study the separation of siRNA ladder marker, which were ten double-stranded RNA (dsRNA) fragments ranged from 20 to 1000 bp, in solutions of hydroxyethylcellulose (HEC) polymer with different concentrations and molecular weights (Mws). Migration mechanism of dsRNA during CE was studied by the mobility and resolution length (RL) plots. We found that the RL depended on not only the concentration of HEC, but also the Mw of HEC. For instance, RL of small dsRNA fragment was more influenced by concentration of high Mw HEC than large dsRNA fragment and RL of large dsRNA fragment was more influenced by concentration of low Mw HEC than small dsRNA fragment. In addition, we found electrophoretic evidence that the structure of dsRNA was more compact than dsDNA with the same length. In practice, we succeeded to separate the glyceraldehyde 3-phosphate dehydrogenase siRNA in the mixture of the siRNA ladder marker within 4 min.
Collapse
Affiliation(s)
- Chenchen Liu
- Engineering Research Center of Optical Instrument and System, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yoshinori Yamaguchi
- Institute of Photonics and Biomedicine (IPBM), Graduate School of Science, East China University of Science and Technology (ECUST), Shanghai, P. R. China.,Department of Applied Physics, Graduate School of Engineering, Osaka University, Yamadaoka, Suita-city, Osaka, Japan
| | - Xifang Zhu
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, P. R. China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yi Ni
- Institute of Photonics and Biomedicine (IPBM), Graduate School of Science, East China University of Science and Technology (ECUST), Shanghai, P. R. China
| | - Xiaoming Dou
- Institute of Photonics and Biomedicine (IPBM), Graduate School of Science, East China University of Science and Technology (ECUST), Shanghai, P. R. China.,School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, P. R. China
| |
Collapse
|
11
|
Kim YE, Ahn JH. Positive role of promyelocytic leukemia protein in type I interferon response and its regulation by human cytomegalovirus. PLoS Pathog 2015; 11:e1004785. [PMID: 25812002 PMCID: PMC4374831 DOI: 10.1371/journal.ppat.1004785] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
Abstract
Promyelocytic leukemia protein (PML), a major component of PML nuclear bodies (also known as nuclear domain 10), is involved in diverse cellular processes such as cell proliferation, apoptosis, gene regulation, and DNA damage response. PML also acts as a restriction factor that suppresses incoming viral genomes, therefore playing an important role in intrinsic defense. Here, we show that PML positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs) and that this regulation by PML is counteracted by human cytomegalovirus (HCMV) IE1 protein. Small hairpin RNA-mediated PML knockdown in human fibroblasts reduced ISG induction by treatment of interferon-β or infection with UV-inactivated HCMV. PML was required for accumulation of activated STAT1 and STAT2, interacted with them and HDAC1 and HDAC2, and was associated with ISG promoters after HCMV infection. During HCMV infection, viral IE1 protein interacted with PML, STAT1, STAT2, and HDACs. Analysis of IE1 mutant viruses revealed that, in addition to the STAT2-binding domain, the PML-binding domain of IE1 was necessary for suppression of interferon-β-mediated ISG transcription, and that IE1 inhibited ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. In conclusion, our results demonstrate that PML participates in type I interferon-induced ISG expression by regulating ISGF3, and that this regulation by PML is counteracted by HCMV IE1, highlighting a widely shared viral strategy targeting PML to evade intrinsic and innate defense mechanisms. For productive viral infection, virus needs to overcome successive host defenses including intrinsic defense and innate and acquired immunity. Promyelocytic leukemia protein (PML) has been shown to play an important role in intrinsic defense by acting as a nuclear restriction factor that suppresses incoming viral genomes. In this study, we demonstrate that PML also positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs). Therefore, PML is a key player in both intrinsic and innate host defenses. We further show that this regulation by PML in type I interferon response is inhibited by human cytomegalovirus (HCMV) IE1 protein, which forms a complex with PML, STAT1, STAT2, and HDACs in virus-infected cells. By analyzing mutant viruses, we demonstrate that IE1 inhibits ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. Our findings reveal that PML is a regulator of ISGF3 in type I interferon response and that this PML activity is counteracted by HCMV IE1. Our study explains why PML targeting activity is widely conserved among many viruses.
Collapse
Affiliation(s)
- Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Kosinska AD, Liu J, Lu M, Roggendorf M. Therapeutic vaccination and immunomodulation in the treatment of chronic hepatitis B: preclinical studies in the woodchuck. Med Microbiol Immunol 2014; 204:103-14. [PMID: 25535101 PMCID: PMC4305085 DOI: 10.1007/s00430-014-0379-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Infection with hepatitis B virus (HBV) may lead to subclinical, acute or chronic hepatitis. In the prevaccination era, HBV infections were endemic due to frequent mother to child transmission in large regions of the world. However, there are still estimated 240 million chronic HBV carriers today and ca. 620,000 patients die per year due to HBV-related liver diseases. Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to satisfactory results. Induction of HBV-specific T cells by therapeutic vaccination or immunomodulation may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients with or without therapeutic reduction of viral load did not result in effective immune control of HBV infection, suggesting that combination of antiviral treatment with new formulations of therapeutic vaccines is needed. The woodchuck (Marmota monax) and its HBV-like woodchuck hepatitis virus are a useful preclinical animal model for developing new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments using nucleos(t)ide analogues, with prime-boost vaccination using DNA vaccines, new hepadnaviral antigens or recombinant adenoviral vectors were tested in the woodchuck model. In this review, we summarize these encouraging results obtained with these therapeutic vaccines. In addition, we present potential innovations in immunostimulatory strategies by blocking the interaction of the inhibitory programmed death receptor 1 with its ligand in this animal model.
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstrasse 179, 45122, Essen, Germany
| | | | | | | |
Collapse
|
13
|
Kabilova TO, Kovtonyuk LV, Zonov EV, Ryabchikova EI, Popova NA, Nikolin VP, Kaledin VI, Zenkova MA, Vlassov VV, Chernolovskaya EL. Immunotherapy of hepatocellular carcinoma with small double-stranded RNA. BMC Cancer 2014; 14:338. [PMID: 24886485 PMCID: PMC4038722 DOI: 10.1186/1471-2407-14-338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/12/2014] [Indexed: 01/25/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with limited therapeutic options. Since HCC has been shown to be immunogenic, immunotherapy is considered a promising therapeutic approach. Small interfering RNAs (siRNAs), depending on their structure and sequence, can trigger the innate immune system, which can potentially enhance the adaptive anticancer immune response in the tumor-bearing subjects. Immunostimulatory properties of nucleic acids can be applied to develop adjuvants for HCC treatment. Methods The transplantable HCC G-29 tumor in male CBA/LacSto (CBA) mice was used to study the effects of immunostimulatory RNA on tumor growth. Tumor size, metastases area in different organs of mice and mouse survival rate were analyzed. Furthermore the mouse serum IFN-α levels were measured using ELISA. Results In the present study, we found that a 19-bp RNA duplex (ImmunoStimulattory RNA or isRNA) with 3-nt overhangs at the 3′-ends of specific sequence displays immunostimulatory, antitumor, and antimetastatic activities in mice bearing HCC G-29. Our results demonstrate that isRNA strongly increases the level of interferon-α (IFN-α) by up to 25-fold relative to the level in mice injected with Lipofectamine alone (Mock), and to a lesser extent increases the level of proinflammatory cytokine interleukin-6 (IL-6) (by up to 5.5-fold relative to the Mock level), in mice blood serum. We showed that isRNA reliably (P < 0.05) inhibits primary tumor growth in mice compared to the mock group. Furthermore, injections of isRNA significantly enhanced necrotic processes in the center of the primary tumor, and decreased by twofold the width of the undifferentiated peripheral zone and the number of mitotic cells in this zone. The results showed that isRNA efficiently reduces the area of metastases in the liver, kidneys, and heart of CBA/LacSto mice with HCC. Conclusions The obtained results clearly demonstrate immunostimulatory and antimetastatic properties of the isRNAs in mice with HCC. Consequently, this short double-stranded RNA can be considered as a potential adjuvant for the therapy of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
14
|
Novel Woodchuck Hepatitis Virus (WHV) transgene mouse models show sex-dependent WHV replicative activity and development of spontaneous immune responses to WHV proteins. J Virol 2013; 88:1573-81. [PMID: 24257601 DOI: 10.1128/jvi.02086-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The woodchuck model is an informative model for studies on hepadnaviral infection. In this study, woodchuck hepatitis virus (WHV) transgenic (Tg) mouse models based on C57BL/6 mice were established to study the pathogenesis associated with hepadnaviral infection. Two lineages of WHV Tg mice, harboring the WHV wild-type genome (lineage 1217) and a mutated WHV genome lacking surface antigen (lineage 1281), were generated. WHV replication intermediates were detected by Southern blotting. DNA vaccines against WHV proteins were applied by intramuscular injection. WHV-specific immune responses were analyzed by flow cytometry and enzyme-linked immunosorbent assays (ELISAs). The presence of WHV transgenes resulted in liver-specific but sex- and age-dependent WHV replication in Tg mice. Pathological changes in the liver, including hepatocellular dysplasia, were observed in aged Tg mice, suggesting that the presence of WHV transgenes may lead to liver diseases. Interestingly, Tg mice of lineage 1281 spontaneously developed T- and B-cell responses to WHV core protein (WHcAg). DNA vaccination induced specific immune responses to WHV proteins in WHV Tg mice, indicating a tolerance break. The magnitude of the induced WHcAg-specific immune responses was dependent on the effectiveness of different DNA vaccines and was associated with a decrease in WHV loads in mice. In conclusion, sex- and age-dependent viral replication, development of autoimmune responses to viral antigens, pathological changes in the liver in WHV Tg mice, and the possibility of breaking immune tolerance to WHV transgenes will allow future studies on pathogenesis related to hepadnaviral infection and therapeutic vaccines.
Collapse
|
15
|
Lucas-Hourani M, Dauzonne D, Jorda P, Cousin G, Lupan A, Helynck O, Caignard G, Janvier G, André-Leroux G, Khiar S, Escriou N, Desprès P, Jacob Y, Munier-Lehmann H, Tangy F, Vidalain PO. Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 2013; 9:e1003678. [PMID: 24098125 PMCID: PMC3789760 DOI: 10.1371/journal.ppat.1003678] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022] Open
Abstract
Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response. Our therapeutic arsenal to treat viral diseases is extremely limited, and there is a critical need for molecules that could be used against multiple viruses. Among possible strategies, there is a growing interest for molecules stimulating cellular defense mechanisms. We recently developed a functional assay to identify stimulators of antiviral genes, and selected compound DD264 from a chemical library using this approach. While searching for its mode of action, we identified this molecule as an inhibitor of pyrimidine biosynthesis, a metabolic pathway that fuels the cell with pyrimidine nucleobases for both DNA and RNA synthesis. Interestingly, it was recently shown that inhibitors of this metabolic pathway prevent the replication of RNA viruses. Here, we established a functional link between pyrimidine biosynthesis pathway and the induction of antiviral genes, and demonstrated that pyrimidine biosynthesis inhibitors like DD264 or brequinar critically rely on cellular immune response to inhibit virus growth. Thus, pyrimidine deprivation is not directly responsible for the antiviral activity of pyrimidine biosynthesis inhibitors, which rather involves the induction of a metabolic stress and subsequent triggering of cellular defense mechanisms.
Collapse
Affiliation(s)
- Marianne Lucas-Hourani
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Daniel Dauzonne
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Pierre Jorda
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Gaëlle Cousin
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR176, Paris, France
| | - Alexandru Lupan
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
| | - Grégory Caignard
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Geneviève Janvier
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Gwénaëlle André-Leroux
- Institut Pasteur, Unité de Biochimie Structurale, Paris, France
- CNRS, UMR 3528, Paris, France
| | - Samira Khiar
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Nicolas Escriou
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
| | - Philippe Desprès
- Institut Pasteur, Unité Interactions moléculaires Flavivirus-Hôtes, Paris, France
| | - Yves Jacob
- CNRS, UMR3569, Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- Dana-Farber Cancer Institute, Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Boston, Massachusetts, United States of America
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
- CNRS, UMR3523, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS, UMR3569, Paris, France
- * E-mail: (HML); (FT); (POV)
| |
Collapse
|