1
|
Roncali L, Hindré F, Samarut E, Lacoeuille F, Rousseau A, Lemée JM, Garcion E, Chérel M. Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment. Theranostics 2025; 15:4861-4889. [PMID: 40303349 PMCID: PMC12036880 DOI: 10.7150/thno.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive malignancy of the central nervous system. Despite two decades of intensive research since the establishment of the standard of care, emerging strategies have yet to produce consistent satisfactory outcomes. Because of its specific localisation and intricate characteristics, GB is a uniquely regulated solid tumour with a strong resistance to therapy. Advances in targeted radionuclide therapy (TRT), particularly with the introduction of a-emitting radionuclides, have unveiled potential avenues for the management of GB. Recent preclinical and clinical studies underscored promising advancements for targeted-α-therapy (TAT), but these therapeutic approaches exhibit a vast design heterogeneity, encompassing diverse radionuclides, vectors, target molecules, and administration modalities. This review seeks to critically assess the therapeutic landscape of GB through the perspective of TAT. Here, the focus is made on the advancements and limitations of in vivo explorations, pilot studies, and clinical trials, to determine the best directions for future investigations. In doing so, we hope to identify existing challenges and draw insights that might pave the way towards a more effective therapeutic approach.
Collapse
Affiliation(s)
- Loris Roncali
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela; E-15782 Santiago de Compostela, Spain
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
| | - François Hindré
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PRIMEX (Experimental Imagery and Radiobiology Platform), University of Angers, SFR 4208; F-49000 Angers, France
| | - Edouard Samarut
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Department of Neurosurgery & Neurotraumatology, University Hospital of Nantes; F-44093 Nantes, France
| | - Franck Lacoeuille
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Nuclear Medicine, University Hospital of Angers; F-49000 Angers, France
| | - Audrey Rousseau
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Pathology, University Hospital of Angers; F-49000 Angers, France
| | - Jean-Michel Lemée
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Neurosurgery, University Hospital of Angers; F-49000 Angers, France
| | - Emmanuel Garcion
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PACEM (Platform of Cellular and Molecular Analysis), University of Angers, SFR 4208; F-49000 Angers, France
| | - Michel Chérel
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Institut de Cancérologie de l'Ouest, Department of Nuclear Medicine; F-44160 Saint-Herblain, France
| |
Collapse
|
2
|
Wenker STM, van Lith SAM, Tamborino G, Konijnenberg MW, Bussink J, Heskamp S. The potential of targeted radionuclide therapy to treat hypoxic tumor cells. Nucl Med Biol 2025; 140-141:108971. [PMID: 39579561 DOI: 10.1016/j.nucmedbio.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Tumor hypoxia contributes to cancer progression and therapy resistance. Several strategies have been investigated to relieve tumor hypoxia, of which some were successful. However, their clinical application remains challenging and therefore they are not used in daily clinical practice. Here, we review the potential of targeted radionuclide therapy (TRT) to eradicate hypoxic cancer cells. We present an overview of the published TRT strategies using β--particles, α-particles, and Auger electrons. Altogether, we conclude that α-particle emitting radionuclides are most promising since they can cause DNA double strand breaks independent of oxygen levels. Future directions for research are addressed, including more adequate in vitro and in vivo models to proof the potential of TRT to eliminate hypoxic cancer cells. Furthermore, dosimetry and radiobiology are identified as key to better understand the mechanism of action and dose-response relationships in hypoxic tumor areas. Finally, we can conclude that in order to achieve long-term anti-tumor efficacy, TRT combination treatment strategies may be necessary.
Collapse
Affiliation(s)
- S T M Wenker
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands; Department of Radiation Oncology, Radiotherapy & Oncoimmunology laboratory, Radboudumc, Nijmegen, the Netherlands
| | - S A M van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - G Tamborino
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - M W Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - J Bussink
- Department of Radiation Oncology, Radiotherapy & Oncoimmunology laboratory, Radboudumc, Nijmegen, the Netherlands
| | - S Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Abe K, Watabe T, Kaneda-Nakashima K, Shirakami Y, Kadonaga Y, Naka S, Ooe K, Toyoshima A, Giesel F, Usui T, Masunaga N, Mishima C, Tsukabe M, Yoshinami T, Sota Y, Miyake T, Tanei T, Shimoda M, Shimazu K. Evaluation of Targeted Alpha Therapy Using [ 211At]FAPI1 in Triple-Negative Breast Cancer Xenograft Models. Int J Mol Sci 2024; 25:11567. [PMID: 39519118 PMCID: PMC11547022 DOI: 10.3390/ijms252111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents limited therapeutic options and is associated with poor prognosis. Early detection and the development of novel therapeutic agents are therefore imperative. Fibroblast activation protein (FAP) is a membrane protein expressed on cancer-associated fibroblasts (CAFs) that plays an essential role in TNBC proliferation, migration, and invasion. Consequently, it is hypothesized that the Astatine (211At)-labeled FAP inhibitor (FAPI) selectively exerts anti-tumor effects through alpha-particle emission. In this study, we aimed to assess its theranostic capabilities by integrating [18F]FAPI-74 PET imaging with targeted alpha therapy using [211At]FAPI1 in TNBC models. Mice xenografts were established by transplanting MDA-MB-231 and HT1080 cells (control). As a parallel diagnostic method, [18F]FAPI-74 was administered for PET imaging to validate FAP expression. A single dose of [211At]FAPI1 (1.04 ± 0.10 MBq) was administered to evaluate the therapeutic efficacy. [18F]FAPI-74 exhibited high accumulation in MDA-MB-231 xenografts, and FAP expression was pathologically confirmed via immunostaining. The group that received [211At]FAPI1 (n = 11) demonstrated a significantly enhanced anti-tumor effect compared with the control group (n = 7) (p = 0.002). In conclusion, [18F]FAPI-74 PET imaging was successfully used to diagnose FAP expression, and as [211At]FAPI1 showed promising therapeutic efficacy in TNBC models, it is expected to be a viable therapeutic option.
Collapse
Affiliation(s)
- Kaori Abe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Tadashi Watabe
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Kazuko Kaneda-Nakashima
- Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
- Core for Medicine and Science Collaborative Research and Education, Forefront Research Center, Graduate School of Medicine, Osaka University, Suita 560-0043, Japan
| | | | - Yuichiro Kadonaga
- Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Sadahiro Naka
- Department of Pharmacy, Osaka University Hospital, Suita 565-0871, Japan
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Frederik Giesel
- Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
- Department of Nuclear Medicine, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Takeshi Usui
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Nanae Masunaga
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Chieko Mishima
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Masami Tsukabe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Tetsuhiro Yoshinami
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (K.A.)
| |
Collapse
|
4
|
Wray R, Mauguen A, Michaud L, Leithner D, Yeh R, Riaz N, Mirtcheva R, Sherman E, Wong R, Humm J, Lee N, Schöder H. Development of 18F-Fluoromisonidazole Hypoxia PET/CT Diagnostic Interpretation Criteria and Validation of Interreader Reliability, Reproducibility, and Performance. J Nucl Med 2024; 65:1526-1532. [PMID: 39266287 PMCID: PMC11448606 DOI: 10.2967/jnumed.124.267775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Tumor hypoxia, an integral biomarker to guide radiotherapy, can be imaged with 18F-fluoromisonidazole (18F-FMISO) hypoxia PET. One major obstacle to its broader application is the lack of standardized interpretation criteria. We sought to develop and validate practical interpretation criteria and a dedicated training protocol for nuclear medicine physicians to interpret 18F-FMISO hypoxia PET. Methods: We randomly selected 123 patients with human papillomavirus-positive oropharyngeal cancer enrolled in a phase II trial who underwent 123 18F-FDG PET/CT and 134 18F-FMISO PET/CT scans. Four independent nuclear medicine physicians with no 18F-FMISO experience read the scans. Interpretation by a fifth nuclear medicine physician with over 2 decades of 18F-FMISO experience was the reference standard. Performance was evaluated after initial instruction and subsequent dedicated training. Scans were considered positive for hypoxia by visual assessment if 18F-FMISO uptake was greater than floor-of-mouth uptake. Additionally, SUVmax was determined to evaluate whether quantitative assessment using tumor-to-background ratios could be helpful to define hypoxia positivity. Results: Visual assessment produced a mean sensitivity and specificity of 77.3% and 80.9%, with fair interreader agreement (κ = 0.34), after initial instruction. After dedicated training, mean sensitivity and specificity improved to 97.6% and 86.9%, with almost perfect agreement (κ = 0.86). Quantitative assessment with an estimated best SUVmax ratio threshold of more than 1.2 to define hypoxia positivity produced a mean sensitivity and specificity of 56.8% and 95.9%, respectively, with substantial interreader agreement (κ = 0.66), after initial instruction. After dedicated training, mean sensitivity improved to 89.6% whereas mean specificity remained high at 95.3%, with near-perfect interreader agreement (κ = 0.86). Conclusion: Nuclear medicine physicians without 18F-FMISO hypoxia PET reading experience demonstrate much improved interreader agreement with dedicated training using specific interpretation criteria.
Collapse
Affiliation(s)
- Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laure Michaud
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Doris Leithner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosna Mirtcheva
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - John Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
5
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
6
|
Roncali L, Marionneau-Lambot S, Roy C, Eychenne R, Gouard S, Avril S, Chouin N, Riou J, Allard M, Rousseau A, Guérard F, Hindré F, Chérel M, Garcion E. Brain intratumoural astatine-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice. EBioMedicine 2024; 105:105202. [PMID: 38905749 PMCID: PMC11246004 DOI: 10.1016/j.ebiom.2024.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). METHODS We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments. FINDINGS The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells. INTERPRETATION The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB. FUNDING This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.
Collapse
Affiliation(s)
- Loris Roncali
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Séverine Marionneau-Lambot
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CHU Nantes, Nantes Université, Service de médecine nucléaire, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Charlotte Roy
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Romain Eychenne
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; GIP ARRONAX, F-44160, Saint-Herblain, France
| | - Sébastien Gouard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Sylvie Avril
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France
| | - Nicolas Chouin
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; ONIRIS, F-44000, Nantes, France
| | - Jérémie Riou
- CHU Angers, Université d'Angers, F-49000, Angers, France
| | - Mathilde Allard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Audrey Rousseau
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; CHU Angers, Université d'Angers, F-49000, Angers, France
| | - François Guérard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Michel Chérel
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; Institut de Cancérologie de l'Ouest, Service de médecine nucléaire, F-44160, Saint-Herblain, France.
| | - Emmanuel Garcion
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France; PACEM (Plateforme d'Analyse Cellulaire et Moléculaire), Université d'Angers, SFR 4208, F-49000, Angers, France.
| |
Collapse
|
7
|
Lawal IO, Abubakar SO, Ndlovu H, Mokoala KMG, More SS, Sathekge MM. Advances in Radioligand Theranostics in Oncology. Mol Diagn Ther 2024; 28:265-289. [PMID: 38555542 DOI: 10.1007/s40291-024-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Theranostics with radioligands (radiotheranostics) has played a pivotal role in oncology. Radiotheranostics explores the molecular targets expressed on tumor cells to target them for imaging and therapy. In this way, radiotheranostics entails non-invasive demonstration of the in vivo expression of a molecular target of interest through imaging followed by the administration of therapeutic radioligand targeting the tumor-expressed molecular target. Therefore, radiotheranostics ensures that only patients with a high likelihood of response are treated with a particular radiotheranostic agent, ensuring the delivery of personalized care to cancer patients. Within the last decades, a couple of radiotheranostics agents, including Lutetium-177 DOTATATE (177Lu-DOTATATE) and Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA), were shown to prolong the survival of cancer patients compared to the current standard of care leading to the regulatory approval of these agents for routine use in oncology care. This recent string of successful approvals has broadened the interest in the development of different radiotheranostic agents and their investigation for clinical translation. In this work, we present an updated appraisal of the literature, reviewing the recent advances in the use of established radiotheranostic agents such as radioiodine for differentiated thyroid carcinoma and Iodine-131-labeled meta-iodobenzylguanidine therapy of tumors of the sympathoadrenal axis as well as the recently approved 177Lu-DOTATATE and 177Lu-PSMA for differentiated neuroendocrine tumors and advanced prostate cancer, respectively. We also discuss the radiotheranostic agents that have been comprehensively characterized in preclinical studies and have shown some clinical evidence supporting their safety and efficacy, especially those targeting fibroblast activation protein (FAP) and chemokine receptor 4 (CXCR4) and those still being investigated in preclinical studies such as those targeting poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor 2.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.
| | - Sofiullah O Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Stuart S More
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| |
Collapse
|
8
|
Gape PMD, Schultz MK, Stasiuk GJ, Terry SYA. Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review. Pharmaceuticals (Basel) 2024; 17:334. [PMID: 38543120 PMCID: PMC10974115 DOI: 10.3390/ph17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols.
Collapse
Affiliation(s)
- Paul M. D. Gape
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Michael K. Schultz
- Departments of Radiology, Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA;
- Perspective Therapeutics, Coralville, IA 52241, USA
| | - Graeme J. Stasiuk
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Samantha Y. A. Terry
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| |
Collapse
|
9
|
Morgan KA, Wichmann CW, Osellame LD, Cao Z, Guo N, Scott AM, Donnelly PS. Tumor targeted alpha particle therapy with an actinium-225 labelled antibody for carbonic anhydrase IX. Chem Sci 2024; 15:3372-3381. [PMID: 38425522 PMCID: PMC10901495 DOI: 10.1039/d3sc06365h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| | - Christian W Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
- Department of Medicine, University of Melbourne Melbourne Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| |
Collapse
|
10
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
12
|
Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted Alpha Therapy: All We Need to Know about 225Ac's Physical Characteristics and Production as a Potential Theranostic Radionuclide. Pharmaceuticals (Basel) 2023; 16:1679. [PMID: 38139806 PMCID: PMC10747780 DOI: 10.3390/ph16121679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, α radioisotopes can offer a treatment choice to individuals who are not responding to β- or gamma-radiation therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and clinical applications. The majority of available clinical research involves 225Ac and its daughter nuclide 213Bi. Additionally, the 225Ac disintegration cascade generates γ decays that can be used in single-photon emission computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine. Despite the growing interest in applying 225Ac, the restricted global accessibility of this radioisotope makes it difficult to conduct extensive clinical trials for many radiopharmaceutical candidates. To boost the availability of 225Ac, along with its clinical and potential theranostic applications, this review attempts to highlight the fundamental physical properties of this α-particle-emitting isotope, as well as its existing and possible production methods.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Teodor Ionescu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irena Cristina Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Pavaleanu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| |
Collapse
|
13
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 PMCID: PMC12054971 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
14
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
15
|
Akuwudike P, López-Riego M, Ginter J, Cheng L, Wieczorek A, Życieńska K, Łysek-Gładysińska M, Wojcik A, Brzozowska B, Lundholm L. Mechanistic insights from high resolution DNA damage analysis to understand mixed radiation exposure. DNA Repair (Amst) 2023; 130:103554. [PMID: 37595330 DOI: 10.1016/j.dnarep.2023.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Cells exposed to densely ionising high and scattered low linear energy transfer (LET) radiation (50 % dose of each) react more strongly than to the same dose of each separately. The relationship between DNA double strand break location inside the nucleus and chromatin structure was evaluated, using high-resolution transmission electron microscopy (TEM) in breast cancer MDA-MB-231 cells at 30 min post 5 Gy. Additionally, response to high and/or low LET radiation was assessed using single (1 ×1.5 Gy) versus fractionated dose delivery (5 ×0.3 Gy). By TEM analysis, the highest total number of γH2AX nanobeads were found in cells irradiated with alpha radiation just prior to gamma radiation (called mixed beam), followed by alpha, then gamma radiation. γH2AX foci induced by mixed beam radiation tended to be surrounded by open chromatin (lighter TEM regions), yet foci containing the highest number of beads, i.e. larger foci representing complex damage, remained in the heterochromatic areas. The γH2AX large focus area was also greater in mixed beam-treated cells when analysed by immunofluorescence. Fractionated mixed beams given daily induced the strongest reduction in cell viability and colony formation in MDA-MB-231 and osteosarcoma U2OS cells compared to the other radiation qualities, as well as versus acute exposure. This may partially be explained by recurring low LET oxidative DNA damage by every fraction together with a delay in recompaction of chromatin after high LET, demonstrated by low levels of heterochromatin marker H3K9me3 at 2 h after the last mixed beam fraction in MDA-MB-231. In conclusion, early differences in response to complex DNA damage may lead to a stronger cell kill induced by fractionated exposure, which suggest a therapeutic potential of combined high and low LET irradiation.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Milagrosa López-Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Józef Ginter
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Lei Cheng
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Katarzyna Życieńska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
16
|
Kondo M, Cai Z, Chan C, Forkan N, Reilly RM. [ 225Ac]Ac- and [ 111In]In-DOTA-trastuzumab theranostic pair: cellular dosimetry and cytotoxicity in vitro and tumour and normal tissue uptake in vivo in NRG mice with HER2-positive human breast cancer xenografts. EJNMMI Radiopharm Chem 2023; 8:24. [PMID: 37750937 PMCID: PMC10522541 DOI: 10.1186/s41181-023-00208-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Trastuzumab (Herceptin) has improved the outcome for patients with HER2-positive breast cancer (BC) but brain metastases (BM) remain a challenge due to poor uptake of trastuzumab into the brain. Radioimmunotherapy (RIT) with trastuzumab labeled with α-particle emitting, 225Ac may overcome this challenge by increasing the cytotoxic potency on HER2-positive BC cells. Our first aim was to synthesize and characterize [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC, respectively. A second aim was to estimate the cellular dosimetry of [225Ac]Ac-DOTA-trastuzumab and determine its cytotoxicity in vitro on HER2-positive BC cells. A third aim was to study the tumour and normal tissue uptake of [225Ac]Ac-DOTA-trastuzumab using [111In]In-DOTA-trastuzumab as a radiotracer in vivo in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours that metastasize to the brain. RESULTS Trastuzumab was conjugated to 12.7 ± 1.2 DOTA chelators and labeled with 111In or 225Ac. [111In]In-DOTA-trastuzumab exhibited high affinity specific binding to HER2-positive SK-BR-3 human BC cells (KD = 1.2 ± 0.3 × 10-8 mol/L). Treatment with [225Ac]Ac-DOTA-trastuzumab decreased the surviving fraction (SF) of SK-BR-3 cells dependent on the specific activity (SA) with SF < 0.001 at SA = 0.74 kBq/µg. No surviving colonies were noted at SA = 1.10 kBq/µg or 1.665 kBq/µg. Multiple DNA double-strand breaks (DSBs) were detected in SK-BR-3 cells exposed to [225Ac]Ac-DOTA-trastuzumab by γ-H2AX immunofluorescence microscopy. The time-integrated activity of [111In]In-DOTA-trastuzumab in SK-BR-3 cells was measured and used to estimate the absorbed doses from [225Ac]Ac-DOTA-trastuzumab by Monte Carlo N-Particle simulation for correlation with the SF. The dose required to decrease the SF of SK-BR-3 cells to 0.10 (D10) was 1.10 Gy. Based on the D10 reported for γ-irradiation of SK-BR-3 cells, we estimate that the relative biological effectiveness of the α-particles emitted by 225Ac is 4.4. Biodistribution studies in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours at 48 h post-coinjection of [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab revealed HER2-specific tumour uptake (10.6 ± 0.6% ID/g) but spleen uptake was high (28.9 ± 7.4% ID/g). Tumours were well-visualized by SPECT/CT imaging using [111In]In-DOTA-trastuzumab. CONCLUSION We conclude that [225Ac]Ac-DOTA-trastuzumab exhibited potent and HER2-specific cytotoxicity on SK-BR-3 cells in vitro and HER2-specific uptake in s.c. 164/8-1B/H2N.luc+ human BC tumours in NRG mice, and these tumours were imaged by SPECT/CT with [111In]In-DOTA-trastuzumab. These results are promising for combining [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC.
Collapse
Affiliation(s)
- Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Nubaira Forkan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
17
|
Sathekge M, Bruchertseifer F, Vorster M, Lawal IO, Mokoala K, Reed J, Maseremule L, Ndlovu H, Hlongwa K, Maes A, Morgenstern A, Van de Wiele C. 225Ac-PSMA-617 radioligand therapy of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC): preliminary clinical findings. Eur J Nucl Med Mol Imaging 2023; 50:2210-2218. [PMID: 36864360 PMCID: PMC10199874 DOI: 10.1007/s00259-023-06165-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE 225Ac-PSMA-617 has demonstrated good anti-tumor effect as a treatment option for metastatic castration-resistant prostate cancer (mCRPC) patients. No study has previously assessed treatment outcome and survival following 225Ac-PSMA-617 treatment of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC) patients. Based on the potential side effects that are known and explained to the patients by the oncologist, some of the patients refused the standard treatment and are seeking alternative therapies. Thus, we report our preliminary findings in a retrospective series of 21 mHSPC patients that refused standard treatment options and were treated with 225Ac-PSMA-617. METHODS We retrospectively reviewed patients with histologically confirmed de novo treatment-naïve bone ± visceral mHSPC that were treated with 225Ac-PSMA-617 radioligand therapy (RLT). Inclusion criteria included an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2, treatment-naive bone ± visceral mHSPC, and patients refusal for ADT ± docetaxel, abiraterone acetate, or enzalutamide. We evaluated the response to treatment using prostate-specific antigen (PSA) response and the progression-free survival (PFS) and overall survival (OS) as well as the toxicities. RESULTS Twenty-one mHSPC patients were included in this preliminary work. Following treatment, twenty patients (95%) had any decline in PSA and eighteen patients (86%) presented with a PSA decline of ≥ 50% including 4 patients in whom PSA became undetectable. A lower percentage decrease in PSA following treatment was associated with increased mortality and shorter progression-free survival. Overall, administration of 225Ac-PSMA-617 was well tolerated. The commonest toxicity seen was grade I/II dry mouth observed in 94% of patients. CONCLUSIONS Given these favorable results, randomized prospective multicenter trials assessing the clinical value of 225Ac-PSMA-617 as a therapeutic agent for mHSPC administered either as monotherapy or administered concomitant with ADT are of interest.
Collapse
Affiliation(s)
- Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa.
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa.
| | | | - Mariza Vorster
- Department of Nuclear Medicine, University of Kwa-Zulu Natal & Inkosi Albert Luthuli Central Academic Hospital, Durban, South Africa
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Kgomotso Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Janet Reed
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Letjie Maseremule
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Khanyi Hlongwa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Katholieke University Leuven, Kortrijk, Belgium
| | - Alfred Morgenstern
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- European Commission, Joint Research Centre, Karlsruhe, Germany
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Funeh CN, Bridoux J, Ertveldt T, De Groof TWM, Chigoho DM, Asiabi P, Covens P, D'Huyvetter M, Devoogdt N. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051378. [PMID: 37242621 DOI: 10.3390/pharmaceutics15051378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.
Collapse
Affiliation(s)
- Cyprine Neba Funeh
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Timo W M De Groof
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Dora Mugoli Chigoho
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Parinaz Asiabi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Peter Covens
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| |
Collapse
|
19
|
Monoclonal antibodies in breast cancer: A critical appraisal. Crit Rev Oncol Hematol 2023; 183:103915. [PMID: 36702424 DOI: 10.1016/j.critrevonc.2023.103915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In breast cancer, mAbs can play multifunctional roles like targeting cancer cells, sometimes directly attacking them, helping in locating and delivering therapeutic drugs to targets, inhibiting cell growth and blocking immune system inhibitors, etc. Monoclonal antibodies are also one of the important successful treatment strategies especially against HER2 but they have not been explored much for other types of breast cancers especially in triple negative breast cancers. Monoclonal antibodies impact the feasibility of antigen specificity, bispecific and trispecific mAbs have opened new doors for more targeted specific efficacy. Monoclonal antibodies can be used diversly and with efficacy as compared to other methods of treatment thus maining it a suitable candidate for breast cancer treatment. However, mAbs treatment also causes various side effects such as fever, trembling, fatigue, headache and muscle pain, nausea/vomiting, difficulty in breathing, rashes and bleeding. Understanding the pros and cons of this strategy, we have explored in this review, the current and future potential capabilities of monoclonal antibodies with respect to diagnosis and treatment of breast cancer. DATA AVAILABILITY: Not applicable.
Collapse
|
20
|
Kunikowska J, Morgenstern A, Pełka K, Bruchertseifer F, Królicki L. Targeted alpha therapy for glioblastoma. Front Med (Lausanne) 2022; 9:1085245. [PMID: 36590948 PMCID: PMC9800503 DOI: 10.3389/fmed.2022.1085245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
According to the 2021 World Health Organization Classification of Tumors of the Central Nervous System, glioblastoma (GB) is a primary brain tumor and presents with the worst prognosis. Due to its infiltrating characteristic, molecular heterogeneity, and only partly preserved function of the blood-brain barrier, the median overall survival time is short (9-15 months), regardless of comprehensive treatment including surgery, radiotherapy, and chemotherapy. Several novel treatment strategies are under investigation. Unfortunately, none of them produced successful results; 90% of patients have a recurrence of the disease within 6 months. Local administration of the drug could be a promising approach to delivering treatment with minimized side effects, due to the recurrence of 95% glioblastomas in a margin of 2 cm at the primary site. Several ligand-receptor systems have been evaluated, such as targeting tenascin, the extracellular matrix protein, or radiolabeled somatostatin analogs, as it is overexpressed with the SSTR-2 receptor system in around 80% of gliomas. Moreover, this study revealed that the NK-1 receptor is overexpressed in GB, suggesting that substance P (SP) may serve as a ligand. A variety of radioisotopes, beta- (131I, 90Y, or 177 Lu) and alpha emitters (213Bi, 225Ac, or 211At), with different physical properties were tested for treatment. Alpha particles have many advantages over beta radiation such as short range with higher linear energy transfer. According to that characteristic, it is extremely dose delivered to the targeted cells, while reducing harm to nearby healthy tissue. Additionally, the biological effect of alpha radiation is independent of the cell cycle phase, cell oxygenation and O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status. In this article, we summarize the experience with local treatment of primary and secondary GBs with locally used radioisotopes such as [213Bi]Bi-DOTA-SP or [225Ac]Ac-DOTA-SP.
Collapse
Affiliation(s)
- Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland,*Correspondence: Jolanta Kunikowska, ; orcid.org/0000-0002-7434-6720
| | | | - Kacper Pełka
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland,Laboratory of Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
|
22
|
Nishri Y, Vatarescu M, Luz I, Epstein L, Dumančić M, Del Mare S, Shai A, Schmidt M, Deutsch L, Den RB, Kelson I, Keisari Y, Arazi L, Cooks T, Domankevich V. Diffusing alpha-emitters radiation therapy in combination with temozolomide or bevacizumab in human glioblastoma multiforme xenografts. Front Oncol 2022; 12:888100. [PMID: 36237307 PMCID: PMC9552201 DOI: 10.3389/fonc.2022.888100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is at present an incurable disease with a 5-year survival rate of 5.5%, despite improvements in treatment modalities such as surgery, radiation therapy, chemotherapy [e.g., temozolomide (TMZ)], and targeted therapy [e.g., the antiangiogenic agent bevacizumab (BEV)]. Diffusing alpha-emitters radiation therapy (DaRT) is a new modality that employs radium-224-loaded seeds that disperse alpha-emitting atoms inside the tumor. This treatment was shown to be effective in mice bearing human-derived GBM tumors. Here, the effect of DaRT in combination with standard-of-care therapies such as TMZ or BEV was investigated. In a viability assay, the combination of alpha radiation with TMZ doubled the cytotoxic effect of each of the treatments alone in U87 cultured cells. A colony formation assay demonstrated that the surviving fraction of U87 cells treated by TMZ in combination with alpha irradiation was lower than was achieved by alpha- or x-ray irradiation as monotherapies, or by x-ray combined with TMZ. The treatment of U87-bearing mice with DaRT and TMZ delayed tumor development more than the monotherapies. Unlike other radiation types, alpha radiation did not increase VEGF secretion from U87 cells in culture. BEV treatment introduced several days after DaRT implantation improved tumor control, compared to BEV or DaRT as monotherapies. The combination was also shown to be superior when starting BEV administration prior to DaRT implantation in large tumors relative to the seed size. BEV induced a decrease in CD31 staining under DaRT treatment, increased the diffusive spread of 224Ra progeny atoms in the tumor tissue, and decreased their clearance from the tumor through the blood. Taken together, the combinations of DaRT with standard-of-care chemotherapy or antiangiogenic therapy are promising approaches, which may improve the treatment of GBM patients.
Collapse
Affiliation(s)
- Yossi Nishri
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Maayan Vatarescu
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ishai Luz
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Lior Epstein
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Radiation Protection Department, Soreq Nuclear Research Center, Yavne, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mirta Dumančić
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sara Del Mare
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Amit Shai
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | | | - Lisa Deutsch
- Biostatistics Department, BioStats Statistical Consulting Ltd., Maccabim, Israel
| | - Robert B. Den
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- Department of Radiation Oncology, Urology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Itzhak Kelson
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Lior Arazi, ; Tomer Cooks, ; Vered Domankevich,
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- *Correspondence: Lior Arazi, ; Tomer Cooks, ; Vered Domankevich,
| | - Vered Domankevich
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- *Correspondence: Lior Arazi, ; Tomer Cooks, ; Vered Domankevich,
| |
Collapse
|
23
|
Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022; 27:molecules27165231. [PMID: 36014472 PMCID: PMC9415873 DOI: 10.3390/molecules27165231] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in the field of molecular biology have had an impact on biomedical applications, which provide greater hope for both imaging and therapeutics. Work has been intensified on the development of radionuclides and their application in radiopharmaceuticals (RPS) which will certainly influence and expand therapeutic approaches in the future treatment of patients. Alpha or beta particles and Auger electrons are used for therapy purposes, and each has advantages and disadvantages. The radionuclides labeled drug delivery system will deliver the particles to the specific targeting cell. Different radioligands can be chosen to uniquely target molecular receptors or intracellular components, making them suitable for personal patient-tailored therapy in modern cancer therapy management. Advances in nanotechnology have enabled nanoparticle drug delivery systems that can allow for specific multivalent attachment of targeted molecules of antibodies, peptides, or ligands to the surface of nanoparticles for therapy and imaging purposes. This review presents fundamental radionuclide properties with particular reference to tumor biology and receptor characteristic of radiopharmaceutical targeted therapy development.
Collapse
Affiliation(s)
- Suliman Salih
- Radiology and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
- National Cancer Institute, University of Gezira, Wad Madani 2667, Sudan
| | - Ajnas Alkatheeri
- Radiology and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
| | - Wijdan Alomaim
- Radiology and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
| | - Aisyah Elliyanti
- Nuclear Medicine Division of Radiology Department, Faculty of Medicine, Universitas Andalas, Padang 25163, Indonesia
- Correspondence:
| |
Collapse
|
24
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
25
|
Evaluation of 134Ce as a PET imaging surrogate for antibody drug conjugates incorporating 225Ac. Nucl Med Biol 2022; 110-111:28-36. [DOI: 10.1016/j.nucmedbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
26
|
Liatsou I, Yu J, Bastiaannet R, Li Z, Hobbs RF, Torgue J, Sgouros G. 212Pb-conjugated anti-rat HER2/ neu antibody against a neu-N derived murine mammary carcinoma cell line: cell kill and RBE in vitro. Int J Radiat Biol 2022; 98:1452-1461. [PMID: 35073214 PMCID: PMC9673603 DOI: 10.1080/09553002.2022.2033341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE In the current work, the RBE of a 212Pb-conjugated anti-HER2/neu antibody construct has been evaluated, in vitro, by colony formation assay. The RBE was estimated by comparing two absorbed dose-survival curves: the first obtained from the conjugated 212Pb experiments (test radiation), the second obtained by parallel experiments of single bolus irradiation of external beam (reference radiation). MATERIALS AND METHODS Mammary carcinoma NT2.5 cells were treated with (0-3.70) kBq/ml of radiolabeled antibody. Nonspecific binding was assessed with addition of excess amount of unlabeled antibody. The colony formation curves were converted from activity concentration to cell nucleus absorbed dose by simulating the decay and transport of all daughter and secondary particles of 212Pb, using the Monte Carlo code GEANT 4. RESULTS The radiolabeled antibody yielded an RBE of 8.3 at 37% survival and a survival independent RBE (i.e. RBE2) of 9.9. Unbound/untargeted 212Pb-labeled antibody, as obtained in blocking experiments yielded minimal alpha-particle radiation to cells. Conclusions: These results further highlight the importance of specific targeting toward achieving tumor cell kill and low toxicity to normal tissue.
Collapse
Affiliation(s)
- Ioanna Liatsou
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jing Yu
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Remco Bastiaannet
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Zhi Li
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Robert F. Hobbs
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| | | | - George Sgouros
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
27
|
Yang H, Wilson JJ, Orvig C, Li Y, Wilbur DS, Ramogida CF, Radchenko V, Schaffer P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J Nucl Med 2022; 63:5-13. [PMID: 34503958 PMCID: PMC8717181 DOI: 10.2967/jnumed.121.262687] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Targeted α-therapy (TAT) is an emerging powerful tool treating late-stage cancers for which therapeutic options are limited. At the core of TAT are targeted radiopharmaceuticals, where isotopes are paired with targeting vectors to enable tissue- or cell-specific delivery of α-emitters. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DTPA (diethylenetriamine pentaacetic acid) are commonly used to chelate metallic radionuclides but have limitations. Significant efforts are underway to develop effective stable chelators for α-emitters and are at various stages of development and community adoption. Isotopes such as 149Tb, 212/213Bi, 212Pb (for 212Bi), 225Ac, and 226/227Th have found suitable chelators, although further studies, especially in vivo studies, are required. For others, including 223Ra, 230U, and, arguably 211At, the ideal chemistry remains elusive. This review summarizes the methods reported to date for the incorporation of 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U into radiopharmaceuticals, with a focus on new discoveries and remaining challenges.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin J Wilson
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Jadvar H, Colletti PM. Targeted α-therapy in non-prostate malignancies. Eur J Nucl Med Mol Imaging 2021; 49:47-53. [PMID: 33993386 PMCID: PMC11927099 DOI: 10.1007/s00259-021-05405-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Progress in unraveling the complex biology of cancer, novel developments in radiochemistry, and availability of relevant α-emitters for targeted therapy have provided innovative approaches to precision cancer management. The approval of 223Ra dichloride for treatment of men with osseous metastatic castrate-resistant prostate cancer unleashed targeted α-therapy as a safe and effective cancer management strategy. While there is currently active research on new α-therapy regimens for prostate cancer based on the prostate-specific membrane antigen, there is emerging development of radiopharmaceutical therapy with a range of biological targets and α-emitting radioisotopes for malignancies other than the prostate cancer. This article provides a brief review of preclinical and first-in-human studies of targeted α-therapy in the cancers of brain, breast, lung, gastrointestinal, pancreas, ovary, and the urinary bladder. The data on leukemia, melanoma, myeloma, and neuroendocrine tumors will also be presented. It is anticipated that with further research the emerging role of targeted α-therapy in cancer management will be defined and validated.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine of USC, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA, 90033, USA.
| | - Patrick M Colletti
- Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine of USC, University of Southern California, 2250 Alcazar St., CSC 102, Los Angeles, CA, 90033, USA
| |
Collapse
|
29
|
Sathekge MM, Bruchertseifer F, Vorster M, Morgenstern A, Lawal IO. Global experience with PSMA-based alpha therapy in prostate cancer. Eur J Nucl Med Mol Imaging 2021; 49:30-46. [PMID: 34173838 PMCID: PMC8712297 DOI: 10.1007/s00259-021-05434-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE This review discusses the current state of prostate-specific membrane antigen (PSMA)-based alpha therapy of metastatic castration-resistant prostate cancer (mCRPC). With this in-depth discussion on the growing field of PSMA-based alpha therapy (PAT), we aimed to increase the interactions between basic scientists and physician-scientists in order to advance the field. METHODS To achieve this, we discuss the potential, current status, and opportunities for alpha therapy and strategies, attempted to date, and important questions that need to be addressed. The paper reviews important concepts, including whom to treat, how to treat, what to expect regarding treatment outcome, and toxicity, and areas requiring further investigations. RESULTS There is much excitement about the potential of this field. Much of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other conventional therapies. CONCLUSION A better understanding of the strengths and limitations of PAT may help in creating an effective therapy for mCRPC and design a rational combinatorial approach to treatment by targeting different tumor pathways.
Collapse
Affiliation(s)
- Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa.
- Nuclear Medicine Research Infrastructure, Pretoria, South Africa.
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| |
Collapse
|
30
|
The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and Checkpoint Molecules. Cells 2021; 10:cells10020228. [PMID: 33503958 PMCID: PMC7912488 DOI: 10.3390/cells10020228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery of radiation therapy (RT) for cancer with intent to cure has been optimized and standardized over the last 80 years. Both preclinical and clinical work emphasized the observation that radiation destroys the tumor and exposes its components to the immune response in a mode that facilitates the induction of anti-tumor immunity or reinforces such a response. External beam photon radiation is the most prevalent in situ abolition treatment, and its use exposed the “abscopal effect”. Particle radiotherapy (PRT), which has been in various stages of research and development for 70 years, is today available for the treatment of patients in the form of alpha particles, proton, or carbon ion radiotherapy. Charged particle radiotherapy is based on the acceleration of charged species, such as protons or carbon-12, which deposit their energy in the treated tumor and have a higher relative biological effectiveness compared with photon radiation. In this review, we will bring evidence that alpha particles, proton, or carbon ion radiation can destroy tumors and activate specific anti-tumor immune responses. Radiation may also directly affect the distribution and function of immune cells such as T cells, regulatory T cells, and mononuclear phagocytes. Tumor abolition by radiation can trigger an immune response against the tumor. However, abolition alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement abolition to reinforce the anti-tumor immunity to better eradicate residual local and metastatic tumor cells. Various methods and agents such as immunoadjuvants, suppressor cell inhibitors, or checkpoint inhibitors were used to manipulate the immune response in combination with radiation. This review deals with the manifestations of particle-mediated radiotherapy and its correlation with immunotherapy of cancer.
Collapse
|
31
|
Hatcher-Lamarre JL, Sanders VA, Rahman M, Cutler CS, Francesconi LC. Alpha emitting nuclides for targeted therapy. Nucl Med Biol 2021; 92:228-240. [PMID: 33558017 PMCID: PMC8363053 DOI: 10.1016/j.nucmedbio.2020.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Targeted alpha therapy (TAT) is an area of research with rapidly increasing importance as the emitted alpha particle has a significant effect on inducing cytotoxic effects on tumor cells while mitigating dose to normal tissues. Two significant isotopes of interest within the area of TAT are thorium-227 and actinium-225 due to their nuclear characteristics. Both isotopes have physical half-lives suitable for coordination with larger biomolecules, and additionally actinium-225 has potential to serve as an in vivo generator. In this review, the authors will discuss the production, purification, labeling reactions, and biological studies of actinium-225 and thorium-227 complexes and clinical studies.
Collapse
Affiliation(s)
| | - Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, USA
| | - Mohammed Rahman
- Chemistry Department, Hunter College of the City University of New York, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, USA
| | - Lynn C Francesconi
- Chemistry Department, Hunter College of the City University of New York, USA; Chemistry Department, Graduate Center of the City University of New York, USA.
| |
Collapse
|
32
|
Stanley FKT, Berger ND, Pearson DD, Danforth JM, Morrison H, Johnston JE, Warnock TS, Brenner DR, Chan JA, Pierce G, Cobb JA, Ploquin NP, Goodarzi AA. A high-throughput alpha particle irradiation system for monitoring DNA damage repair, genome instability and screening in human cell and yeast model systems. Nucleic Acids Res 2020; 48:e111. [PMID: 33010172 PMCID: PMC7641727 DOI: 10.1093/nar/gkaa782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) is environmentally prevalent and, depending on dose and linear energy transfer (LET), can elicit serious health effects by damaging DNA. Relative to low LET photon radiation (X-rays, gamma rays), higher LET particle radiation produces more disease causing, complex DNA damage that is substantially more challenging to resolve quickly or accurately. Despite the majority of human lifetime IR exposure involving long-term, repetitive, low doses of high LET alpha particles (e.g. radon gas inhalation), technological limitations to deliver alpha particles in the laboratory conveniently, repeatedly, over a prolonged period, in low doses and in an affordable, high-throughput manner have constrained DNA damage and repair research on this topic. To resolve this, we developed an inexpensive, high capacity, 96-well plate-compatible alpha particle irradiator capable of delivering adjustable, low mGy/s particle radiation doses in multiple model systems and on the benchtop of a standard laboratory. The system enables monitoring alpha particle effects on DNA damage repair and signalling, genome stability pathways, oxidative stress, cell cycle phase distribution, cell viability and clonogenic survival using numerous microscopy-based and physical techniques. Most importantly, this method is foundational for high-throughput genetic screening and small molecule testing in mammalian and yeast cells.
Collapse
Affiliation(s)
- Fintan K T Stanley
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - N Daniel Berger
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - John M Danforth
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hali Morrison
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - James E Johnston
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Tyler S Warnock
- Robson DNA Science Centre, Departments of Cancer Epidemiology and Prevention Research and Community Health Sciences, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Darren R Brenner
- Robson DNA Science Centre, Departments of Cancer Epidemiology and Prevention Research and Community Health Sciences, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Greg Pierce
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jennifer A Cobb
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Nicolas P Ploquin
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
33
|
Yang H, Zhang C, Yuan Z, Rodriguez-Rodriguez C, Robertson A, Radchenko V, Perron R, Gendron D, Causey P, Gao F, Bénard F, Schaffer P. Synthesis and Evaluation of a Macrocyclic Actinium-225 Chelator, Quality Control and In Vivo Evaluation of 225 Ac-crown-αMSH Peptide. Chemistry 2020; 26:11435-11440. [PMID: 32588455 DOI: 10.1002/chem.202002999] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Targeted alpha-therapy (TAT) has great potential for treating a broad range of late-stage cancers by delivering a focused and lethal radiation dose to tumors. Actinium-225 (225 Ac) is an emerging alpha emitter suitable for TAT; however, the availability of chelators for Ac remains limited to a small number of examples (DOTA and macropa). Herein, we report a new Ac macrocyclic chelator named 'crown', which binds quantitatively and rapidly (<10 min) to Ac at ambient temperature. We synthesized 225 Ac-crown-αMSH, a peptide targeting the melanocortin 1 receptor (MC1R), specifically expressed in primary and metastatic melanoma. Biodistribution of 225 Ac-crown-αMSH showed favorable tumor-to-background ratios at 2 h post injection in a preclinical model. In addition, we demonstrated dramatically different biodistrubution patterns of 225 Ac-crown-αMSH when subjected to different latency times before injection. A combined quality control methodology involving HPLC, gamma spectroscopy and radioTLC is recommended.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | | | - Zheliang Yuan
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Key Laboratory of the Ministry of Education for, Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Cristina Rodriguez-Rodriguez
- Faculty of Pharmaceutical Sciences, Department of Physics and Astronomy and Centre for Comparative, Medicine, University of British Columbia, Vancouver, BC, V6T 1W5, Canada
| | | | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Randy Perron
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Denise Gendron
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Patrick Causey
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Feng Gao
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - François Bénard
- BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| |
Collapse
|
34
|
Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management. Pharmaceuticals (Basel) 2020; 13:ph13040076. [PMID: 32340103 PMCID: PMC7243103 DOI: 10.3390/ph13040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Atomic in vivo nanogenerators such as actinium-225, thorium-227, and radium-223 are of increasing interest and importance in the treatment of patients with metastatic cancer diseases. This is due to their peculiar physical, chemical, and biological characteristics, leading to astonishing responses in otherwise resistant patients. Nevertheless, there are still a few obstacles and hurdles to be overcome that hamper the broader utilization in the clinical setting. Next to the limited supply and relatively high costs, the in vivo complex stability and the fate of the recoiling daughter radionuclides are substantial problems that need to be solved. In radiobiology, the mechanisms underlying treatment efficiency, possible resistance mechanisms, and late side effect occurrence are still far from being understood and need to be unraveled. In this review, the current knowledge on the scientific and clinical background of targeted alpha therapies is summarized. Furthermore, open issues and novel approaches with a focus on the future perspective are discussed. Once these are unraveled, targeted alpha therapies with atomic in vivo nanogenerators can be tailored to suit the needs of each patient when applying careful risk stratification and combination therapies. They have the potential to become one of the major treatment pillars in modern cancer management.
Collapse
|
35
|
Czerwińska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules 2020; 25:E1743. [PMID: 32290196 PMCID: PMC7181060 DOI: 10.3390/molecules25071743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related deaths in Western civilization. Although localized prostate cancer can be treated effectively in different ways, almost all patients progress to the incurable metastatic castration-resistant prostate cancer. Due to the significant mortality and morbidity rate associated with the progression of this disease, there is an urgent need for new and targeted treatments. In this review, we summarize the recent advances in research on identification of prostate tissue-specific antigens for targeted therapy, generation of highly specific and selective molecules targeting these antigens, availability of therapeutic radionuclides for widespread medical applications, and recent achievements in the development of new-generation small-molecule inhibitors and antibody-based strategies for targeted prostate cancer therapy with alpha-, beta-, and Auger electron-emitting radionuclides.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aneta Wegierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| |
Collapse
|
36
|
Jadvar H. Targeted α-Therapy in Cancer Management: Synopsis of Preclinical and Clinical Studies. Cancer Biother Radiopharm 2020; 35:475-484. [PMID: 32202923 DOI: 10.1089/cbr.2019.3340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The approval of 223Ra dichloride (223RaCl2) in 2013 was a principal event in introducing targeted α-therapy as a form of safe and effective management strategy in cancer. There is an increasing interest in research and development of new targeted α-therapy agents spearheaded by advancements in cancer biology, radiochemistry, and availability of clinically relevant α particles. There are active clinical studies on sequencing or combining 223RaCl2 with other drug regimens in the setting of metastatic prostate cancer and in other cancers such as osteosarcoma and bone-dominant breast cancer. Targeted α-therapy strategy is also being actively explored through many preclinical and few early clinical studies using 225Ac, 213Bi, 211At, 227Th, and 212Pb. Investigations incorporating 225Ac are more robust and active at this time with promising results. The author provide a brief synopsis of the preclinical and clinical studies in the rapidly evolving field of targeted α-therapy in cancer management.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
37
|
Abstract
In 2018 bladder cancer (urothelial carcinoma) was ranked twelfth concerning worldwide diagnosis of malignancies. At the time point of diagnosis of bladder cancer, approximately 75% of patients present with a nonmuscle-invasive disease (NMIBC), while the remaining 25% show invasion of tumor cells in the muscle layer of the bladder wall (MIBC). Among NMIBC tumors, flat, high-grade carcinoma in situ (CIS) is a therapeutic challenge. CIS shows a tendency to invade the muscle tissue of the bladder wall and thus become a MIBC. Standard therapy of NMIBC (including CIS) is done via intravesical instillation of BCG (bacillus Calmette Guerin) inducing a local immune reaction that finally promotes elimination of bladder cancer cells. However, BCG treatment of NMIBC proves to be ineffective in approximately 40% of patients. Therefore, new therapeutic approaches for the treatment of bladder cancer are urgently needed. Among promising new treatment options that are currently being investigated are the use of immune checkpoint inhibitors, and targeted approaches attacking (among others) long noncoding RNAs, micro RNAs, cancer stem cells, PARP1, and receptor signaling pathways. Moreover, the use of antibody-drug-conjugates (ADCs) is investigated also in bladder cancer therapy. Another approach that has been successfully established in preclinical studies uses the cytotoxic power of the alpha-emitter Bi-213 coupled to an antibody targeting EGFR. Overexpression of EGFR has been demonstrated in the majority of patients suffering from CIS. Feasibility, safety, toxicity and therapeutic efficacy of intravesical instillation of Bi-213-anti-EGFR have been evaluated in a pilot study. Since the results of the pilot study proved to be promising, a further optimization of alpha-emitter immunotherapy in bladder cancer seems mandatory.
Collapse
Affiliation(s)
- Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| |
Collapse
|
38
|
Sathekge M, Bruchertseifer F, Vorster M, Lawal IO, Knoesen O, Mahapane J, Davis C, Reyneke F, Maes A, Kratochwil C, Lengana T, Giesel FL, Van de Wiele C, Morgenstern A. Predictors of Overall and Disease-Free Survival in Metastatic Castration-Resistant Prostate Cancer Patients Receiving 225Ac-PSMA-617 Radioligand Therapy. J Nucl Med 2019; 61:62-69. [PMID: 31101746 DOI: 10.2967/jnumed.119.229229] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 01/27/2023] Open
Abstract
Metastatic prostate carcinoma overexpresses prostate-specific membrane antigen (PSMA), making this antigen a suitable target for radioligand therapy of the disease. Here we report on our experience with a series of 73 castration-resistant prostate carcinoma patients treated with 225Ac-PSMA-617, identifying variables predictive for overall survival (OS) and progression-free survival (PFS) after 225Ac-PSMA-617 treatment. Methods: 225Ac-PSMA-617 was administered to patients who had metastatic castration-resistant prostate carcinoma and who had exhausted available therapy options for their disease. Full blood count, glomerular filtration rate, and liver function test were obtained at baseline and on follow-up for evaluation of toxicity. 68Ga-PSMA PET/CT was obtained at baseline, before every treatment cycle, and on follow-up for selection of patients for treatment, to determine the activity of the treatment agent to be administered, and for response assessment. Serial prostate-specific antigen (PSA) was obtained for PSA response assessment. Results: Seventy-three men (mean age, 69 y; range, 45-85 y) with metastatic castration-resistant prostate carcinoma were treated with 210 cycles of 225Ac-PSMA-617. In 70% of patients, a PSA decline of greater than or equal to 50% was obtained; 82% of patients had any PSA decline. In 29% of patients, all lesions on 68Ga-PSMA PET resolved in response to treatment. During follow-up, 23 patients experienced disease progression, whereas 13 patients died from their disease. The estimated median PFS and OS were 15.2 mo (95% CI, 13.1-17.4) and 18 mo (95% CI, 16.2-19.9), respectively. In univariate analyses, factors such as baseline PSA, any PSA decline, PSA decline of greater than or equal to 50%, prior chemotherapy, prior radiation therapy, and baseline hemoglobin level were associated with longer PFS and OS (all Ps < 0.05). In multivariate analyses, there was a negative association between prior 177Lu-PSMA therapy and PFS, and a positive association between PSA decline of greater or equal to 50% and PFS. Only a PSA decline of greater than or equal to 50% remained significantly associated with OS on multivariate analyses. Xerostomia was seen in 85% of patients but was not severe enough to warrant discontinuing treatment. Anemia was seen in 27 patients; no patients had grade IV bone marrow toxicity. Renal failure of grade III or IV was seen in 5 patients with baseline renal impairment. Conclusion: In this study, a PSA decline of greater than or equal to 50% after treatment with 225Ac-PSMA-617 was proven by multivariate analyses to be significantly associated with OS and PFS. Furthermore, previous 177Lu-PSMA treatment was negatively associated with PFS in both univariate and multivariate analyses.
Collapse
Affiliation(s)
- Mike Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Mariza Vorster
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Otto Knoesen
- Nuclear Technology Products (NTP), Pelindaba, South Africa
| | - Johncy Mahapane
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Cindy Davis
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Florette Reyneke
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Alex Maes
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.,Katholieke University Leuven, Kortrijk, Belgium
| | | | - Thabo Lengana
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | | | - Christophe Van de Wiele
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.,Ghent University, Ghent, Belgium
| | - Alfred Morgenstern
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.,European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| |
Collapse
|
39
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
40
|
Azorín-Vega E, Rojas-Calderón E, Ferro-Flores G, Aranda-Lara L, Jiménez-Mancilla N, Nava-Cabrera MA. Assessment of the radiation absorbed dose produced by 177Lu-iPSMA, 225Ac-iPSMA and 223RaCl 2 to prostate cancer cell nuclei in a bone microenvironment model. Appl Radiat Isot 2019; 146:66-71. [PMID: 30753987 DOI: 10.1016/j.apradiso.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
This research aimed to assess the radiation absorbed dose produced by 177Lu-iPSMA (177Lu-prostate specific membrane antigen inhibitor), 225Ac-iPSMA and 223RaCl2 to prostate cancer cell nuclei in a simplified model of bone by using an experimental in-vitro prostate cancer LNCaP cell biokinetic study and Monte Carlo simulation with the MCNPX code. Results showed that 225Ac-iPSMA releases a nine hundred-fold radiation dose greater than 177Lu-iPSMA and 14 times more than 223RaCl2 per unit of activity retained in bone. 225Ac-iPSMA could be the best option for treatment of bone metastases in prostate cancer.
Collapse
Affiliation(s)
- Erika Azorín-Vega
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico.
| | - Eva Rojas-Calderón
- Departamento de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico.
| | - Guillermina Ferro-Flores
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Mexico
| | - Nallely Jiménez-Mancilla
- CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico
| | - Miguel A Nava-Cabrera
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Estado de México, Mexico; Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180, Mexico
| |
Collapse
|
41
|
Morgenstern A, Apostolidis C, Kratochwil C, Sathekge M, Krolicki L, Bruchertseifer F. An Overview of Targeted Alpha Therapy with 225Actinium and 213Bismuth. Curr Radiopharm 2019; 11:200-208. [PMID: 29732998 PMCID: PMC6237921 DOI: 10.2174/1874471011666180502104524] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
Background: Recent reports of the remarkable therapeutic efficacy of 225Ac-labeled PSMA-617 for therapy of metastatic castration-resistant prostate cancer have under-lined the clinical potential of targeted alpha therapy. Objective and Conclusion: This review describes methods for the production of 225Ac and its daughter nuclide 213Bi and summarizes the current clinical experience with both alpha emitters with particular focus on recent studies of targeted alpha therapy of bladder cancer, brain tu-mors, neuroendocrine tumors and prostate cancer.
Collapse
Affiliation(s)
- Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Christos Apostolidis
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Leszek Krolicki
- Department of Nuclear Medicine, Medical University Warsaw, Warsaw, Poland
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| |
Collapse
|
42
|
Cędrowska E, Pruszynski M, Majkowska-Pilip A, Męczyńska-Wielgosz S, Bruchertseifer F, Morgenstern A, Bilewicz A. Functionalized TiO 2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:83. [PMID: 29576738 PMCID: PMC5861168 DOI: 10.1007/s11051-018-4181-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The 225Ac radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately, the major challenge for radioconjugates labelled with 225Ac is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-targeted tissues. In the present work, we propose to apply TiO2 nanoparticles (NPs) as carrier for 225Ac and its decay products. The surface of TiO2 nanoparticles with 25 nm diameter was modified with Substance P (5-11), a peptide fragment which targets NK1 receptors on the glioma cells, through the silan-PEG-NHS linker. Nanoparticles functionalized with Substance P (5-11) were synthesized with high yield in a two-step procedure, and the products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The obtained results show that one TiO2-bioconjugate nanoparticle contains in average 80 peptide molecules on its surface. The synthesized TiO2-PEG-SP(5-11) conjugates were labelled with 225Ac by ion-exchange reaction on hydroxyl (OH) functional groups on the TiO2 surface. The labelled bioconjugates almost quantitatively retain 225Ac in phosphate-buffered saline (PBS), physiological salt and cerebrospinal fluid (CSF) for up to 10 days. The leaching of 221Fr, a first decay daughter of 225Ac, in an amount of 30% was observed only in CSF after 10 days. The synthesized 225Ac-TiO2-PEG-SP(5-11) has shown high cytotoxic effect in vitro in T98G glioma cells; therefore, it is a promising new radioconjugate for targeted radionuclide therapy of brain tumours.
Collapse
Affiliation(s)
- Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Marek Pruszynski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | | | | | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Department for Nuclear Safety and Security, 76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Department for Nuclear Safety and Security, 76125 Karlsruhe, Germany
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
43
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018; 59:878-884. [PMID: 29545378 DOI: 10.2967/jnumed.116.186338] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
44
|
Evaluation of astatine-211-labeled octreotide as a potential radiotherapeutic agent for NSCLC treatment. Bioorg Med Chem 2018; 26:1086-1091. [PMID: 29422331 DOI: 10.1016/j.bmc.2018.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Octreotide is a somatostatin (SST) analogue currently used in the treatment of neuroendocrine tumors (NETs) with high binding affinity for the somatostatin receptor-2 (SSTR2) that is also overexpressed in non-small cell lung cancer cell (NSCLC). Alpha-particle-emitting astatine-211 (211At) is a promising radionuclide with appropriate physical and chemical properties for use in targeted anticancer therapies. To obtain an additional pharmacological agent for the treatment of NSCLC, we present the first investigation of the possible use of 211At-labeled octreotide as a potential alpha-radionuclide therapeutic agent for NSCLC treatment. 211At-SPC-octreotide exhibited observable higher uptake in lung, spleen, stomach and intestines than in other tissues. Through histological examination, 211At-SPC-octreotide demonstrated much more lethal effect than control groups (PBS, octreotide and free 211At). These promising preclinical results suggested that 211At labeled octreotide deserved to be further developed as a new anticancer agent for NSCLC.
Collapse
|
45
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
46
|
Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv 2017; 15:185-196. [PMID: 28893110 DOI: 10.1080/17425247.2018.1378180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Radioimmunotherapy (RIT) with monoclonal antibodies and their fragments labelled with radionuclides emitting α -particles, β-particles or Auger electrons have been used for many years in the development of anticancer strategies. While RIT has resulted in approved radiopharmaceuticals for the treatment of hematological malignancies, its use in solid tumors still remains challenging. AREAS COVERED In this review, we discuss the exciting progress towards elucidating the potential of current and novel radioimmunoconjugates and address the challenges for translation into clinical practice. EXPERT OPINION There are still technical and logistical challenges associated with the use of RIT in routine clinical practice, including development of novel and more specific targeting moieties, broader access α to α-emitters and better tailoring of pre-targeting approaches. Moreover, improved understanding of the heterogeneous nature of solid tumors and the critical role of tumor microenvironments will help to optimize clinical response to RIT by delivering sufficient radiation doses to even more radioresistant tumor cells.
Collapse
Affiliation(s)
- Carlos Daniel Martins
- a Division of Radiotherapy and Imaging , The Institute of Cancer Research , London , UK
| | - Gabriela Kramer-Marek
- a Division of Radiotherapy and Imaging , The Institute of Cancer Research , London , UK
| | - Wim J G Oyen
- a Division of Radiotherapy and Imaging , The Institute of Cancer Research , London , UK.,b The Royal Marsden NHS Foundation Trust , Department of Nuclear Medicine , London , UK
| |
Collapse
|
47
|
Differential pattern of HIF-1α expression in HNSCC cancer stem cells after carbon ion or photon irradiation: one molecular explanation of the oxygen effect. Br J Cancer 2017; 116:1340-1349. [PMID: 28407653 PMCID: PMC5482725 DOI: 10.1038/bjc.2017.100] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) are resistant to standard treatments, partly due to cancer stem cells (CSCs) localised in hypoxic niches. Compared to X-rays, carbon ion irradiation relies on better ballistic properties, higher relative biological effectiveness and the absence of oxygen effect. Hypoxia-inducible factor-1α (HIF-1α) is involved in the resistance to photons, whereas its role in response to carbon ions remains unclear. METHODS Two HNSCC cell lines and their CSC sub-population were studied in response to photons or carbon ion irradiation, in normoxia or hypoxia, after inhibition or not of HIF-1α. RESULTS Under hypoxia, compared to non-CSCs, HIF-1α is expressed earlier in CSCs. A combined effect photons/hypoxia, less observed with carbon ions, results in a synergic and earlier HIF-1α expression in both subpopulations. The diffuse ROS production by photons is concomitant with HIF-1α expression and essential to its activation. There is no oxygen effect in response to carbon ions and the ROS localised in the track might be insufficient to stabilise HIF-1α. Finally, in hypoxia, cells were sensitised to both types of radiations after HIF-1α inhibition. CONCLUSIONS Hypoxia-inducible factor-1α plays a main role in the response of CSCs and non-CSCs to carbon ion and photon irradiations, which makes the HIF-1α targeting an attractive therapeutic challenge.
Collapse
|
48
|
Heskamp S, Hernandez R, Molkenboer-Kuenen JDM, Essler M, Bruchertseifer F, Morgenstern A, Steenbergen EJ, Cai W, Seidl C, McBride WJ, Goldenberg DM, Boerman OC. α- Versus β-Emitting Radionuclides for Pretargeted Radioimmunotherapy of Carcinoembryonic Antigen-Expressing Human Colon Cancer Xenografts. J Nucl Med 2017; 58:926-933. [PMID: 28232604 DOI: 10.2967/jnumed.116.187021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Pretargeted radioimmunotherapy (PRIT) with the β-emitting radionuclide 177Lu is an attractive approach to treat carcinoembryonic antigen (CEA)-expressing tumors. The therapeutic efficacy of PRIT might be improved using α-emitting radionuclides such as 213Bi. Herein, we report and compare the tumor-targeting properties and therapeutic efficacy of 213Bi and 177Lu for PRIT of CEA-expressing xenografts, using the bispecific monoclonal antibody TF2 (anti-CEA × anti-histamine-succinyl-glycine [HSG]) and the di-HSG-DOTA peptide IMP288. Methods: The in vitro binding characteristics of 213Bi-IMP288 were compared with those of 177Lu-IMP288. Tumor targeting of 213Bi-IMP288 and 177Lu-IMP288 was studied in mice bearing subcutaneous LS174T tumors that were pretargeted with TF2. Finally, the effect of 213Bi-IMP288 (6, 12, or 17 MBq) and 177Lu-IMP288 (60 MBq) on tumor growth and survival was assessed. Toxicity was determined by monitoring body weight, analyzing blood samples for hematologic and renal toxicity (hemoglobin, leukocytes, platelets, creatinine), and immunohistochemical analysis of the kidneys. Results: The in vitro binding characteristics of 213Bi-IMP288 (dissociation constant, 0.45 ± 0.20 nM) to TF2-pretargeted LS174T cells were similar to those of 177Lu-IMP288 (dissociation constant, 0.53 ± 0.12 nM). In vivo accumulation of 213Bi-IMP288 in LS174T tumors was observed as early as 15 min after injection (9.2 ± 2.0 percentage injected dose [%ID]/g). 213Bi-IMP288 cleared rapidly from the circulation; at 30 min after injection, the blood levels were 0.44 ± 0.28 %ID/g. Uptake in normal tissues was low, except for the kidneys, where uptake was 1.8 ± 1.1 %ID/g at 30 min after injection. The biodistribution of 213Bi-IMP288 was comparable to that of 177Lu-IMP288. Mice treated with a single dose of 213Bi-IMP288 or 177Lu-IMP288 showed significant inhibition of tumor growth. Median survival for the groups treated with phosphate-buffered saline, 6 MBq 213Bi-IMP288, 12 MBq 213Bi-IMP288, and 60 MBq 177Lu-IMP288 was 22, 31, 45, and 42 d, respectively. Mice receiving 17 MBq 213Bi-IMP288 showed significant weight loss, resulting in a median survival of only 24 d. No changes in hemoglobin, platelets, or leukocytes were observed in the treatment groups. However, immunohistochemical analysis of the kidneys of mice treated with 17 or 12 MBq 213Bi-IMP288 showed signs of tubular damage, indicating nephrotoxicity. Conclusion: To our knowledge, this study shows for the first time that PRIT with TF2 and 213Bi-IMP288 is feasible and at least as effective as 177Lu-IMP288. However, at higher doses, kidney toxicity was observed. Future studies are warranted to determine the optimal dosing schedule to improve therapeutic efficacy while reducing renal toxicity.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinier Hernandez
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Markus Essler
- Klinik und Poliklinik fur Nuklearmedizin, University of Bonn, Bonn, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre-Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre-Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Erik J Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weibo Cai
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christof Seidl
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany.,Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany; and
| | | | | | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109:102-118. [PMID: 26705852 DOI: 10.1016/j.addr.2015.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/26/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022]
Abstract
Radioimmunotherapy (RIT) aims to selectively deliver radionuclides emitting α-particles, β-particles or Auger electrons to tumors by conjugation to monoclonal antibodies (mAbs) that recognize tumor-associated antigens/receptors. The approach has been most successful for treatment of non-Hodgkin's B-cell lymphoma but challenges have been encountered in extending these promising results to the treatment of solid malignancies. These challenges include the low potency of β-particle emitters such as 131I, 177Lu or 90Y which have been commonly conjugated to the mAbs, due to their low linear energy transfer (LET=0.1-1.0keV/μm). Furthermore, since the β-particles have a 2-10mm range, there has been dose-limiting non-specific toxicity to hematopoietic stem cells in the bone marrow (BM) due to the cross-fire effect. Conjugation of mAbs to α-particle-emitters (e.g. 225Ac, 213Bi, 212Pb or 211At) or Auger electron-emitters (e.g. 111In, 67Ga, 123I or 125I) would increase the potency of RIT due to their high LET (50-230keV/μm and 4 to 26keV/μm, respectively). In addition, α-particles have a range in tissues of 28-100μm and Auger electrons are nanometer in range which greatly reduces or eliminates the cross-fire effect compared to β-particles, potentially reducing their non-specific toxicity to the BM. In this review, we describe the results of preclinical and clinical studies of RIT of cancer using radioimmunoconjugates emitting α-particles or Auger electrons, and discuss the potential of these high LET forms of radiation to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute and Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
50
|
Tsukrov D, McFarren A, Morgenstern A, Bruchertseifer F, Dolce E, Gorny MK, Zolla-Pazner S, Berman JW, Schoenbaum E, Zingman BS, Casadevall A, Dadachova E. Combination of Antiretroviral Drugs and Radioimmunotherapy Specifically Kills Infected Cells from HIV-Infected Individuals. Front Med (Lausanne) 2016; 3:41. [PMID: 27725930 PMCID: PMC5035742 DOI: 10.3389/fmed.2016.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Eliminating virally infected cells is an essential component of any HIV eradication strategy. Radioimmunotherapy (RIT), a clinically established method for killing cells using radiolabeled antibodies, was recently applied to target HIV-1 gp41 antigen expressed on the surface of infected cells. Since gp41 expression by infected cells is likely downregulated in patients on antiretroviral therapy (ART), we evaluated the ability of RIT to kill ART-treated infected cells using both in vitro models and lymphocytes isolated from HIV-infected subjects. Human peripheral blood mononuclear cells (PBMCs) were infected with HIV and cultured in the presence of two clinically relevant ART combinations. Scatchard analysis of the 2556 human monoclonal antibody to HIV gp41 binding to the infected and ART-treated cells demonstrated sufficient residual expression of gp41 on the cell surface to warrant subsequent RIT. This is the first time the quantification of gp41 post-ART is being reported. Cells were then treated with Bismuth-213-labeled 2556 antibody. Cell survival was quantified by Trypan blue and residual viremia by p24 ELISA. Cell surface gp41 expression was assessed by Scatchard analysis. The experiments were repeated using PBMCs isolated from blood specimens obtained from 15 HIV-infected individuals: 10 on ART and 5 ART-naïve. We found that 213Bi-2556 killed ART-treated infected PBMCs and reduced viral production to undetectable levels. ART and RIT co-treatment was more effective at reducing viral load in vitro than either therapy alone, indicating that gp41 expression under ART was sufficient to allow 213Bi-2556 to deliver cytocidal doses of radiation to infected cells. This study provides proof of concept that 213Bi-2556 may represent an innovative and effective targeting method for killing HIV-infected cells treated with ART and supports continued development of 213Bi-2556 for co-administration with ART toward an HIV eradication strategy.
Collapse
Affiliation(s)
- Dina Tsukrov
- Albert Einstein College of Medicine , Bronx, NY , USA
| | | | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements , Karlsruhe , Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements , Karlsruhe , Germany
| | - Eugene Dolce
- Albert Einstein College of Medicine , Bronx, NY , USA
| | | | - Susan Zolla-Pazner
- New York University School of Medicine, New York, NY, USA; Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Joan W Berman
- Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | | | | | |
Collapse
|