1
|
Mapar M, Rydzak T, Hommes JW, Surewaard BGJ, Lewis IA. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends Microbiol 2025; 33:223-232. [PMID: 39393939 DOI: 10.1016/j.tim.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
Collapse
Affiliation(s)
- Maryam Mapar
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Josefien W Hommes
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas G J Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Lin YT, Bui NN, Cheng YS, Lin CW, Lee CL, Lee TF, Hsueh PR. High hemolytic activity in Staphylococcus aureus t1081/ST45 due to increased hla protein production and potential RNAIII-independent regulation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:70-76. [PMID: 39322509 DOI: 10.1016/j.jmii.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND α-Hemolysin, encoded by hla, is a major virulence factor of Staphylococcus aureus. Sequence type (ST) 45 is a globally spread clone with increasing clinical prevalence in Taiwan. Our previous study showed that among the CC45 isolates, the spa type t1081 isolates presented greater hemolytic activity. MATERIALS AND METHODS The hemolytic activity of 67 CC45 isolates (44 t1081 and 23 non-t1081) from clinical blood cultures was assessed using rabbit red blood cells. The sequences of hla and its upstream regulatory regions and RNAIII were compared between the two groups. The expression of hla and its regulators RNAIII, mgrA, and saeR was analyzed via qRT‒PCR, while Hla protein levels were measured via Western blotting. RESULTS Compared with non-t1081 isolates, t1081 isolates presented increased hemolytic activity. No significant differences in hla sequences, upstream regulatory regions, or gene expression levels were detected between the two groups. The expression of the transcriptional regulators mgrA and saeR was also similar between the two groups. Western blotting revealed increased Hla protein in the t1081 isolates. However, neither the sequence or expression of RNAIII, a regulator of hla at both the transcriptional and posttranscriptional levels, differed between the groups. CONCLUSION Our study revealed that, compared with other CC45 isolates, the t1081/ST45 isolates presented greater hemolytic activity. This heightened activity was due mainly to increased Hla protein levels. Moreover, the higher translation levels may be independent of the known regulator RNAIII, indicating a potential RNAIII-independent mechanism for Hla regulation.
Collapse
Affiliation(s)
- Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| | - Ngoc-Niem Bui
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Viet Nam
| | - Yu-Syuan Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Li Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Li X, Busch LM, Piersma S, Wang M, Liu L, Gesell Salazar M, Surmann K, Mäder U, Völker U, Buist G, van Dijl JM. Functional and Proteomic Dissection of the Contributions of CodY, SigB and the Hibernation Promoting Factor HPF to Interactions of Staphylococcus aureus USA300 with Human Lung Epithelial Cells. J Proteome Res 2024; 23:4742-4760. [PMID: 39302699 PMCID: PMC11459534 DOI: 10.1021/acs.jproteome.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus is a leading cause of severe pneumonia. Our recent proteomic investigations into S. aureus invasion of human lung epithelial cells revealed three key adaptive responses: activation of the SigB and CodY regulons and upregulation of the hibernation-promoting factor SaHPF. Therefore, our present study aimed at a functional and proteomic dissection of the contributions of CodY, SigB and SaHPF to host invasion using transposon mutants of the methicillin-resistant S. aureus USA300. Interestingly, disruption of codY resulted in a "small colony variant" phenotype and redirected the bacteria from (phago)lysosomes into the host cell cytoplasm. Furthermore, we show that CodY, SigB and SaHPF contribute differentially to host cell adhesion, invasion, intracellular survival and cytotoxicity. CodY- or SigB-deficient bacteria experienced faster intracellular clearance than the parental strain, underscoring the importance of these regulators for intracellular persistence. We also show an unprecedented role of SaHPF in host cell adhesion and invasion. Proteomic analysis of the different mutants focuses attention on the CodY-perceived metabolic state of the bacteria and the SigB-perceived environmental cues in bacterial decision-making prior and during infection. Additionally, it underscores the impact of the nutritional status and bacterial stress on the initiation and progression of staphylococcal lung infections.
Collapse
Affiliation(s)
- Xiaofang Li
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Larissa M. Busch
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Sjouke Piersma
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Min Wang
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Lei Liu
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Manuela Gesell Salazar
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Girbe Buist
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
4
|
Burford-Gorst CM, Kidd SP. Phenotypic Variation in Staphylococcus aureus during Colonisation Involves Antibiotic-Tolerant Cell Types. Antibiotics (Basel) 2024; 13:845. [PMID: 39335018 PMCID: PMC11428495 DOI: 10.3390/antibiotics13090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is a bacterial species that is commonly found colonising healthy individuals but that presents a paradoxical nature: simultaneously, it can migrate within the body and cause a range of diseases. Many of these become chronic by resisting immune responses, antimicrobial treatment, and medical intervention. In part, this ability to persist can be attributed to the adoption of multiple cell types within a single cellular population. These dynamics in the S. aureus cell population could be the result of its interplay with host cells or other co-colonising bacteria-often coagulase-negative Staphylococcal (CoNS) species. Further understanding of the unique traits of S. aureus alternative cell types, the drivers for their selection or formation during disease, as well as their presence even during non-pathological colonisation could advance the development of diagnostic tools and drugs tailored to target specific cells that are eventually responsible for chronic infections.
Collapse
Affiliation(s)
- Chloe M Burford-Gorst
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Kang S, Yang Y, Hou W, Zheng Y. Inhibitory Effects of Lactobionic Acid on Biofilm Formation and Virulence of Staphylococcus aureus. Foods 2024; 13:2781. [PMID: 39272546 PMCID: PMC11395522 DOI: 10.3390/foods13172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Staphylococcus aureus biofilm is a common bio-contaminant source that leads to food cross-contamination and foodborne disease outbreaks. Hence, there is a need for searching novel antibiofilm agents with potential anti-virulence properties to control S. aureus contamination and infections in food systems. In this study, the antibiofilm effects of lactobionic acid (LBA) against S. aureus and its influence on virulence were explored. The minimum inhibition concentration of LBA on S. aureus was 8 mg/mL. Viable count and crystal violet assays revealed that LBA inhibited and inactivated S. aureus biofilms. Microscopic observations further confirmed the antibiofilm activity of LBA on S. aureus that disrupted the biofilm architecture and inactivated the viable cells in biofilms. Moreover, LBA decreased the release of extracellular DNA (eDNA) and extracellular polysaccharide (EPS) in S. aureus biofilms. LBA suppressed biofilm formation by intervening metabolic activity and reduced virulence secretion by repressing the hemolytic activity of S. aureus. Furthermore, LBA altered the expressions of biofilm- and virulence-related genes in S. aureus, further confirming that LBA suppressed biofilm formation and reduced the virulence secretion of S. aureus. The results suggest that LBA might be useful in preventing and controlling biofilm formation and the virulence of S. aureus to ensure food safety.
Collapse
Affiliation(s)
- Shimo Kang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yahui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Wanwan Hou
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
6
|
Alves J, Vrieling M, Ring N, Yebra G, Pickering A, Prajsnar TK, Renshaw SA, Fitzgerald JR. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival. mBio 2024; 15:e0034624. [PMID: 38682911 PMCID: PMC11237485 DOI: 10.1128/mbio.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Staphylococcus aureus is a major pathogen associated with important diseases in humans and animals. Macrophages are a key component of the innate immune response to S. aureus infection and play a major role in disease outcomes. To investigate the adaptive evolution of S. aureus in response to macrophages, we developed an experimental infection assay. S. aureus strains representing major human epidemic clones were passaged many times in a macrophage cell line, accumulating mutations in an array of genomic loci. Phenotypic analysis revealed the emergence of a lineage exhibiting increased survival in macrophages and human blood, and resistance to vancomycin. The evolved lineage exhibited a previously undescribed small colony variant (SCV) phenotype characterized by hyper-pigmentation, which resulted from a missense mutation in rsbW. Notably, the novel SCV was a conditional adaptive trait that was unstable in nutrient-replete conditions in vitro, rapidly converting from hyper-pigmented SCV to a non-pigmented large colony variant via spontaneous sigB deletion events. Importantly, we identified similar deletions in the genome sequences of a limited number of clinical S. aureus isolates from public databases, indicating that related events may occur during clinical infection. Experimental infection of zebrafish did not reveal a difference in virulence between parent and novel SCV but demonstrated an in vivo fitness cost for the compensatory sigB deletion events. Taken together, we report an experimental evolutionary approach for investigating bacterial innate immune cell interactions, revealing a conditional adaptation that promotes S. aureus survival in macrophages and resistance to vancomycin. IMPORTANCE Staphylococcus aureus is an important human bacterial pathogen. The host response to S. aureus involves the production of innate immune cells such as macrophages which are important for fighting infection. Here we report a new model of experimental evolution for studying how S. aureus can evade killing by macrophages. We identified a novel adaptive phenotype that promotes survival in macrophages and blood and resistance to antibiotics. The phenotype is lost rapidly upon growth in nutrient-rich conditions via disruption of the alternative sigma factor sigB, revealing a conditional niche-specific fitness advantage. Genomic analysis of clinical isolates suggests similar adaptations may occur during human infections. Our model may be used broadly to identify adaptations of S. aureus to the innate immune response.
Collapse
Affiliation(s)
- Joana Alves
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Manouk Vrieling
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Natalie Ring
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Amy Pickering
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Tomasz K. Prajsnar
- Florey Institute, Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Dehbashi S, Tahmasebi H, Alikhani MY, Shahbazi MA, Arabestani MR. Staphopain mediated virulence and antibiotic resistance alteration in co-infection of Staphylococcus aureus and Pseudomonas aeruginosa: an animal model. BMC Biotechnol 2024; 24:10. [PMID: 38439037 PMCID: PMC10913572 DOI: 10.1186/s12896-024-00840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Polymicrobial communities lead to worsen the wound infections, due to mixed biofilms, increased antibiotic resistance, and altered virulence production. Promising approaches, including enzymes, may overcome the complicated condition of polymicrobial infections. Therefore, this study aimed to investigate Staphopain A-mediated virulence and resistance alteration in an animal model of Staphylococcus aureus and Pseudomonas aeruginosa co-infection. S. aureus and P. aeruginosa were co-cultured on the L-929 cell line and wound infection in an animal model. Then, recombinant staphopain A was purified and used to treat mono- and co-infections. Following the treatment, changes in virulence factors and resistance were investigated through phenotypic methods and RT-PCR. Staphopain A resulted in a notable reduction in the viability of S. aureus and P. aeruginosa. The biofilm formed in the wound infection in both animal model and cell culture was disrupted remarkably. Moreover, the biofilm-encoding genes, quorum sensing regulating genes, and virulence factors (hemolysin and pyocyanin) controlled by QS were down-regulated in both microorganisms. Furthermore, the resistance to vancomycin and doripenem decreased following treatment with staphopain A. According to this study, staphopain A might promote wound healing and cure co-infection. It seems to be a promising agent to combine with antibiotics to overcome hard-to-cure infections.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, Groningen, AV, The Netherlands
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious disease Research center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Bertrand BP, Shinde D, Thomas VC, Whiteley M, Ibberson CB, Kielian T. Metabolic diversity of human macrophages: potential influence on Staphylococcus aureus intracellular survival. Infect Immun 2024; 92:e0047423. [PMID: 38179975 PMCID: PMC10863412 DOI: 10.1128/iai.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.
Collapse
Affiliation(s)
- Blake P. Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dhananjay Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carolyn B. Ibberson
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Langlois JP, Larose A, Brouillette E, Delbrouck JA, Boudreault PL, Malouin F. Mode of Antibacterial Action of Tomatidine C3-Diastereoisomers. Molecules 2024; 29:343. [PMID: 38257256 PMCID: PMC10821064 DOI: 10.3390/molecules29020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3β-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-β) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-β-diastereoisomers may have more specific antibacterial action than C3-α.
Collapse
Affiliation(s)
- Jean-Philippe Langlois
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| | - Audrey Larose
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| | - Eric Brouillette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| | - Julien A. Delbrouck
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Pierre-Luc Boudreault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.-P.L.); (A.L.); (E.B.)
| |
Collapse
|
10
|
Bogut A, Koper P, Marczak M, Całka P. The first genomic characterization of a stable, hemin-dependent small colony variant strain of Staphylococcus epidermidis isolated from a prosthetic-joint infection. Front Microbiol 2023; 14:1289844. [PMID: 37928677 PMCID: PMC10620731 DOI: 10.3389/fmicb.2023.1289844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Phenotype switching from a wild type (WT) to a slow-growing subpopulation, referred to as small colony variants (SCVs), supports an infectious lifestyle of Staphylococcus epidermidis, the leading cause of medical device-related infections. Specific mechanisms underlying formation of SCVs and involved in the shaping of their pathogenic potential are of particular interest for stable strains as they have been only rarely cultured from clinical specimens. As the SCV phenotype stability implies the existence of genetic changes, the whole genome sequence of a stable, hemin-dependent S. epidermidis SCV strain (named 49SCV) involved in a late prosthetic joint infection was analyzed. The strain was isolated in a monoculture without a corresponding WT clone, therefore, its genome was compared against five reference S. epidermidis strains (ATCC12228, ATCC14990, NBRC113846, O47, and RP62A), both at the level of the genome structure and coding sequences. According to the Multilocus Sequence Typing analysis, the 49SCV strain represented the sequence type 2 (ST2) regarded as the most prominent infection-causing lineage with a worldwide dissemination. Genomic features unique to 49SCV included the absence of the Staphylococcal Cassette Chromosome (SCC), ~12 kb deletion with the loss of genes involved in the arginine deiminase pathway, and frameshift-generating mutations within the poly(A) and poly(T) homopolymeric tracts. Indels were identified in loci associated with adherence, metabolism, stress response, virulence, and cell wall synthesis. Of note, deletion in the poly(A) of the hemA gene has been considered a possible trigger factor for the phenotype transition and hemin auxotrophy in the strain. To our knowledge, the study represents the first genomic characterization of a clinical, stable and hemin-dependent S. epidermidis SCV strain. We propose that previously unreported indels in the homopolymeric tracts can constitute a background of the SCV phenotype due to a resulting truncation of the corresponding proteins and their possible biological dysfunction. Streamline of genetic content evidenced by the loss of the SCC and a large genomic deletion can represent a possible strategy associated both with the SCV phenotype and its adaptation to chronicity.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Paulina Całka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Ryan H, Ballard E, Stockwell RE, Duplancic C, Thomson RM, Smith K, Bell SC. A systematic review of the clinical impact of small colony variants in patients with cystic fibrosis. BMC Pulm Med 2023; 23:323. [PMID: 37658311 PMCID: PMC10474644 DOI: 10.1186/s12890-023-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a life-limiting disorder that is characterised by respiratory tract inflammation that is mediated by a range of microbial pathogens. Small colony variants (SCVs) of common respiratory pathogens are being increasingly recognised in CF. The aim of this systematic review is to investigate the prevalence of SCVs, clinical characteristics and health outcomes for patients with CF, and laboratory diagnostic features of SCVs compared to non-small colony variants (NCVs) for a range of Gram-positive and Gram-negative respiratory pathogens. METHODS A literature search was conducted (PubMed, Web of Science, Embase and Scopus) in April 2020 to identify articles of interest. Data pertaining to demographic characteristics of participants, diagnostic criteria of SCVs, SCV prevalence and impact on lung function were extracted from included studies for analysis. RESULTS Twenty-five of 673 studies were included in the systematic review. Individuals infected with SCVs of Staphylococcus aureus (S. aureus) were more likely to have had prior use of the broad-spectrum antibiotic trimethoprim sulfamethoxazole (p < 0.001), and the prevalence of SCVs in patients infected with S. aureus was estimated to be 19.3% (95% CI: 13.5% to 25.9%). Additionally, patients infected with SCVs of Gram-negative and Gram-positive pathogens were identified to have a lower forced expiratory volume in one second percentage predicted (-16.8, 95% CI: -23.2 to -10.4) than those infected by NCVs. Gram-positive SCVs were commonly described as small and non-haemolytic, grown on Mannitol salt or blood agar for 24 h at 35°C and confirmed using tube coagulase testing. CONCLUSION The findings of this systematic review demonstrate that SCVs of S. aureus have a high prevalence in the CF community, and that the occurrence of SCVs in Gram-positive and Gram-negative pathogens is linked to poorer respiratory function. Further investigation is necessary to determine the effect of infection by SCVs on the CF population.
Collapse
Affiliation(s)
- Harrigan Ryan
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Emma Ballard
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rebecca E Stockwell
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Christine Duplancic
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Rachel M Thomson
- Respiratory Research Group, Gallipoli Medical Research Foundation, Greenslopes, QLD, Australia
| | - Kimberley Smith
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Scott C Bell
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia.
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, QLD, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
12
|
Yan J, Yin Q, Nie H, Liang J, Liu XR, Li Y, Xiao H. Prodigiosin as an antibiofilm agent against multidrug-resistant Staphylococcus aureus. BIOFOULING 2023:1-15. [PMID: 37369552 DOI: 10.1080/08927014.2023.2226613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Staphylococcus aureus is known for forming bacterial biofilms that confer increased antimicrobial resistance. Combining antibiotics with antibiofilm agents is an alternative approach, but the antibiofilm ability of prodigiosin (PG), a potential antibiotic synergist, against antimicrobial-resistant (AMR) S. aureus remains to be understood. The antibiofilm activity of PG against 29 clinical AMR S. aureus strains was evaluated using crystal violet staining, and its synergistic effects with vancomycin (VAN) was confirmed using the checkerboard test. The viability and metabolic activity of biofilms and planktonic cells were also assessed. The results revealed that PG exhibited promising inhibitory activity against biofilm formation and synergistic activity with VAN. It effectively reduced the metabolic activity of biofilms and suppressed the production of exopolysaccharides, which might be attributed to the downregulation of biofilm-related genes such as sarA, agrA, and icaA. These findings suggest that PG could be used as a preventive coating or adjuvant against biofilms in clinical settings.
Collapse
Affiliation(s)
- Jing Yan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Hao Nie
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| | - Xiang-Ru Liu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
13
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
14
|
Millette G, Séguin DL, Isabelle C, Chamberland S, Lucier JF, Rodrigue S, Cantin AM, Malouin F. Staphylococcus aureus Small-Colony Variants from Airways of Adult Cystic Fibrosis Patients as Precursors of Adaptive Antibiotic-Resistant Mutations. Antibiotics (Basel) 2023; 12:1069. [PMID: 37370388 PMCID: PMC10294822 DOI: 10.3390/antibiotics12061069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.
Collapse
Affiliation(s)
- Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - David Lalonde Séguin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Charles Isabelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - André M. Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| |
Collapse
|
15
|
Tao Z, Wang H, Ke K, Shi D, Zhu L. Flavone inhibits Staphylococcus aureus virulence via inhibiting the sae two component system. Microb Pathog 2023; 180:106128. [PMID: 37148922 DOI: 10.1016/j.micpath.2023.106128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The rising prevalence of antibiotic resistance in Staphylococcus aureus calls for the development of innovative antimicrobial agents targeting novel pathways. S. aureus generates various virulence factors that compromise host defense mechanisms. Flavone, a core structure of flavonoids, has been shown to diminish the production of staphyloxanthin and alpha-hemolysin. Nonetheless, the influence of flavone on the majority of other virulence factors in S. aureus and its underlying molecular mechanism remain elusive. In this study, we examined the impact of flavone on the transcriptional profile of S. aureus using transcriptome sequencing. Our findings revealed that flavone substantially downregulated the expression of over 30 virulence factors implicated in immune evasion by the pathogen. Gene set enrichment analysis of the fold change-ranked gene list in relation to the Sae regulon indicated a robust association between flavone-induced downregulation and membership in the Sae regulon. Through the analysis of Sae target promoter-gfp fusion expression patterns, we observed a dose-dependent inhibition of Sae target promoter activity by flavone. Moreover, we discovered that flavone protected human neutrophils from S. aureus-mediated killing. Flavone also decreased the expression of alpha-hemolysin and other hemolytic toxins, resulting in a reduction in S. aureus' hemolytic capacity. Additionally, our data suggested that the inhibitory effect of flavone on the Sae system operates independently of its capacity to lower staphyloxanthin levels. In conclusion, our study proposes that flavone exhibits a broad inhibitory action on multiple virulence factors of S. aureus by targeting the Sae system, consequently diminishing the bacterium's pathogenicity.
Collapse
Affiliation(s)
- Zhanhua Tao
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, 530003, Guangxi, China.
| | - Haoren Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, Heilongjiang, China.
| | - Ke Ke
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Deqiang Shi
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Libo Zhu
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| |
Collapse
|
16
|
Mashayamombe M, Carda-Diéguez M, Mira A, Fitridge R, Zilm PS, Kidd SP. Subpopulations in Strains of Staphylococcus aureus Provide Antibiotic Tolerance. Antibiotics (Basel) 2023; 12:antibiotics12020406. [PMID: 36830316 PMCID: PMC9952555 DOI: 10.3390/antibiotics12020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ability of Staphylococcus aureus to colonise different niches across the human body is linked to an adaptable metabolic capability, as well as its ability to persist within specific tissues despite adverse conditions. In many cases, as S. aureus proliferates within an anatomical niche, there is an associated pathology. The immune response, together with medical interventions such as antibiotics, often removes the S. aureus cells that are causing this disease. However, a common issue in S. aureus infections is a relapse of disease. Within infected tissue, S. aureus exists as a population of cells, and it adopts a diversity of cell types. In evolutionary biology, the concept of "bet-hedging" has established that even in positive conditions, there are members that arise within a population that would be present as non-beneficial, but if those conditions change, these traits could allow survival. For S. aureus, some of these cells within an infection have a reduced fitness, are not rapidly proliferating or are the cause of an active host response and disease, but these do remain even after the disease seems to have been cleared. This is true for persistence against immune responses but also as a continual presence in spite of antibiotic treatment. We propose that the constant arousal of suboptimal populations at any timepoint is a key strategy for S. aureus long-term infection and survival. Thus, understanding the molecular basis for this feature could be instrumental to combat persistent infections.
Collapse
Affiliation(s)
- Matipaishe Mashayamombe
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Adelaide, SA 5000, Australia
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, 46020 Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, 46020 Valencia, Spain
- School of Health and Welfare, Jönköping University, 551 11 Jönköping, Sweden
| | - Robert Fitridge
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Adelaide, SA 5000, Australia
| | - Peter S. Zilm
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Stephen P. Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Centre for Antimicrobial Resistance Ecology (ACARE), The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence:
| |
Collapse
|
17
|
Yeak KYC, Boekhorst J, Wels M, Abee T, Wells-Bennik MHJ. Prediction and validation of novel SigB regulon members in Bacillus subtilis and regulon structure comparison to Bacillales members. BMC Microbiol 2023; 23:17. [PMID: 36653740 PMCID: PMC9847131 DOI: 10.1186/s12866-022-02700-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. RESULTS In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved - 10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved - 10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. CONCLUSION The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Host Microbe Interactomics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Wels
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.426040.4Rijk Zwaan Breeding B.V, Fijnaart, The Netherlands
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Durand BARN, Pouget C, Magnan C, Molle V, Lavigne JP, Dunyach-Remy C. Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Microorganisms 2022; 10:microorganisms10081500. [PMID: 35893558 PMCID: PMC9332326 DOI: 10.3390/microorganisms10081500] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds, defined by their resistance to care after four weeks, are a major concern, affecting millions of patients every year. They can be divided into three types of lesions: diabetic foot ulcers (DFU), pressure ulcers (PU), and venous/arterial ulcers. Once established, the classical treatment for chronic wounds includes tissue debridement at regular intervals to decrease biofilm mass constituted by microorganisms physiologically colonizing the wound. This particular niche hosts a dynamic bacterial population constituting the bed of interaction between the various microorganisms. The temporal reshuffle of biofilm relies on an organized architecture. Microbial community turnover is mainly associated with debridement (allowing transitioning from one major representant to another), but also with microbial competition and/or collaboration within wounds. This complex network of species and interactions has the potential, through diversity in antagonist and/or synergistic crosstalk, to accelerate, delay, or worsen wound healing. Understanding these interactions between microorganisms encountered in this clinical situation is essential to improve the management of chronic wounds.
Collapse
Affiliation(s)
- Benjamin A. R. N. Durand
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Cassandra Pouget
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, 34000 Montpellier, France;
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
- Correspondence: ; Tel.: +33-466-683-202
| |
Collapse
|
19
|
Menard G, Silard C, Suriray M, Rouillon A, Augagneur Y. Thirty Years of sRNA-Mediated Regulation in Staphylococcus aureus: From Initial Discoveries to In Vivo Biological Implications. Int J Mol Sci 2022; 23:ijms23137346. [PMID: 35806357 PMCID: PMC9266662 DOI: 10.3390/ijms23137346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is a widespread livestock and human pathogen that colonizes diverse microenvironments within its host. Its adaptation to the environmental conditions encountered within humans relies on coordinated gene expression. This requires a sophisticated regulatory network, among which regulatory RNAs (usually called sRNAs) have emerged as key players over the last 30 years. In S. aureus, sRNAs regulate target genes at the post-transcriptional level through base–pair interactions. The functional characterization of a subset revealed that they participate in all biological processes, including virulence, metabolic adaptation, and antibiotic resistance. In this review, we report 30 years of S. aureus sRNA studies, from their discovery to the in-depth characterizations of some of them. We also discuss their actual in vivo contribution, which is still lagging behind, and their place within the complex regulatory network. These shall be key aspects to consider in order to clearly uncover their in vivo biological functions.
Collapse
Affiliation(s)
- Guillaume Menard
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Chloé Silard
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Marie Suriray
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Astrid Rouillon
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Yoann Augagneur
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
- Correspondence: ; Tel.: +33-223234631
| |
Collapse
|
20
|
Zhou S, Rao Y, Li J, Huang Q, Rao X. Staphylococcus aureus small-colony variants: Formation, infection, and treatment. Microbiol Res 2022; 260:127040. [DOI: 10.1016/j.micres.2022.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
21
|
Patel N, Nair M. The small RNA RsaF regulates the expression of secreted virulence factors in Staphylococcus aureus Newman. J Microbiol 2021; 59:920-930. [PMID: 34554453 DOI: 10.1007/s12275-021-1205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2-0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.
Collapse
Affiliation(s)
- Niralee Patel
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Mrinalini Nair
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
22
|
Demontier E, Dubé-Duquette A, Brouillette E, Larose A, Ster C, Lucier JF, Rodrigue S, Park S, Jung D, Ruffini J, Ronholm J, Dufour S, Roy JP, Ramanathan S, Malouin F. Relative virulence of Staphylococcus aureus bovine mastitis strains representing the main Canadian spa types and clonal complexes as determined using in vitro and in vivo mastitis models. J Dairy Sci 2021; 104:11904-11921. [PMID: 34454755 DOI: 10.3168/jds.2020-19904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is one of the main pathogens leading to both clinical and subclinical bovine mastitis in dairy cattle. Prediction of disease evolution based on the characteristics of Staph. aureus isolates that cause intramammary infections and understanding the host-pathogen interactions may improve management of mastitis in dairy herds. For this study, several strains were selected from each of the 6 major Canadian spa types associated with mastitis (t267, t359, t529, t605, t2445, and t13401). Adherence to host cells and intracellular persistence of these strains were studied using a bovine mammary gland epithelial cell line (MAC-T). Additionally, relative virulence and host response (cytokines production) were also studied in vivo using a mouse model of mastitis. Whole-genome sequencing was performed on all strains and associations between clonal complex, sequence type, and presence of certain virulence factors were also investigated. Results show that spa type t2445 was correlated with persistence in MAC-T cells. Strains from spa t359 and t529 showed better ability to colonize mouse mammary glands. The exception was strain sa3154 (spa t529), which showed less colonization of glands compared with other t359 and t529 strains but possessed the highest number of superantigen genes including tst. All strains possessed hemolysins, but spa types t529 and t2445 showed the largest diameter of β-hemolysis on blood agar plates. Although several spa types possessed 2 or 3 serine-aspartate rich proteins (Sdr) believed to be involved in many pathogenic processes, most t529 strains expressed only an allelic variant of sdrE. The spa types t605 (positive for the biofilm associated protein gene; bap+) and t13401 (bap-), that produced the largest amounts of biofilm in vitro, were the least virulent in vivo. Finally, strains from spa type t529 (ST151) elicited a cytokine expression profile (TNF-α, IL-1β and IL-12) that suggests a potential for severe inflammation. This study suggests that determination of the spa type may help predict the severity of the disease and the ability of the immune system to eliminate intramammary infections caused by Staph. aureus.
Collapse
Affiliation(s)
- Elodie Demontier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Alexis Dubé-Duquette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Eric Brouillette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Audrey Larose
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Céline Ster
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Soyoun Park
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Dongyun Jung
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Janina Ruffini
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jennifer Ronholm
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Simon Dufour
- Département de pathologie et microbiologie and Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Jean-Philippe Roy
- Département de pathologie et microbiologie and Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Sheela Ramanathan
- Département d'immunologie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
23
|
Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains isolated from dairy products: Relationship of ica-dependent/independent and components of biofilms produced in vitro. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
25
|
Doghri I, Cherifi T, Goetz C, Malouin F, Jacques M, Fravalo P. Counteracting Bacterial Motility: A Promising Strategy to Narrow Listeria monocytogenes Biofilm in Food Processing Industry. Front Microbiol 2021; 12:673484. [PMID: 34149663 PMCID: PMC8206544 DOI: 10.3389/fmicb.2021.673484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is often associated with processed food as it can form biofilms that represent a source of contamination at all stages of the manufacturing chain. The control and prevention of biofilms in food-processing plants are of utmost importance. This study explores the efficacy of prospect molecules for counteracting bacterial mechanisms leading to biofilm formation. The compounds included the phytomolecule tomatidine, zinc chloride (ZnCl2), ethylenediaminetetraacetic acid (EDTA), and a more complexed mixture of bacterial compounds from coagulase-negative staphylococci (CNS exoproducts). Significant inhibition of L. monocytogenes biofilm formation was evidenced using a microfluidic system and confocal microscopic analyses (p < 0.001). Active molecules were effective at an early stage of biofilm development (≥50% of inhibition) but failed to disperse mature biofilms of L. monocytogenes. According to our findings, prevention of surface attachment was associated with a disruption of bacterial motility. Indeed, agar cell motility assays demonstrated the effectiveness of these molecules. Overall, results highlighted the critical role of motility in biofilm formation and allow to consider flagellum-mediated motility as a promising molecular target in control strategies against L. monocytogenes in food processing environments.
Collapse
Affiliation(s)
- Ibtissem Doghri
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda
| | - Tamazight Cherifi
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Chaire de Recherche en Salubrité des Viandes (CRSV), Montreal, QC, Cananda
| | - Coralie Goetz
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda
| | - François Malouin
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mario Jacques
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda
| | - Philippe Fravalo
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Chaire de Recherche en Salubrité des Viandes (CRSV), Montreal, QC, Cananda
| |
Collapse
|
26
|
Martins KB, Olmedo DWV, Paz MM, Ramos DF. Staphylococcus aureus and its Effects on the Prognosis of Bronchiectasis. Microb Drug Resist 2020; 27:823-834. [PMID: 33232626 DOI: 10.1089/mdr.2020.0352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bronchiectasis, which is an abnormal and irreversible dilation of one or several bronchial segments, causes significant morbidity and impaired quality of life to patients, mainly as the result of recurrent and chronic respiratory infections. Staphylococcus aureus is a microorganism known for its high infectious potential related to the production of molecules with great pathogenic power, such as enzymes, toxins, adhesins, and biofilm, which determine the degree of severity of systemic symptoms and can induce exacerbated immune response. This review highlighted the clinical significance of S. aureus colonization/infection in bronchiectasis patients, since little is known about it, despite its increasing frequency of isolation and potential serious morbidity.
Collapse
Affiliation(s)
- Katheryne Benini Martins
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Daniel Wenceslau Votto Olmedo
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Milene Machado Paz
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
Antibiofilm effects of N,O-acetals derived from 2-amino-1,4-naphthoquinone are associated with downregulation of important global virulence regulators in methicillin-resistant Staphylococcus aureus. Sci Rep 2020; 10:19631. [PMID: 33184312 PMCID: PMC7661526 DOI: 10.1038/s41598-020-76372-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the existing antibiotics, antimicrobial resistance is a major challenge. Consequently, the development of new drugs remains in great demand. Quinones is part of a broad group of molecules that present antibacterial activity besides other biological properties. The main purpose of this study was to evaluate the antibiofilm activities of synthetic N,O-acetals derived from 2-amino-1,4-naphthoquinone [7a: 2-(methoxymethyl)-amino-1,4-naphthoquinone; 7b: 2-(ethoxymethyl)-amino-1,4-naphthoquinone; and 7c: 2-(propynyloxymethyl)-amino-1,4-naphthoquinone] against methicillin-resistant Staphylococcus aureus (MRSA). The derivatives 7b and 7c, specially 7b, caused strong impact on biofilm accumulation. This inhibition was linked to decreased expression of the genes fnbA, spa, hla and psmα3. More importantly, this downregulation was paralleled by the modulation of global virulence regulators. The substitution of 2-ethoxymethyl (7b) in comparison with 2-propynyloxymethyl (7c) enhanced sarA-agr inhibition, decreased fnbA transcripts (positively regulated by sarA) and strongly impaired biofilm accumulation. Indeed, 7b triggered intensive autolysis and was able to eliminate vancomycin-persistent cells. Consequently, 7b is a promising molecule displaying not only antimicrobial effects, but also antibiofilm and antipersistence activities. Therefore, 7b is a good candidate for further studies involving the development of novel and more rational antimicrobials able to act in chronic and recalcitrant infections, associated with biofilm formation.
Collapse
|
28
|
A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 2020; 148:104431. [PMID: 32801004 DOI: 10.1016/j.micpath.2020.104431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, a significant infection of bone tissue, gives rise to two main groups of infection: acute and chronic. These groups are further categorized in terms of the duration of infection. Usually, children and adults are more susceptible to acute and chronic infections, respectively. The aforementioned groups of osteomyelitis share almost 80% of the corresponding bacterial pathogens. Among all bacteria, Staphylococcus aureus (S. aureus) is a significant pathogen and is associated with a high range of osteomyelitis symptoms. S. aureus has many strategies for interacting with host cells including Small Colony Variant (SCV), biofilm formation, and toxin secretion. In addition, it induces an inflammatory response and causes host cell death by apoptosis and necrosis. However, any possible step to take in this respect is dependent on the conditions and host responses. In the absence of any immune responses and antibiotics, bacteria actively duplicate themselves; however, in the presence of phagocytic cell and harassing conditions, they turn into a SCV, remaining sustainable for a long time. SCV is characterized by notable advantages such as (a) intracellular life that mediates a dam against immune cells and (b) low ATP production that mediates resistance against antibiotics.
Collapse
|
29
|
Häffner N, Bär J, Dengler Haunreiter V, Mairpady Shambat S, Seidl K, Crosby HA, Horswill AR, Zinkernagel AS. Intracellular Environment and agr System Affect Colony Size Heterogeneity of Staphylococcus aureus. Front Microbiol 2020; 11:1415. [PMID: 32695082 PMCID: PMC7339952 DOI: 10.3389/fmicb.2020.01415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes chronic and relapsing infections, which may be difficult to treat. So-called small colony variants (SCVs) have been associated with chronic infections and their occurrence has been shown to increase under antibiotic pressure, low pH and intracellular localization. In clinics, S. aureus isolated from invasive infections often show a dysfunction in the accessory gene regulator (agr), a major virulence regulatory system in S. aureus. To assess whether intracellular environment and agr function influence SCV formation, an infection model was established using lung epithelial cells and skin fibroblasts. This allowed analyzing intracellular survival and localization of a panel of S. aureus wild type strains and their isogenic agr knock out mutants as well as a natural dysfunctional agr strain by confocal laser scanning microscopy (CLSM). Furthermore, bacterial colonies were quantified after 1, 3, and 5 days of intracellular survival by time-lapse analysis to determine kinetics of colony appearance and SCV formation. Here, we show that S. aureus strains with an agr knock out predominantly resided in a neutral environment, whereas wild type strains and an agr complemented strain resided in an acidic environment. S. aureus agr mutants derived from an intracellular environment showed a higher percentage of SCVs as compared to their corresponding wild type strains. Neutralizing acidic phagolysosomes with chloroquine resulted in a significant reduction of SCVs in S. aureus wild type strain 6850, but not in its agr mutant indicating a pH dependent formation of SCVs in the wild type strain. The in-depth understanding of the interplay between intracellular persistence, agr function and pH should help to identify new therapeutic options facilitating the treatment of chronic S. aureus infections in the future.
Collapse
Affiliation(s)
- Nicola Häffner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vanina Dengler Haunreiter
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kati Seidl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heidi A Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Tuchscherr L, Löffler B, Proctor RA. Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs). Front Microbiol 2020; 11:1028. [PMID: 32508801 PMCID: PMC7253646 DOI: 10.3389/fmicb.2020.01028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is able to survive within host cells by switching its phenotype to the small-colony variant (SCV) phenotype. The emergence of SCVs is associated with the development of persistent infections, which may be both chronic and recurrent. This slow-growing subpopulation of S. aureus forms small colonies on solid-medium agar, is induced within host cells, presents a non-homogenous genetic background, has reduced expression of virulence factors and presents a variable phenotype (stable or unstable). While virtually all SCVs isolated from clinical specimens can revert to the parental state with rapid growth, the stable SCVs recovered in clinical specimens have been found to contain specific mutations in metabolic pathways. In contrast, other non-stable SCVs are originated from regulatory mechanisms involving global regulators (e.g., sigB, sarA, and agr) or other non-defined mutations. One major characteristic of SCVs was the observation that SCVs were recovered from five patients with infections that could persist for decades. In these five cases, the SCVs had defects in electron transport. This linked persistent infections with SCVs. The term "persistent infection" is a clinical term wherein bacteria remain in the host for prolonged periods of time, sometimes with recurrent infection, despite apparently active antibiotics. These terms were described in vitro where bacteria remain viable in liquid culture medium in the presence of antibiotics. These bacteria are called "persisters". While SCVs can be persisters in liquid culture, not all persisters are SCVs. One mechanism associated with the metabolically variant SCVs is the reduced production of virulence factors. SCVs have consistently shown reduced levels of RNAIII, a product of the accessory gene regulatory (agrBDCA) locus that controls a quorum-sensing system and regulates the expression of a large number of virulence genes. Reduced Agr acitivity is associated with enhanced survival of SCVs within host cells. In this review, we examine the impact of the SCVs with altered metabolic pathways on agr, and we draw distinctions with other types of SCVs that emerge within mammalian cells with prolonged infection.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin Medical School, Madison, WI, United States
| |
Collapse
|
31
|
Lee J, Zilm PS, Kidd SP. Novel Research Models for Staphylococcus aureus Small Colony Variants (SCV) Development: Co-pathogenesis and Growth Rate. Front Microbiol 2020; 11:321. [PMID: 32184775 PMCID: PMC7058586 DOI: 10.3389/fmicb.2020.00321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus remains a great burden on the healthcare system. Despite prescribed treatments often seemingly to be successful, S. aureus can survive and cause a relapsing infection which cannot be cleared. These infections are in part due to quasi-dormant sub-population which is tolerant to antibiotics and able to evade the host immune response. These include Small Colony Variants (SCVs). Because SCVs readily revert to non-SCV cell types under laboratory conditions, the characterization of SCVs has been problematic. This mini-review covers the phenotypic and genetic changes in stable SCVs including the selection of SCVs by and interactions with other bacterial species.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| | - Peter S Zilm
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| |
Collapse
|
32
|
Augagneur Y, King AN, Germain-Amiot N, Sassi M, Fitzgerald JW, Sahukhal GS, Elasri MO, Felden B, Brinsmade SR. Analysis of the CodY RNome reveals RsaD as a stress-responsive riboregulator of overflow metabolism in Staphylococcus aureus. Mol Microbiol 2019; 113:309-325. [PMID: 31696578 DOI: 10.1111/mmi.14418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 11/28/2022]
Abstract
In Staphylococcus aureus, the transcription factor CodY modulates the expression of hundreds of genes, including most virulence factors, in response to the availability of key nutrients like GTP and branched-chain amino acids. Despite numerous studies examining how CodY controls gene expression directly or indirectly, virtually nothing is known about the extent to which CodY exerts its effect through small regulatory RNAs (sRNAs). Herein, we report the first set of sRNAs under the control of CodY. We reveal that staphylococcal sRNA RsaD is overexpressed >20-fold in a CodY-deficient strain in three S. aureus clinical isolates and in S. epidermidis. We validated the CodY-dependent regulation of rsaD and demonstrated that CodY directly represses rsaD expression by binding the promoter. Using a combination of molecular techniques, we show that RsaD posttranscriptionally regulates alsS (acetolactate synthase) mRNA and enzyme levels. We further show that RsaD redirects carbon overflow metabolism, contributing to stationary phase cell death during exposure to weak acid stress. Taken together, our data delineate a role for CodY in controlling sRNA expression in a major human pathogen and indicate that RsaD may integrate nutrient depletion and other signals to mount a response to physiological stress experienced by S. aureus in diverse environments.
Collapse
Affiliation(s)
- Yoann Augagneur
- INSERM U1230 Biochimie Pharmaceutique, Université de Rennes I, Rennes, France
| | - Alyssa N King
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Mohamed Sassi
- INSERM U1230 Biochimie Pharmaceutique, Université de Rennes I, Rennes, France
| | | | - Gyan S Sahukhal
- Center of Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Mohamed O Elasri
- Center of Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Brice Felden
- INSERM U1230 Biochimie Pharmaceutique, Université de Rennes I, Rennes, France
| | | |
Collapse
|
33
|
Millette G, Langlois JP, Brouillette E, Frost EH, Cantin AM, Malouin F. Despite Antagonism in vitro, Pseudomonas aeruginosa Enhances Staphylococcus aureus Colonization in a Murine Lung Infection Model. Front Microbiol 2019; 10:2880. [PMID: 31921058 PMCID: PMC6923662 DOI: 10.3389/fmicb.2019.02880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are prevalent lung pathogens in cystic fibrosis (CF). Whereas co-infection worsens the clinical outcome, prototypical strains are usually antagonistic in vitro. We sought to resolve the discrepancy between these in vitro and in vivo observations. In vitro, growth kinetics for co-cultures of co-isolates from CF patients showed that not all P. aeruginosa strains affected S. aureus viability. On solid media, S. aureus slow-growing colonies were visualized around some P. aeruginosa strains whether or not S. aureus viability was reduced in liquid co-cultures. The S. aureus-P. aeruginosa interactions were then characterized in a mouse lung infection model. Lung homogenates were plated on selective media allowing colony counts of either bacterium. Overall, 35 P. aeruginosa and 10 S. aureus strains (clinical, reference, and mutant strains), for a total of 200 co-infections, were evaluated. We observed that S. aureus colonization of lung tissues was promoted by P. aeruginosa and even by strains showing antagonism in vitro. Promotion was proportional to the extent of P. aeruginosa colonization, but no correlation was found with the degree of myeloperoxidase quantification (as marker of inflammation) or with specific virulence-associated factors using known mutant strains of S. aureus and P. aeruginosa. On the other hand, P. aeruginosa significantly increased the expression of two possible cell receptors for S. aureus, i.e., ICAM-1 and ITGA-5 (marker for integrin α5β1) in lung tissue, while mono-infections by S. aureus did not. This study provides insights on polymicrobial interactions that may influence the progression of CF-associated pulmonary infections.
Collapse
Affiliation(s)
- Guillaume Millette
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Langlois
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Brouillette
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et de Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André M Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Ma D, Mandell JB, Donegan NP, Cheung AL, Ma W, Rothenberger S, Shanks RMQ, Richardson AR, Urish KL. The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection. mBio 2019; 10:e01658-19. [PMID: 31772059 PMCID: PMC6879715 DOI: 10.1128/mbio.01658-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is the major organism responsible for surgical implant infections. Antimicrobial treatment of these infections often fails, leading to expensive surgical intervention and increased risk of mortality to the patient. The challenge in treating these infections is associated with the high tolerance of S. aureus biofilm to antibiotics. MazEF, a toxin-antitoxin system, is thought to be an important regulator of this phenotype, but its physiological function in S. aureus is controversial. Here, we examined the role of MazEF in developing chronic infections by comparing growth and antibiotic tolerance phenotypes in three S. aureus strains to their corresponding strains with disruption of mazF expression. Strains lacking mazF production showed increased biofilm growth and decreased biofilm antibiotic tolerance. Deletion of icaADBC in the mazF::Tn background suppressed the growth phenotype observed with mazF-disrupted strains, suggesting the phenotype was ica dependent. We confirmed these phenotypes in our murine animal model. Loss of mazF resulted in increased bacterial burden and decreased survival rate of mice compared to its wild-type strain demonstrating that loss of the mazF gene caused an increase in S. aureus virulence. Although lack of mazF gene expression increased S. aureus virulence, it was more susceptible to antibiotics in vivo Combined, the ability of mazF to inhibit biofilm formation and promote biofilm antibiotic tolerance plays a critical role in transitioning from an acute to chronic infection that is difficult to eradicate with antibiotics alone.IMPORTANCE Surgical infections are one of the most common types of infections encountered in a hospital. Staphylococcus aureus is the most common pathogen associated with this infection. These infections are resilient and difficult to eradicate, as the bacteria form biofilm, a community of bacteria held together by an extracellular matrix. Compared to bacteria that are planktonic, bacteria in a biofilm are more resistant to antibiotics. The mechanism behind how bacteria develop this resistance and establish a chronic infection is unknown. We demonstrate that mazEF, a toxin-antitoxin gene, inhibits biofilm formation and promotes biofilm antibiotic tolerance which allows S. aureus to transition from an acute to chronic infection that cannot be eradicated with antibiotics but is less virulent. This gene not only makes the bacteria more tolerant to antibiotics but makes the bacteria more tolerant to the host.
Collapse
Affiliation(s)
- Dongzhu Ma
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan B Mandell
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Wanyan Ma
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott Rothenberger
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Group, Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- The Bone and Joint Center, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Schleimer N, Kaspar U, Ballhausen B, Fotiadis SA, Streu JM, Kriegeskorte A, Proctor RA, Becker K. Adaption of an Episomal Antisense Silencing Approach for Investigation of the Phenotype Switch of Staphylococcus aureus Small-Colony Variants. Front Microbiol 2019; 10:2044. [PMID: 31551979 PMCID: PMC6738336 DOI: 10.3389/fmicb.2019.02044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus small-colony variants (SCVs) are associated with chronic, persistent, and relapsing courses of infection and are characterized by slow growth combined with other phenotypic and molecular traits. Although certain mechanisms have been described, the genetic basis of clinical SCVs remains often unknown. Hence, we adapted an episomal tool for rapid identification and investigation of putative SCV phenotype-associated genes via antisense gene silencing based on previously described Tnl0-encoded tet-regulatory elements. Targeting the SCV phenotype-inducing enoyl-acyl-carrier-protein reductase gene (fabI), plasmid pSN1-AS‘fabI’ was generated leading to antisense silencing, which was proven by pronounced growth retardation in liquid cultures, phenotype switch on solid medium, and 200-fold increase of antisense ‘fabI’ expression. A crucial role of TetR repression in effective regulation of the system was demonstrated. Based on the use of anhydrotetracycline as effector, an easy-to-handle one-plasmid setup was set that may be applicable to different S. aureus backgrounds and cell culture studies. However, selection of the appropriate antisense fragment of the target gene remains a critical factor for effectiveness of silencing. This inducible gene expression system may help to identify SCV phenotype-inducing genes, which is prerequisite for the development of new antistaphylococcal agents and future alternative strategies to improve treatment of therapy-refractory SCV-related infections by iatrogenically induced phenotypic switch. Moreover, it can be used as controllable phenotype switcher to examine important aspects of SCV biology in cell culture as well as in vivo.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Britta Ballhausen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Sarah A Fotiadis
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jessica M Streu
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - André Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
36
|
Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist 2019; 12:2151-2160. [PMID: 31410034 PMCID: PMC6647007 DOI: 10.2147/idr.s193649] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is an important and common Gram-positive bacteria which causes clinical infections and food-poisoning cases. Therapeutic schedules for treatment of S. aureus infections are facing a challenge because of the emergence of multidrug resistance strains. It is urgent to find new antiinfective drugs to control S. aureus infection. S. aureus strains are capable of producing the golden carotenoid pigment: staphyloxanthin, which acts as an important virulence factor and a potential target for antivirulence drug design. This review is aimed at presenting an updated overview of this golden carotenoid pigment of S. aureus from the biosynthesis of staphyloxanthin, its function, and the genes involved in pigment production to staphyloxanthin: a novel target for antivirulence therapy.
Collapse
Affiliation(s)
- Lijun Xue
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China.,College of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing, 400020, People's Republic of China
| | - Yang Yizhi Chen
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhiyun Yan
- Wuhan Wusteel Good Life Service Co. LTD, Wuhan, 430000, People's Republic of China
| | - Wei Lu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Wan
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
37
|
A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00116-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Zhang P, Wright JA, Tymon A, Nair SP. Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants. J Antimicrob Chemother 2019; 73:615-619. [PMID: 29211886 PMCID: PMC5890704 DOI: 10.1093/jac/dkx433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 01/29/2023] Open
Abstract
Objectives Staphylococcus aureus small colony variants (SCVs) cause persistent infections and are resistant to cationic antibiotics. Antimicrobial peptides (AMPs) have been suggested as promising alternatives for treating antibiotic-resistant bacteria. We investigated the capacity of the human cationic AMP LL-37 to kill SCVs in the presence of physiological concentrations of bicarbonate, which are reported to alter bacterial membrane permeability and change resistance of bacteria to AMPs. Methods MBCs of LL-37 for S. aureus SCVs with mutations in different genes in the presence and absence of bicarbonate were determined. Results In the absence of bicarbonate, SCVs of S. aureus strains LS-1 and 8325-4 had the same level of resistance to LL-37 as the parental strain (8 mg/L). In the presence of bicarbonate, hemB, menD and aroD SCVs of LS-1 had high-level resistance to LL-37 (≥128 mg/L) compared with the parental strain (16 mg/L). However, only the aroD SCV of strain 8324-5 showed high-level resistance. 8325-4 harbours mutations in two genes, tcaR and rsbU, which are involved in antimicrobial sensing and the stress response, respectively. When rsbU was repaired in 8325-4 it displayed high-level resistance to LL-37 in the presence of bicarbonate. This phenotype was lost when tcaR was also repaired, demonstrating that RsbU and TcaR are involved in LL-37 resistance in the presence of bicarbonate Conclusions S. aureus SCVs would be resistant to high concentrations of LL-37 in niches where there are physiological concentrations of bicarbonate and therefore this AMP may not be effective in combating SCVs.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - John A Wright
- Immunology Catalyst, GSK, Stevenage, Hertfordshire, UK
| | - Anna Tymon
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| |
Collapse
|
39
|
Artificial Selection for Pathogenicity Mutations in Staphylococcus aureus Identifies Novel Factors Relevant to Chronic Infection. Infect Immun 2019; 87:IAI.00884-18. [PMID: 30642903 DOI: 10.1128/iai.00884-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Adaptation of Staphylococcus aureus to host microenvironments during chronic infection involves spontaneous mutations, yet changes underlying adaptive phenotypes remain incompletely explored. Here, we employed artificial selection and whole-genome sequencing to better characterize spontaneous chromosomal mutations that alter two pathogenicity phenotypes relevant to chronic infection in S. aureus: intracellular invasiveness and intracellular cytotoxicity. We identified 23 genes whose alteration coincided with enhanced virulence, 11 that were previously known and 12 (52%) that had no previously described role in S. aureus pathogenicity. Using precision genome editing, transposon mutants, and gene complementation, we empirically assessed the contributions of individual genes to the two virulence phenotypes. We functionally validated 14 of 21 genes tested as measurably influencing invasion and/or cytotoxicity, including 8 newly implicated by this study. We identified inactivating mutations (murA, ndhC, and a hypothetical membrane protein) and gain-of-function mutations (aroE Thr182Ile, yhcF Thr74Ile, and Asp486Glu in a hypothetical peptidase) in previously unrecognized S. aureus virulence genes that enhance pathogenesis when introduced into a clean genetic background, as well as a novel activating mutation in the known virulence regulator gene saeS (Ala106Thr). Investigation of potentially epistatic interactions identified a tufA mutation (Ala271Val) that enhances virulence only in the context of purine operon repressor gene (purR) inactivation. This project reveals a functionally diverse range of genes affected by gain- or loss-of-function mutations that contribute to S. aureus adaptive virulence phenotypes. More generally, the work establishes artificial selection as a means to determine the genetic mechanisms underlying complex bacterial phenotypes relevant to adaptation during infection.
Collapse
|
40
|
Mitsuwan W, Jiménez-Munguía I, Visutthi M, Sianglum W, Rodríguez-Ortega MJ, Voravuthikunchai SP. Rhodomyrtone decreases Staphylococcus aureus SigB activity during exponentially growing phase and inhibits haemolytic activity within membrane vesicles. Microb Pathog 2019; 128:112-118. [PMID: 30583020 DOI: 10.1016/j.micpath.2018.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023]
Abstract
Sigma factor B (SigB) controls the expression of Staphylococcus aureus genes including virulence factors and plays a role in the bacterial secretion system through membrane vesicle production. Inhibition of SigB could attenuate SigB dependent virulence and secretion system. The objective of this study was to determine the effects of rhodomyrtone on SigB and virulence factors related to SigB. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of rhodomyrtone against 67 clinical methicillin-resistant S. aureus isolates were 0.25-8 μg/ml, which were similar to those of vancomycin. Using luciferase gene fused to SigB dependent promoters of asp23, five time reduction in SigB activity was observed when the bacteria were treated with rhodomyrtone for 3 h. Rhodomyrtone significantly reduced SigB activity in a concentration dependent manner in exponentially growing cells (P < 0.05). In addition, sigB mutant was more sensitive towards increasing concentrations of rhodomyrtone than the wild type and yabJ-spoVG mutant. Rhodomyrtone at 0.625 μg/ml reduced the growth of sigB mutant by approximately 99%, compared with the yabJ-spoVG mutant and the wild type. Membrane vesicles were significantly reduced in the bacterial cells when treated with 0.5 × MIC rhodomyrtone (P < 0.05). Decreased haemolytic activity was detected within rhodomyrtone-treated membrane vesicles. The results indicated that rhodomyrtone inhibited S. aureus SigB activity during exponentially growing phase and inhibited haemolytic activity within membrane vesicles.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Department of Engineering of Technological Equipment, National University of Science and Technology "MISiS", Moscow, Russia
| | - Monton Visutthi
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wipawadee Sianglum
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Supayang P Voravuthikunchai
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
41
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
42
|
Singh N, Rajwade J, Paknikar KM. Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition. Colloids Surf B Biointerfaces 2018; 175:487-497. [PMID: 30572157 DOI: 10.1016/j.colsurfb.2018.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
The biofilms of Staphylococcus aureus on the implanted materials and chronic wounds are life-threatening and are a substantial financial burden on the healthcare system. Silver nanoparticles (SNP), known for their multi-level physiological effects in planktonic cells could be a promising agent in the treatment of biofilm-related infections also. To gain insight into the effects of SNP on various physiological processes in biofilms we studied the transcriptome of Staphylococcus aureus ATCC 29213. To distinguish between 'nanoparticles-specific' and 'ion-specific' effect of silver, we performed a comparative analysis of the functional genes in response to Ag+. As compared to untreated biofilms, 21% (i.e. 629 genes) and 28.5% (i. e. 830 genes) of the total functional coding genes were differentially regulated upon exposure to SNP and Ag+. Genes encoding capsular polysaccharides, intercellular adhesion, virulence were downregulated in SNP and Ag+ treated biofilms. Genes involved in carbohydrate, protein metabolism including DNA and RNA synthesis, oxidative stress etc. were differentially expressed. Further, activation of efflux pumps and multidrug export proteins was observed, which clearly indicates the presence of metal stress resistance determinants in S. aureus. Silver blocked the integration of mobile genetic elements in S. aureus genome. Our study points out quorum sensing and virulence determinants as possible targets for inhibition of biofilms possibly with/without existing antibiotics. However, further studies on these aspects are warranted. Scanning electron microscopy (SEM) and confocal microscopy revealed changes in biofilm morphology, architecture and thickness in presence of silver nanoparticles and ionic silver, substantiating the transcriptome data.
Collapse
Affiliation(s)
- Nimisha Singh
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| | - K M Paknikar
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
43
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
44
|
A novel SigB(Q225P) mutation in Staphylococcus aureus retains virulence but promotes biofilm formation. Emerg Microbes Infect 2018; 7:72. [PMID: 29691368 PMCID: PMC5915575 DOI: 10.1038/s41426-018-0078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/19/2018] [Indexed: 11/09/2022]
Abstract
Staphylococcus aureus is an important pathogen that produces abundant virulence factors, which cause various diseases that burden human health worldwide. The stress response regulon called sigma factor B (SigB) is a well-characterized global regulator that is involved in the regulation of S. aureus virulence, pigmentation, and biofilm formation. However, the regulatory network upon SigB in S. aureus is incompletely described. Here, we identified a novel substitution mutation, SigB(Q225P), which contributed the nonpigmented phenotype of S. aureus. The S. aureus mutant carrying SigB(Q225P) substitution lacks staphyloxanthin, a key virulence factor in protecting bacteria from host-oxidant killing, but retains bacterial pathogenicity with pleiotropic alterations in virulence factors, resulting in similar lethality and abscess formation ability in animal models. We also reported the SigB(Q225P) promotion of biofilm formation in S. aureus. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that the expression of nuc gene, which encodes thermonuclease, was significantly downregulated, resulting in accumulation of eDNA in the biofilm of SigB(Q225P) mutant strain. LacZ reporter assay showed that SigB(Q225P) influenced the activity of nuc promoter. Furthermore, electrophoretic mobility shift assay (EMSA) and Bio-layer interferometry (BLI) assay revealed that both SigB and SigB(Q225P) proteins could directly bind to nuc gene promoter; however, the binding activity decreased for SigB(Q225P). Our data renewed the understanding of the relationship between S. aureus golden pigment and its virulence and suggested that a single substitution mutation in SigB might enhance the biofilm formation of S. aureus by directly downregulating nuc expression.
Collapse
|
45
|
The Electron Transport Chain Sensitizes Staphylococcus aureus and Enterococcus faecalis to the Oxidative Burst. Infect Immun 2017; 85:IAI.00659-17. [PMID: 28993457 DOI: 10.1128/iai.00659-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Small-colony variants (SCVs) of Staphylococcus aureus typically lack a functional electron transport chain and cannot produce virulence factors such as leukocidins, hemolysins, or the antioxidant staphyloxanthin. Despite this, SCVs are associated with persistent infections of the bloodstream, bones, and prosthetic devices. The survival of SCVs in the host has been ascribed to intracellular residency, biofilm formation, and resistance to antibiotics. However, the ability of SCVs to resist host defenses is largely uncharacterized. To address this, we measured the survival of wild-type and SCV S. aureus in whole human blood, which contains high numbers of neutrophils, the key defense against staphylococcal infection. Despite the loss of leukocidin production and staphyloxanthin biosynthesis, SCVs defective for heme or menaquinone biosynthesis were significantly more resistant to the oxidative burst than wild-type bacteria in human blood or the presence of purified neutrophils. Supplementation of the culture medium of the heme-auxotrophic SCV with heme, but not iron, restored growth, hemolysin and staphyloxanthin production, and sensitivity to the oxidative burst. Since Enterococcus faecalis is a natural heme auxotroph and cause of bloodstream infection, we explored whether restoration of the electron transport chain in this organism also affected survival in blood. Incubation of E. faecalis with heme increased growth and restored catalase activity but resulted in decreased survival in human blood via increased sensitivity to the oxidative burst. Therefore, the lack of functional electron transport chains in SCV S. aureus and wild-type E. faecalis results in reduced growth rate but provides resistance to a key immune defense mechanism.
Collapse
|
46
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
47
|
García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M, Eikmeier J, Wohlmuth B, Zernecke A, Ohlsen K, Kuttler C, Lopez D. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife 2017; 6. [PMID: 28893374 PMCID: PMC5595439 DOI: 10.7554/elife.28023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. While in hospital, patients can be unwittingly exposed to bacteria that can cause disease. These hospital-associated bacteria can lead to potentially life-threatening infections that may also complicate the treatment of the patients’ existing medical conditions. Staphylococcus aureus is one such bacterium, and it can cause several types of infection including pneumonia, blood infections and long-term infections of prosthetic devices. It is thought that S. aureus is able to cause so many different types of infection because it is capable of colonizing distinct tissues and organs in various parts of the body. Understanding the biological processes that drive the different infections is crucial to improving how these infections are treated. S. aureus lives either as an independent, free-swimming cell or as part of a community known as a biofilm. These different lifestyles dictate the type of infection the bacterium can cause, with free-swimming cells producing toxins that contribute to intense, usually short-lived, infections and biofilms promoting longer-term infections that are difficult to eradicate. However, it is not clear how a population of S. aureus cells chooses to adopt a particular lifestyle and whether there are any environmental signals that influence this decision. Here, Garcia-Betancur et al. found that S. aureus populations contain small groups of cells that have already specialized into a particular lifestyle. These groups of cells collectively influence the choice made by other cells in the population. While both lifestyles will be represented in the population, environmental factors influence the numbers of cells that initially adopt each type of lifestyle, which ultimately affects the choice made by the rest of the population. For example, if the bacteria colonize a tissue or organ that contains high levels of magnesium ions, the population is more likely to form biofilms. In the future, the findings of Garcia-Betancur et al. may help us to predict how an infection may develop in a particular patient, which may help to diagnose the infection more quickly and allow it to be treated more effectively.
Collapse
Affiliation(s)
- Juan-Carlos García-Betancur
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Angel Goñi-Moreno
- School of Computing Science, Newcastle University, Newcastle, United Kingdom
| | - Thomas Horger
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Melanie Schott
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julian Eikmeier
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christina Kuttler
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany.,National Center for Biotechnology, Madrid, Spain
| |
Collapse
|
48
|
Tuchscherr L, Geraci J, Löffler B. Staphylococcus aureus Regulator Sigma B is Important to Develop Chronic Infections in Hematogenous Murine Osteomyelitis Model. Pathogens 2017; 6:pathogens6030031. [PMID: 28714889 PMCID: PMC5617988 DOI: 10.3390/pathogens6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus is a major pathogen causing bone infections that can become chronic and difficult to treat. Recently, we described the mechanism employed by S. aureus to switch to small colony variants (SCVs) and trigger intracellular bacterial persistence through the global stress regulator SigB. Here, we studied the role of SigB in the formation of chronic osteomyelitis. We used a murine hematogenous osteomyelitis model, where the mice were infected via the tail vein and subsequently developed chronic osteomyelitis. Mice were infected with S. aureus LS1, LS1ΔsigB and LS1ΔsigB complemented and kidney and bone tissues were analyzed six weeks after infection. S. aureus LS1ΔsigB formed a high rate of abscesses in kidneys, but the bacterial loads and the weight loss of the animals were lower in comparison with animals infected with the wild type and the complemented strain, indicating a more rapid and efficient bacterial clearing by the host immune system. Moreover, the sigB-mutant was not able to form SCV phenotypes either in kidney or in bone tissue. Our results demonstrate that staphylococcal SigB is important to avoid bacterial elimination by the host immune response, establish a bone infection and mediate bacterial adaptation (SCV-formation) for persistent infections
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena 07747, Germany.
| | - Jennifer Geraci
- Institute of Medical Microbiology, Jena University Hospital, Jena 07747, Germany.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena 07747, Germany.
| |
Collapse
|
49
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
50
|
Deinhardt-Emmer S, Hoerr V, Löffler B. Vascular graft infection: a new model for treatment management? Future Microbiol 2017; 12:651-654. [PMID: 28541093 DOI: 10.2217/fmb-2017-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Verena Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|