1
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
2
|
Garello M, Piombo E, Buonsenso F, Prencipe S, Valente S, Meloni GR, Marcet-Houben M, Gabaldón T, Spadaro D. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts. Food Microbiol 2024; 122:104532. [PMID: 38839238 DOI: 10.1016/j.fm.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024]
Abstract
Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.
Collapse
Affiliation(s)
- Marco Garello
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, 75651, Uppsala, Sweden
| | - Fabio Buonsenso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Silvia Valente
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giovanna Roberta Meloni
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
3
|
Munawar S, Zahoor AF, Hussain SM, Ahmad S, Mansha A, Parveen B, Ali KG, Irfan A. Steglich esterification: A versatile synthetic approach toward the synthesis of natural products, their analogues/derivatives. Heliyon 2024; 10:e23416. [PMID: 38170008 PMCID: PMC10758822 DOI: 10.1016/j.heliyon.2023.e23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The exploitation of natural products and their analogues in the field of pharmacology has been regarded as of great importance. It can be attributed to the fact that these scaffolds exhibit diverse chemical properties, distinct biological activities and zenith specificity in their biochemical processes, enabling them to act as favorable structures for lead compounds. The synthesis of natural products has been a crafty and hard-to-achieve task. Steglich esterification reaction has played a significant role in that area. It is a mild and efficient technique for constructing ester linkages. This technique involves the establishment of ester moiety via a carbodiimide-based condensation of a carboxylic acid with an alcohol, thiol or an amine catalyzed by dimethyl aminopyridine (DMAP). Specifically, labile reagents with multiple reactive sites are esterified efficiently with the classical and modified Steglich esterification conditions, which accounts for their synthetic utility. This review encloses the performance of the Steglich esterification reaction in forging the ester linkage for executing the total synthesis of natural products and their derivatives since 2018.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, 38000, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
4
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Luo D, Fan N, Zhang X, Ngo FY, Zhao J, Zhao W, Huang M, Li D, Wang Y, Rong J. Covalent inhibition of endoplasmic reticulum chaperone GRP78 disconnects the transduction of ER stress signals to inflammation and lipid accumulation in diet-induced obese mice. eLife 2022; 11:72182. [PMID: 35138251 PMCID: PMC8828050 DOI: 10.7554/elife.72182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Targeting endoplasmic reticulum (ER) stress, inflammation, and metabolic dysfunctions may halt the pathogenesis of obesity and thereby reduce the prevalence of diabetes, cardiovascular disesases, and cancers. The present study was designed to elucidate the mechnaisms by which plant-derived celastrol ameliorated inflammation and lipid accumulation in obesity. The mouse model of diet-induced obesity was induced by feeding high-fat diet for 3 months and subsequently intervented with celastrol for 21 days. Hepatic and adipose tissues were analyzed for lipid accumulation, macrophage activation, and biomarker expression. As result, celastrol effectively reduced body weight, suppressed ER stress, inflammation, and lipogenesis while promoted hepatic lipolysis. RNA-sequencing revealed that celastrol-loaded nanomicelles restored the expression of 49 genes that regulate ER stress, inflammation, and lipid metabolism. On the other hand, celastrol-PEG4-alkyne was synthesized for identifying celastrol-bound proteins in RAW264.7 macrophages. ER chaperone GRP78 (78 kDa glucose-regulated protein) was identified by proteomics approach for celastrol binding to the residue Cys41. Upon binding and conjugation, celastrol diminished the chaperone activity of GRP78 by 130-fold and reduced ER stress in palmitate-challenged cells, while celastrol analog lacking quinone methide failed to exhibit antiobesity effects. Thus, covalent GRP78 inhibition may induce the reprograming of ER signaling, inflammation, and metabolism against diet-induced obesity.
Collapse
Affiliation(s)
- Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ni Fan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Xiuying Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Wei Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ming Huang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ding Li
- Colleage of Chemistry and Pharmacy, College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Exploring Verrucosidin Derivatives with Glucose-Uptake-Stimulatory Activity from Penicillium cellarum Using MS/MS-Based Molecular Networking. J Fungi (Basel) 2022; 8:jof8020143. [PMID: 35205896 PMCID: PMC8878765 DOI: 10.3390/jof8020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Under the guidance of LC-MS/MS-based molecular networking, seven new verrucosidin derivatives, penicicellarusins A-G (3–9), were isolated together with three known analogues from the fungus Penicillium cellarum. The structures of the new compounds were determined by a combination of NMR, mass and electronic circular dichroism spectral data analysis. The absolute configuration of penicyrone A (10) was corrected based on X-ray diffraction analyses. Bioactivity screening indicated that compounds 1, 2, and 4 showed much stronger promising hypoglycemic activity than the positive drug (rosiglitazone) in the range of 25–100 μM, which represents a potential new class of hypoglycemic agents. Preliminary structure-activity relationship analysis indicates that the formation of epoxy ring on C6-C7 in the structures is important for the glucose uptake-stimulating activity. The gene cluster for the biosynthesis of 1–12 is identified by sequencing the genome of P. cellarum and similarity analysis with the gene cluster of verrucosidins in P. polonicum.
Collapse
|
8
|
Yoshida J, Ohishi T, Abe H, Ohba SI, Inoue H, Usami I, Amemiya M, Oriez R, Sakashita C, Dan S, Sugawara M, Kawaguchi T, Ueno J, Asano Y, Ikeda A, Takamatsu M, Amori G, Kondoh Y, Honda K, Osada H, Noda T, Watanabe T, Shimizu T, Shibasaki M, Kawada M. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience 2021; 24:103497. [PMID: 34934919 DOI: 10.1016/j.isci.2021.103497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The disruption of the tumor microenvironment (TME) is a promising anti-cancer strategy, but its effective targeting for solid tumors remains unknown. Here, we investigated the anti-cancer activity of the mitochondrial complex I inhibitor intervenolin (ITV), which modulates the TME independent of energy depletion. By modulating lactate metabolism, ITV induced the concomitant acidification of the intra- and extracellular environment, which synergistically suppressed S6K1 activity in cancer cells through protein phosphatase-2A-mediated dephosphorylation via G-protein-coupled receptor(s). Other complex I inhibitors including metformin and rotenone were also found to exert the same effect through an energy depletion-independent manner as ITV. In mouse and patient-derived xenograft models, ITV was found to suppress tumor growth and its mode of action was further confirmed. The TME is usually acidic owing to glycolytic cancer cell metabolism, and this condition is more susceptible to complex I inhibitors. Thus, we have demonstrated a potential treatment strategy for solid tumors.
Collapse
Affiliation(s)
- Junjiro Yoshida
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Tomokazu Ohishi
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Hikaru Abe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shun-Ichi Ohba
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Hiroyuki Inoue
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Ihomi Usami
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Masahide Amemiya
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Raphael Oriez
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Chiharu Sakashita
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Tokuichi Kawaguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Junko Ueno
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuko Asano
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Ami Ikeda
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Manabu Takamatsu
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Gulanbar Amori
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Tetsuo Noda
- Director's Room, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takumi Watanabe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| |
Collapse
|
9
|
Valente S, Piombo E, Schroeckh V, Meloni GR, Heinekamp T, Brakhage AA, Spadaro D. CRISPR-Cas9-Based Discovery of the Verrucosidin Biosynthesis Gene Cluster in Penicillium polonicum. Front Microbiol 2021; 12:660871. [PMID: 34093475 PMCID: PMC8176439 DOI: 10.3389/fmicb.2021.660871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
Penicillium polonicum, commonly found on food matrices, is a mycotoxigenic species able to produce a neurotoxin called verrucosidin. This methylated α-pyrone polyketide inhibits oxidative phosphorylation in mitochondria and thereby causes neurological diseases. Despite the importance of verrucosidin as a toxin, its biosynthetic genes have not been characterized yet. By similarity analysis with the polyketide synthase (PKS) genes for the α-pyrones aurovertin (AurA) and citreoviridin (CtvA), 16 PKS genes for putative α-pyrones were identified in the P. polonicum genome. A single PKS gene, verA, was found to be transcribed under verrucosidin-producing growth conditions. The annotated functions of the genes neighboring verA correspond to those required for verrucosidin biosynthesis. To prove the involvement of verA in verrucosidin biosynthesis, the clustered regularly interspaced short palindrome repeats (CRISPR) technology was applied to P. polonicum. In vitro reconstituted CRISPR-Cas9 was used to induce targeted gene deletions in P. polonicum. This approach allowed identifying and characterizing the verrucosidin biosynthetic gene cluster. VerA deletion mutants were no longer able to produce verrucosidin, whereas they were displaying morphological characteristics comparable with the wild-type strain. The available CRISPR-Cas9 technology allows characterizing the biosynthetic potential of P. polonicum as a valuable source of novel compounds.
Collapse
Affiliation(s)
- Silvia Valente
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Edoardo Piombo
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Giovanna Roberta Meloni
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Davide Spadaro
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| |
Collapse
|
10
|
Bhowmik A, Biswas S, Hajra S, Saha P. In silico validation of potent phytochemical orientin as inhibitor of SARS-CoV-2 spike and host cell receptor GRP78 binding. Heliyon 2021; 7:e05923. [PMID: 33458435 PMCID: PMC7799170 DOI: 10.1016/j.heliyon.2021.e05923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
The present wellbeing worry to the whole world is the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19. This global health crisis first appeared in Wuhan, China around December 2019 and due to its extremely contagious nature it had spread to almost 187 countries. Still now no effective method of treatment or vaccine is developed for controlling the disease. Therefore, the sole obliging strategy is to take precautionary measures by repurposing drugs from the pre-existing library of therapeutically potent molecules. In this situation of pandemic this repurposing technique may save the labour-intensive and tiresome process of new drug development. Orientin is a natural flavonoid with several beneficial effects. This phytochemical can be isolated from different plants like tulsi or holy basil, black bamboo, passion flowers etc. It's antiviral, anti-inflammation, vasodilatation, cardioprotective, radioprotective, neuroprotective, anticarcinogenic and antinociceptive effects are already established. In this research, it is intriguing to find out whether this molecule can interfere the interaction of SARS-CoV-2 spike glycoprotein and their host receptor GRP78. Our in silico docking and molecular dynamics simulation results indicate the binding of Orientin in the overlapping residues of GRP78 binding region of SARS-CoV-2 spike model and SARS-CoV-2 spike model binding region of GRP78 substrate-binding domain. Therefore, the results included in this research work provide a strong possibility of using Orientin as a promising precautionary or therapeutic measure for COVID-19.
Collapse
Affiliation(s)
| | | | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, India
| |
Collapse
|
11
|
Otero C, Arredondo C, Echeverría-Vega A, Gordillo-Fuenzalida F. Penicillium spp. mycotoxins found in food and feed and their health effects. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi. These compounds have different structures and target different organs, acting at different steps of biological processes inside the cell. Around 32 mycotoxins have been identified in fungal Penicillium spp. isolated from food and feed. Some of these species are important pathogens which contaminate food, such as maize, cereals, soybeans, sorghum, peanuts, among others. These microorganisms can be present in different steps of the food production process, such as plant growth, harvest, drying, elaboration, transport, and packaging. Although some Penicillium spp. are pathogens, some of them are used in elaboration of processed foods, such as cheese and sausages. This review summarises the Penicillium spp. mycotoxin toxicity, focusing mainly on the subgenus Penicillium, frequently found in food and feed. Toxicity is reviewed both in animal models and cultured cells. Finally, some aspects of their regulations are discussed.
Collapse
Affiliation(s)
- C. Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - C. Arredondo
- Laboratorio de Neuroepigenética, Instituto de Ciencias Biomédicas (ICB), Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago, Chile
| | - A. Echeverría-Vega
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - F. Gordillo-Fuenzalida
- Centro de Biotecnología de los Recursos Naturales (CENBIO), Laboratorio de Microbiología Aplicada, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| |
Collapse
|
12
|
Alonso-Garrido M, Tedeschi P, Maietti A, Font G, Marchetti N, Manyes L. Mitochondrial transcriptional study of the effect of aflatoxins, enniatins and carotenoids in vitro in a blood brain barrier model. Food Chem Toxicol 2020; 137:111077. [DOI: 10.1016/j.fct.2019.111077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023]
|
13
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
14
|
Bailly C, Waring MJ. Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharmacol 2019; 163:269-278. [PMID: 30831072 DOI: 10.1016/j.bcp.2019.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
The protein chaperone GRP78 is a master regulator of endoplasmic reticulum (ER) functions and is frequently over-expressed at the surface of cancer cells where it contributes to chemo-resistance. It represents a well-studied ER stress marker but an under-explored target for new drug development. This review aims to untangle the structural and functional diversity of GRP78 modulators, covering over 130 natural products, synthetic molecules, specific peptides and monoclonal antibodies that target GRP78. Several approaches to promote or to incapacitate GRP78 are presented, including the use of oligonucleotides and specific cell-delivery peptides often conjugated to cytotoxic payloads to design GRP78-targeted therapeutics. A repertoire of drugs that turn on/off GRP78 is exposed, including molecules which bind directly to GRP78, principally to its ATP site. There exist many options to regulate positively or negatively the expression of the chaperone, or to interfere with its cellular trafficking. This review provides a molecular cartography of GRP78 pharmacological effectors and adds weight to the notion that GRP78 repressors could represent promising anticancer therapeutics, notably as regards limiting chemo-resistance of cancer cells. The potential of GRP78-targeting drugs in other therapeutic modalities is also evoked.
Collapse
Affiliation(s)
- Christian Bailly
- UMR-S 1172, Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, CHU Lille, 59045 Lille, France.
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
15
|
Zhang G, Wang X, Gillette TG, Deng Y, Wang ZV. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Curr Top Med Chem 2019; 19:1902-1917. [PMID: 31109279 PMCID: PMC7024549 DOI: 10.2174/1568026619666190521093049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming socioeconomic impact and mounting clinical needs, our understanding of the underlying pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then transiently suppresses global protein translation, augments production of protein-folding chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. Recently, the mechanisms of action and multiple pharmacological means to favorably modulate the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we review the current understanding of the UPR in cardiovascular disease and discuss existing therapeutic explorations and future directions.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
16
|
Li H, Hu J, Wei H, Solomon PS, Vuong D, Lacey E, Stubbs KA, Piggott AM, Chooi YH. Chemical Ecogenomics-Guided Discovery of Phytotoxic α-Pyrones from the Fungal Wheat Pathogen Parastagonospora nodorum. Org Lett 2018; 20:6148-6152. [DOI: 10.1021/acs.orglett.8b02617] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jinyu Hu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Haochen Wei
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Peter S. Solomon
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty Ltd, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty Ltd, Smithfield, NSW 2164, Australia
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Andrew M. Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Chojnacka MW, Batey RA. Total Synthesis of (+)-Prunustatin A: Utility of Organotrifluoroborate-Mediated Prenylation and Shiina MNBA Esterification and Macrolactonization To Avoid a Competing Thorpe–Ingold Effect Accelerated Transesterification. Org Lett 2018; 20:5671-5675. [DOI: 10.1021/acs.orglett.8b02396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maja W. Chojnacka
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON, Canada M5S 3H6
| | - Robert A. Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON, Canada M5S 3H6
| |
Collapse
|
18
|
Suppression of stress induction of the 78-kilodalton glucose regulated protein (GRP78) in cancer by IT-139, an anti-tumor ruthenium small molecule inhibitor. Oncotarget 2018; 9:29698-29714. [PMID: 30038714 PMCID: PMC6049868 DOI: 10.18632/oncotarget.25679] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
In many cancers, combination therapy regimens are successfully improving response and survival rates, but the challenges of toxicity remain. GRP78, the master regulator of the unfolded protein response, is emerging as a target that is upregulated in tumors, specifically following treatment, and one that impacts tumor cell survival and disease recurrence. Here, we show IT-139, an antitumor small molecule inhibitor, suppresses induction of GRP78 from different types of endoplasmic reticulum (ER) stress in a variety of cancer cell lines, including those that have acquired therapeutic resistance, but not in the non-cancer cells being tested. We further determined that IT-139 treatment exacerbates ER stress while at the same time suppresses GRP78 induction at the transcriptional level. Our studies revealed a differential effect of IT-139 on chaperone protein family expression at multiple levels in different cancer cell lines. In xenograft studies, IT-139 decreased BRAF inhibitor upregulation of GRP78 expression in the tumor, while having minimal effect on GRP78 expression in the adjacent normal cells. The preferential decrease in GRP78 levels in tumor cells over normal cells, supported by the manageable safety profile seen in the Phase 1 clinical trial, reinforce the value IT-139 brings to combination therapies as it continues its clinical development.
Collapse
|
19
|
Machihara K, Tanaka H, Hayashi Y, Murakami I, Namba T. Questiomycin A stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78. Biochem Biophys Res Commun 2017; 492:33-40. [PMID: 28811106 DOI: 10.1016/j.bbrc.2017.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat owing to the lack of effective chemotherapeutic methods. Sorafenib, the first-line and only available treatment for HCC, extends patient overall survival by several months, with a response rate below 10%. Thus, the identification of an agent that enhances the anticancer effect of sorafenib is critical for the development of therapeutic options for HCC. Endoplasmic reticulum (ER) stress response is one of the methods of sorafenib-induced cell death. Here we report that questiomycin A suppresses expression of GRP78, a cell-protective ER chaperone protein. Analysis of the molecular mechanisms of questiomycin A revealed that this compound stimulated GRP78 protein degradation in an ER stress response-independent manner. Cotreatment with sorafenib and questiomycin A suppressed GRP78 protein expression, which is essential for the stimulation of sorafenib-induced cell death. Moreover, our in vivo study demonstrated that the coadministration of sorafenib and questiomycin A suppressed tumor formation in HCC-induced xenograft models. These results suggest that cotreatment with sorafenib and questiomycin A is a novel therapeutic strategy for HCC by enhancing sorafenib-dependent ER stress-induced cell death, and downregulation of GRP78 is a new target for the stimulation of the therapeutic effects of sorafenib in HCC.
Collapse
Affiliation(s)
- Kayo Machihara
- Science Research Center, Kochi University, Kochi 783-8505, Japan
| | - Hidenori Tanaka
- Science Research Center, Kochi University, Kochi 783-8505, Japan
| | - Yoshihiro Hayashi
- Equipment of Support Planning Office, Kochi University, Kochi 783-8505, Japan
| | - Ichiro Murakami
- Department of Pathology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Takushi Namba
- Science Research Center, Kochi University, Kochi 783-8505, Japan.
| |
Collapse
|
20
|
Carr SJ, Zahedi RP, Lochmüller H, Roos A. Mass spectrometry-based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics Clin Appl 2017. [DOI: 10.1002/prca.201700071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie J. Carr
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| |
Collapse
|
21
|
Abstract
Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH-ubiquinone oxidoreductase (Complex I) is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
22
|
Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:217670. [PMID: 26294939 PMCID: PMC4532905 DOI: 10.1155/2015/217670] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/23/2022]
Abstract
A major source of reactive oxygen species (ROS) generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx) 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD) at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH) release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC) (2 mM), Rotenone (0.5 μM), a mitochondrial complex I inhibitor, and Antimycin A (10 μM), a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL) cells.
Collapse
|
23
|
Raiter A, Yerushalmi R, Hardy B. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells. Oncotarget 2014; 5:11452-11463. [PMID: 25360516 PMCID: PMC4294336 DOI: 10.18632/oncotarget.2576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/05/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Tel Aviv University School of Medicine, Rabin Medical Center, Petach Tikva, 49100, Israel
| | - Rinat Yerushalmi
- Oncology Institute, Rabin Medical Center, Petach Tikva, 49100, Israel
| | - Britta Hardy
- Felsenstein Medical Research Center, Tel Aviv University School of Medicine, Rabin Medical Center, Petach Tikva, 49100, Israel
| |
Collapse
|
24
|
Vieweg L, Reichau S, Schobert R, Leadlay PF, Süssmuth RD. Recent advances in the field of bioactive tetronates. Nat Prod Rep 2014; 31:1554-84. [DOI: 10.1039/c4np00015c] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Abstract
The glucose-regulated proteins (GRPs) are stress-inducible chaperones that mostly reside in the endoplasmic reticulum or the mitochondria. Recent advances show that the GRPs have functions that are distinct from those of the related heat shock proteins, and they can be actively translocated to other cellular locations and assume novel functions that control signalling, proliferation, invasion, apoptosis, inflammation and immunity. Mouse models further identified their specific roles in development, tumorigenesis, metastasis and angiogenesis. This Review describes their discovery and regulation, as well as their biological functions in cancer. Promising agents that use or target the GRPs are being developed, and their efficacy as anticancer therapeutics is also discussed.
Collapse
Affiliation(s)
- Amy S Lee
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Room 5308, Los Angeles, California 900899176, USA
| |
Collapse
|