1
|
Ranjan G, Sehgal P, Scaria V, Sivasubbu S. SCAR-6 elncRNA locus epigenetically regulates PROZ and modulates coagulation and vascular function. EMBO Rep 2024; 25:4950-4978. [PMID: 39358551 PMCID: PMC11549340 DOI: 10.1038/s44319-024-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we characterize a novel lncRNA-producing gene locus that we name Syntenic Cardiovascular Conserved Region-Associated lncRNA-6 (scar-6) and functionally validate its role in coagulation and cardiovascular function. A 12-bp deletion of the scar-6 locus in zebrafish (scar-6gib007Δ12/Δ12) results in cranial hemorrhage and vascular permeability. Overexpression, knockdown and rescue with the scar-6 lncRNA modulates hemostasis in zebrafish. Molecular investigation reveals that the scar-6 lncRNA acts as an enhancer lncRNA (elncRNA), and controls the expression of prozb, an inhibitor of factor Xa, through an enhancer element in the scar-6 locus. The scar-6 locus suppresses loop formation between prozb and scar-6 sequences, which might be facilitated by the methylation of CpG islands via the prdm14-PRC2 complex whose binding to the locus might be stabilized by the scar-6 elncRNA transcript. Binding of prdm14 to the scar-6 locus is impaired in scar-6gib007Δ12/Δ12 zebrafish. Finally, activation of the PAR2 receptor in scar-6gib007Δ12/Δ12 zebrafish triggers NF-κB-mediated endothelial cell activation, leading to vascular dysfunction and hemorrhage. We present evidence that the scar-6 locus plays a role in regulating the expression of the coagulation cascade gene prozb and maintains vascular homeostasis.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
2
|
Featherby SJ, Ettelaie C. Endothelial-derived microvesicles promote pro-migratory cross-talk with smooth muscle cells by a mechanism requiring tissue factor and PAR2 activation. Front Cardiovasc Med 2024; 11:1365008. [PMID: 38966751 PMCID: PMC11222581 DOI: 10.3389/fcvm.2024.1365008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Microvesicles (MV) released by endothelial cells (EC) following injury or inflammation contain tissue factor (TF) and mediate communication with the underlying smooth muscle cells (SMC). Ser253-phosphorylated TF co-localizes with filamin A at the leading edge of migrating SMC. In this study, the influence of endothelial-derived TF-MV, on human coronary artery SMC (HCASMC) migration was examined. Methods and Results MV derived from human coronary artery EC (HCAEC) expressing TFWt accelerated HCASMC migration, but was lower with cytoplasmic domain-deleted TF. Furthermore, incubation with TFAsp253-MV, or expression of TFAsp253 in HCASMC, reduced cell migration. Blocking TF-factor VIIa (TF-fVIIa) procoagulant/protease activity, or inhibiting PAR2 signaling on HCASMC, abolished the accelerated migration. Incubation with fVIIa alone increased HCASMC migration, but was significantly enhanced on supplementation with TF. Neither recombinant TF alone, factor Xa, nor PAR2-activating peptide (SLIGKV) influenced cell migration. In other experiments, HCASMC were transfected with peptides corresponding to the cytoplasmic domain of TF prior to stimulation with TF-fVIIa. Cell migration was suppressed only when the peptides were phosphorylated at position of Ser253. Expression of mutant forms of filamin A in HCASMC indicated that the enhancement of migration by TF but not by PDGF-BB, was dependent on the presence of repeat-24 within filamin A. Incubation of HCASMC with TFWt-MV significantly reduced the levels of Smoothelin-B protein, and upregulated FAK expression. Discussion In conclusion, Ser253-phosphorylated TF and fVIIa released as MV-cargo by EC, act in conjunction with PAR2 on SMC to promote migration and may be crucial for normal arterial homeostasis as well as, during development of vascular disease.
Collapse
|
3
|
Al-Saidi A, Alzaim IF, Hammoud SH, Al Arab G, Abdalla S, Mougharbil N, Eid AH, El-Yazbi AF. Interruption of perivascular and perirenal adipose tissue thromboinflammation rescues prediabetic cardioautonomic and renovascular deterioration. Clin Sci (Lond) 2024; 138:289-308. [PMID: 38381744 DOI: 10.1042/cs20231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.
Collapse
Affiliation(s)
- Aya Al-Saidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim F Alzaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Ghida Al Arab
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samaya Abdalla
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh, Egypt
| |
Collapse
|
4
|
Rondeau LE, Da Luz BB, Santiago A, Bermudez-Brito M, Hann A, De Palma G, Jury J, Wang X, Verdu EF, Galipeau HJ, Rolland C, Deraison C, Ruf W, Bercik P, Vergnolle N, Caminero A. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2. Gut Microbes 2024; 16:2387857. [PMID: 39171684 PMCID: PMC11346554 DOI: 10.1080/19490976.2024.2387857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.
Collapse
Affiliation(s)
- Liam Emile Rondeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Bruna Barbosa Da Luz
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Alba Santiago
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Miriam Bermudez-Brito
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Amber Hann
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jennifer Jury
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Xuanyu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena Francisca Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Heather Jean Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Jiang Y, Li Y, Fu X, Wu Y, Wang R, Zhao M, Mao C, Shi S. Interplay between G protein-coupled receptors and nanotechnology. Acta Biomater 2023; 169:1-18. [PMID: 37517621 DOI: 10.1016/j.actbio.2023.07.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
7
|
Ushakumari CJ, Zhou QL, Wang YH, Na S, Rigor MC, Zhou CY, Kroll MK, Lin BD, Jiang ZY. Neutrophil Elastase Increases Vascular Permeability and Leukocyte Transmigration in Cultured Endothelial Cells and Obese Mice. Cells 2022; 11:cells11152288. [PMID: 35892585 PMCID: PMC9332277 DOI: 10.3390/cells11152288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil elastase (NE) plays a pivotal role in inflammation. However, the mechanism underlying NE-mediated inflammation in obesity remains unclear. Here, we report that NE activates protease-activated receptor-2 (PAR2), stimulates actin filament (F-actin) formation, decreases intercellular junction molecule VE-cadherin expression, and increases the permeability of human arterial endothelial cells (hECs). NE also prompts degradation of VE-cadherin and its binding proteins p120- and β-catenins via MG132-sensitive proteasomes. NE stimulates phosphorylation of myosin light-chain (MLC) and its regulator myosin phosphatase target subunit-1 (MYPT1), a target of Rho kinase (ROCK). Inhibitors of PAR2 and ROCK prohibit NE-induced F-actin formation, MLC phosphorylation, and VE-cadherin reduction in hECs, and impede monocyte transmigration through hEC monolayer pretreated with either neutrophils or NE. Further, administration of an NE inhibitor GW311616A significantly attenuates vascular leakage, leukocyte infiltration, and the expression of proinflammatory cytokines in the white adipose tissue from high-fat diet (HFD)-induced obese mice. Likewise, NE-deficient mice are resistant to HFD-induced vascular leakage in the heart. Together, NE regulates actomyosin cytoskeleton activity and VE-cadherin expression by activating PAR2 signaling in the endothelial cells, leading to increased vascular permeability and leukocyte extravasation. Hence, inhibition of NE is a potential approach to mitigate vascular injury and leukocyte infiltration in obesity-related systemic inflammation.
Collapse
Affiliation(s)
- Chinchu Jagadan Ushakumari
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Qiong L. Zhou
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Yu-Hua Wang
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Sijia Na
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Michael C. Rigor
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Cindy Y. Zhou
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Max K. Kroll
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Benjamin D. Lin
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Zhen Y. Jiang
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
- Correspondence: ; Tel.: +1-617-358-8255
| |
Collapse
|
8
|
Valencia I, Vallejo S, Dongil P, Romero A, San Hipólito-Luengo Á, Shamoon L, Posada M, García-Olmo D, Carraro R, Erusalimsky JD, Romacho T, Peiró C, Sánchez-Ferrer CF. DPP4 Promotes Human Endothelial Cell Senescence and Dysfunction via the PAR2-COX-2-TP Axis and NLRP3 Inflammasome Activation. Hypertension 2022; 79:1361-1373. [PMID: 35477273 DOI: 10.1161/hypertensionaha.121.18477] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal accumulation of senescent cells in the vessel wall leads to a compromised vascular function contributing to vascular aging. Soluble DPP4 (dipeptidyl peptidase 4; sDPP4) secretion from visceral adipose tissue is enhanced in obesity, now considered a progeric condition. sDPP4 triggers vascular deleterious effects, albeit its contribution to vascular aging is unknown. We aimed to explore sDPP4 involvement in vascular aging, unraveling the molecular pathway by which sDPP4 acts on the endothelium. METHODS Human endothelial cell senescence was assessed by senescence-associated β-galactosidase assay, visualization of DNA damage, and expression of prosenescent markers, whereas vascular function was evaluated by myography over human dissected microvessels. In visceral adipose tissue biopsies from a cohort of obese patients, we explored several age-related parameters in vitro and ex vivo. RESULTS By a common mechanism, sDPP4 triggers endothelial cell senescence and endothelial dysfunction in isolated human resistance arteries. sDPP4 activates the metabotropic receptor PAR2 (protease-activated receptor 2), COX-2 (cyclooxygenase 2) activity, and the production of TXA2 (thromboxane A2) acting over TP (thromboxane receptor) receptors (PAR2-COX-2-TP axis), leading to NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3) inflammasome activation. Obese patients exhibited impaired microarterial functionality in comparison to control nonobese counterparts. Importantly, endothelial dysfunction in obese patients positively correlated with greater expression of DPP4, prosenescent, and proinflammatory markers in visceral adipose tissue nearby the resistance arteries. Moreover, when DPP4 activity or sDPP4-induced prosenescent mechanism was blocked, endothelial dysfunction was restored back to levels of healthy subjects. CONCLUSIONS These results reveal sDPP4 as a relevant mediator in early vascular aging and highlight its capacity activating main proinflammatory mediators in the endothelium that might be pharmacologically tackled.
Collapse
Affiliation(s)
- Inés Valencia
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Spain. (I.V., L.S.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Susana Vallejo
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Pilar Dongil
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Alejandra Romero
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Álvaro San Hipólito-Luengo
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Licia Shamoon
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Spain. (I.V., L.S.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - María Posada
- Service of Surgery and Instituto de Investigación Sanitaria del Hospital Fundación Jiménez Díaz, Madrid, Spain (M.P., D.G.-O.)
| | - Damián García-Olmo
- Service of Surgery and Instituto de Investigación Sanitaria del Hospital Fundación Jiménez Díaz, Madrid, Spain (M.P., D.G.-O.)
| | - Raffaelle Carraro
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Spain. (R.C.).,Service of Endocrinology and Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Madrid, Spain (R.C.)
| | - Jorge D Erusalimsky
- School of Sport and Health Sciences, Cardiff Metropolitan University, United Kingdom (J.D.E.)
| | - Tania Romacho
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Concepción Peiró
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain. (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain (I.V., S.V., P.D., A.R., Á.S.H.-L., L.S., T.R., C.P., C.F.S.-F.)
| |
Collapse
|
9
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
11
|
Avet C, Sturino C, Grastilleur S, Gouill CL, Semache M, Gross F, Gendron L, Bennani Y, Mancini JA, Sayegh CE, Bouvier M. The PAR2 inhibitor I-287 selectively targets Gα q and Gα 12/13 signaling and has anti-inflammatory effects. Commun Biol 2020; 3:719. [PMID: 33247181 PMCID: PMC7695697 DOI: 10.1038/s42003-020-01453-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is involved in inflammatory responses and pain, therefore representing a promising therapeutic target for the treatment of immune-mediated inflammatory diseases. However, as for other GPCRs, PAR2 can activate multiple signaling pathways and those involved in inflammatory responses remain poorly defined. Here, we describe a new selective and potent PAR2 inhibitor (I-287) that shows functional selectivity by acting as a negative allosteric regulator on Gαq and Gα12/13 activity and their downstream effectors, while having no effect on Gi/o signaling and βarrestin2 engagement. Such selective inhibition of only a subset of the pathways engaged by PAR2 was found to be sufficient to block inflammation in vivo. In addition to unraveling the PAR2 signaling pathways involved in the pro-inflammatory response, our study opens the path toward the development of new functionally selective drugs with reduced liabilities that could arise from blocking all the signaling activities controlled by the receptor. Avet et al. characterize I-287, an inhibitor to protease-activated receptor 2 using BRET-assays. They find that I-287 selectively inhibits Gαq and Gα12/13 without affecting the activation of Gi/o or the recruitment of βarrestin2 and that it blocks inflammation in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Avet
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4
| | - Claudio Sturino
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,Paraza Pharma, Inc., Saint-Laurent, QC, Canada, H4S 2E1
| | - Sébastien Grastilleur
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4
| | - Meriem Semache
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4.,Domain Therapeutics North America, Saint-Laurent, QC, Canada, H4S 1Z9
| | - Florence Gross
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4.,Domain Therapeutics North America, Saint-Laurent, QC, Canada, H4S 1Z9
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Youssef Bennani
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,AdMare BioInnovations, Saint-Laurent, QC, Canada, H4S 1Z9
| | - Joseph A Mancini
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,Vertex Pharmaceuticals Inc., Boston, MA, 02210, USA
| | - Camil E Sayegh
- Vertex Pharmaceuticals (Canada), Inc., Laval, QC, Canada, H7V 4A7.,Ra Pharmaceuticals, Inc., Cambridge, MA, 02140, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada, H3C 1J4.
| |
Collapse
|
12
|
Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clin Sci (Lond) 2020; 134:827-851. [PMID: 32271386 DOI: 10.1042/cs20190227] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Major shifts in human lifestyle and dietary habits toward sedentary behavior and refined food intake triggered steep increase in the incidence of metabolic disorders including obesity and Type 2 diabetes. Patients with metabolic disease are at a high risk of cardiovascular complications ranging from microvascular dysfunction to cardiometabolic syndromes including heart failure. Despite significant advances in the standards of care for obese and diabetic patients, current therapeutic approaches are not always successful in averting the accompanying cardiovascular deterioration. There is a strong relationship between adipose inflammation seen in metabolic disorders and detrimental changes in cardiovascular structure and function. The particular importance of epicardial and perivascular adipose pools emerged as main modulators of the physiology or pathology of heart and blood vessels. Here, we review the peculiarities of these two fat depots in terms of their origin, function, and pathological changes during metabolic deterioration. We highlight the rationale for pharmacological targeting of the perivascular and epicardial adipose tissue or associated signaling pathways as potential disease modifying approaches in cardiometabolic syndromes.
Collapse
|
13
|
Wu X, Lee B, Zhu L, Ding Z, Chen Y. Exposure to mold proteases stimulates mucin production in airway epithelial cells through Ras/Raf1/ERK signal pathway. PLoS One 2020; 15:e0231990. [PMID: 32320453 PMCID: PMC7176129 DOI: 10.1371/journal.pone.0231990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/03/2020] [Indexed: 10/25/2022] Open
Abstract
Environmental mold (fungus) exposure poses a significant threat to public health by causing illnesses ranging from invasive fungal diseases in immune compromised individuals to allergic hypertensive diseases such as asthma and asthma exacerbation in otherwise healthy people. However, the molecular pathogenesis has not been completely understood, and treatment options are limited. Due to its thermo-tolerance to the normal human body temperature, Aspergillus. fumigatus (A.fumigatus) is one of the most important human pathogens to cause different lung fungal diseases including fungal asthma. Airway obstruction and hyperresponsiveness caused by mucus overproduction are the hallmarks of many A.fumigatus induced lung diseases. To understand the underlying molecular mechanism, we have utilized a well-established A.fumigatus extracts (AFE) model to elucidate downstream signal pathways that mediate A.fumigatus induced mucin production in airway epithelial cells. AFE was found to stimulate time- and dose-dependent increase of major airway mucin gene expression (MUC5AC and MUC5B) partly via the elevation of their promoter activities. We also demonstrated that EGFR was required but not sufficient for AFE-induced mucin expression, filling the paradoxical gap from a previous study using the same model. Furthermore, we showed that fungal proteases in AFE were responsible for mucin induction by activating a Ras/Raf1/ERK signaling pathway. Ca2+ signaling, but ROS, both of which were stimulated by fungal proteases, was an indispensable determinant for ERK activation and mucin induction. The discovery of this novel pathway likely contributes to our understanding of the pathogenesis of fungal sensitization in allergic diseases such as fungal asthma.
Collapse
Affiliation(s)
- Xianxian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Boram Lee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
- * E-mail: (ZD); (YC)
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (ZD); (YC)
| |
Collapse
|
14
|
Crowe MS, Wang H, Blakeney BA, Mahavadi S, Singh K, Murthy KS, Grider JR. Expression and function of umami receptors T1R1/T1R3 in gastric smooth muscle. Neurogastroenterol Motil 2020; 32:e13737. [PMID: 31721379 PMCID: PMC7008388 DOI: 10.1111/nmo.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND l-amino acids, such as monosodium glutamate (MSG), activate the umami receptor T1R1/T1R3. We previously showed increased peristalsis in response to activation of T1R1/T1R3 by MSG in mouse colon. However, the expression and function of these receptors in the different regions of the stomach are not clear. METHODS Mouse gastric smooth muscle cells (SMCs) were isolated and cultured in Dulbecco's Modified Eagle Medium. Expression of T1R1 and T1R3 was measured by RT-PCR and Western blot. The effect of MSG with and without inosine monophosphate (IMP, an allosteric activator of T1R1/T1R3) on acetylcholine (ACh)-induced contraction was measured in muscle strips and isolated SMCs by scanning micrometry. The effect of MSG with or without IMP on activation of G proteins and ACh-induced Ca2+ release was measured in SMCs. KEY RESULTS Monosodium glutamate inhibited ACh-induced contractions in muscle strips from both antrum and fundus and the effect of MSG was augmented by IMP; the effects were concentration-dependent and not affected by the nitric oxide synthase inhibitor, L-NNA, or tetrodotoxin suggesting a direct effect on SMCs. In isolated gastric SMCs, T1R1 and T1R3 transcripts and protein were identified. Addition of MSG with or without IMP inhibited ACh-induced Ca2+ release and muscle contraction; the effect on contraction was blocked by pertussis toxin suggesting activation of Gαi proteins. MSG in the presence of IMP selectively activated Gαi2 . CONCLUSIONS AND INFERENCES Umami receptors (T1R1/T1R3) are present on SMCs of the stomach, and activation of these receptors induces muscle relaxation by decreasing [Ca2+ ]i via Gαi2 .
Collapse
Affiliation(s)
- Molly S. Crowe
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Hongxia Wang
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Bryan A. Blakeney
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Sunila Mahavadi
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Kulpreet Singh
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Karnam S. Murthy
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - John R. Grider
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
15
|
Branched Short-Chain Fatty Acid Isovaleric Acid Causes Colonic Smooth Muscle Relaxation via cAMP/PKA Pathway. Dig Dis Sci 2019; 64:1171-1181. [PMID: 30560338 PMCID: PMC6499669 DOI: 10.1007/s10620-018-5417-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Isovaleric acid (IVA) is a 5-carbon branched-chain fatty acid present in fermented foods and produced in the colon by bacterial fermentation of leucine. We previously reported that the shorter, straight-chain fatty acids acetate, propionate and butyrate differentially affect colonic motility; however, the effect of branched-chain fatty acids on gut smooth muscle and motility is unknown. AIMS To determine the effect of IVA on contractility of colonic smooth muscle. METHODS Murine colonic segments were placed in a longitudinal orientation in organ baths in Krebs buffer and fastened to force transducers. Segments were contracted with acetylcholine (ACh), and the effects of IVA on ACh-induced contraction were measured in the absence and presence of tetrodotoxin (TTx) or inhibitors of nitric oxide synthase [L-N-nitroarginine (L-NNA)] or adenylate cyclase (SQ22536). The effect of IVA on ACh-induced contraction was also measured in isolated muscle cells in the presence or absence of SQ22536 or protein kinase A (PKA) inhibitor (H-89). Direct activation of PKA was measured in isolated muscle cells. RESULTS In colonic segments, ACh-induced contraction was inhibited by IVA in a concentration-dependent fashion; the IVA response was not affected by TTx or L-NNA but inhibited by SQ22536. Similarly, in isolated colonic muscle cells, ACh-induced contraction was inhibited by IVA in a concentration-dependent fashion and the effect blocked by SQ22536 and H-89. IVA also increased PKA activity in isolated smooth muscle cells. CONCLUSIONS The branched-chain fatty acid IVA acts directly on colonic smooth muscle and causes muscle relaxation via the PKA pathway.
Collapse
|
16
|
Paul M, Murphy SF, Hall C, Schaeffer AJ, Thumbikat P. Protease-activated receptor 2 activates CRAC-mediated Ca2+ influx to cause prostate smooth muscle contraction. FASEB Bioadv 2019; 1:255-264. [PMID: 31198907 PMCID: PMC6563600 DOI: 10.1096/fba.2018-00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protease activated receptor 2 (PAR2) is a G-protein coupled receptor that contributes to prostate fibrosis and lower urinary tract symptoms (LUTS). In addition to fibrosis, aberrant smooth muscle tone in the prostate has been hypothesized to play a role. We therefore examined PAR2 expression in primary human prostate smooth muscle cells (PSMC) and studied the downstream signaling effects of PAR2 activation. Signaling pathways involved in the process were assessed using the PAR2 activating peptide SLIGKV-NH2. We show that PAR2 is expressed in PSMC and that PAR2 activation mediates a biphasic elevation in intracellular Ca2+ and phosphorylation of myosin light chain 20 (MLC20), causing cellular contraction as assessed in a gel contraction assay. Intracellular Ca2+ flux was inhibited by a phosphoinositide hydrolysis inhibitor, U73122, showing a requirement for phospholipase C β (PLCβ) activation. PSMC expressed mRNA for L-type voltage dependent Ca2+ channels (VDCC) as well as Ca2+ release activated channels (CRAC), a hitherto unreported finding. Secondary intracellular Ca2+ oscillations were abrogated only by BTP2, the CRAC channel inhibitor, but not by nifedipine, an inhibitor of VDCC. These data suggest that, PAR2 activation and subsequent Ca2+ entry through CRAC channels are important mechanisms in prostate smooth muscle contraction.
Collapse
Affiliation(s)
- Madhumita Paul
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen F Murphy
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christel Hall
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Mahavadi S, Nalli AD, Wang H, Kendig DM, Crowe MS, Lyall V, Grider JR, Murthy KS. Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization. PLoS One 2018; 13:e0209359. [PMID: 30571746 PMCID: PMC6301582 DOI: 10.1371/journal.pone.0209359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
In gastrointestinal smooth muscle, acetylcholine induced muscle contraction is biphasic, initial peak followed by sustained contraction. Contraction is regulated by phosphorylation of 20 kDa myosin light chain (MLC) at Ser19, interaction of actin and myosin, and actin polymerization. The present study characterized the signaling mechanisms involved in actin polymerization during initial and sustained muscle contraction in response to muscarinic M3 receptor activation in gastric smooth muscle cells by targeting the effectors of initial (phospholipase C (PLC)-β/Ca2+ pathway) and sustained (RhoA/focal adhesion kinase (FAK)/Rho kinase pathway) contraction. The initial Ca2+ dependent contraction and actin polymerization is mediated by sequential activation of PLC-β1 via Gαq, IP3 formation, Ca2+ release and Ca2+ dependent phosphorylation of proline-rich-tyrosine kinase 2 (Pyk2) at Tyr402. The sustained Ca2+ independent contraction and actin polymerization is mediated by activation of RhoA, and phosphorylation of FAK at Tyr397. Both phosphorylation of Pyk2 and FAK leads to phosphorylation of paxillin at Tyr118 and association of phosphorylated paxillin with the GEF proteins p21-activated kinase (PAK) interacting exchange factor α, β (α and β PIX) and DOCK 180. These GEF proteins stimulate Cdc42 leading to the activation of nucleation promoting factor N-WASP (neuronal Wiskott-Aldrich syndrome protein), which interacts with actin related protein complex 2/3 (Arp2/3) to induce actin polymerization and muscle contraction. Acetylcholine induced muscle contraction is inhibited by actin polymerization inhibitors. Thus, our results suggest that a novel mechanism for the regulation of smooth muscle contraction is mediated by actin polymerization in gastrointestinal smooth muscle which is independent of MLC20 phosphorylation.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| | - Ancy D. Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hongxia Wang
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Derek M. Kendig
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Molly S. Crowe
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vijay Lyall
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
18
|
Sung TS, Lu H, Sung J, Yeom JH, Perrino BA, Koh SD. The functional role of protease-activated receptors on contractile responses by activation of Ca 2+ sensitization pathways in simian colonic muscles. Am J Physiol Gastrointest Liver Physiol 2018; 315:G921-G931. [PMID: 30260688 PMCID: PMC6336947 DOI: 10.1152/ajpgi.00255.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been known that activation of protease-activated receptors (PARs) affects gastrointestinal motility. In this study, we tested the effects of PAR agonists on electrical and contractile responses and Ca2+ sensitization pathways in simian colonic muscles. The Simian colonic muscle was initially hyperpolarized by PAR agonists. After the transient hyperpolarization, simian colonic muscle repolarized to the control resting membrane potential (RMP) without a delayed depolarization. Apamin significantly reduced the initial hyperpolarization, suggesting that activation of small conductance Ca2+-activated K+ (SK) channels is involved in the initial hyperpolarization. In contractile experiments, PAR agonists caused an initial relaxation followed by an increase in contractions. These delayed contractile responses were not matched with the electrical responses that showed no after depolarization of the RMP. To investigate the possible involvement of Rho-associated protein kinase 2 (ROCK) pathways in the PAR effects, muscle strips were treated with ROCK inhibitors, which significantly reduced the PAR agonist-induced contractions. Furthermore, PAR agonists increased MYPT1 phosphorylation, and ROCK inhibitors completely blocked MYPT1 phosphorylation. PAR agonists alone had no effect on CPI-17 phosphorylation. In the presence of apamin, PAR agonists significantly increased CPI-17 phosphorylation, which was blocked by protein kinase C (PKC) inhibitors suggesting that Ca2+ influx is increased by apamin and is activating PKC. In conclusion, these studies show that PAR activators induce biphasic responses in simian colonic muscles. The initial inhibitory responses by PAR agonists are mainly mediated by activation of SK channels and delayed contractile responses are mainly mediated by the CPI-17 and ROCK Ca2+ sensitization pathways in simian colonic muscles. NEW & NOTEWORTHY In the present study, we found that the contractile responses of simian colonic muscles to protease-activated receptor (PAR) agonists are different from the previously reported contractile responses of murine colonic muscles. Ca2+ sensitization pathways mediate the contractile responses of simian colonic muscles to PAR agonists without affecting the membrane potential. These findings emphasize novel mechanisms of PAR agonist-induced contractions possibly related to colonic dysmotility in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tae Sik Sung
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Hongli Lu
- 2Department of Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juno Sung
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jong Hoon Yeom
- 3Department of Anesthesiology and Pain Medicine, Hanyang University, Seoul, Republic of Korea
| | - Brian A. Perrino
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
19
|
Kim K, Lee J, Ghil S. The regulators of G protein signaling
RGS
16 and
RGS
18 inhibit protease‐activated receptor 2/Gi/o signaling through distinct interactions with Gα in live cells. FEBS Lett 2018; 592:3126-3138. [DOI: 10.1002/1873-3468.13220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Kiman Kim
- Department of Life Science Kyonggi University Suwon Korea
| | - Jinyong Lee
- Department of Life Science Kyonggi University Suwon Korea
| | - Sungho Ghil
- Department of Life Science Kyonggi University Suwon Korea
| |
Collapse
|
20
|
Zhang Y, Ge T, Xiang P, Mao H, Tang S, Li A, Lin L, Wei Y. Therapeutic effect of protease-activated receptor 2 agonist SLIGRL-NH 2 on loperamide-induced Sprague-Dawley rat constipation model and the related mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2403-2411. [PMID: 30122898 PMCID: PMC6078190 DOI: 10.2147/dddt.s160628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose To investigate the therapeutic effects of protease-activated receptor 2 (PAR-2) agonist SLIGRL-NH2 on loperamide-induced Sprague-Dawley (SD) rat constipation animal models. Materials and methods Loperamide was injected subcutaneously to induce constipation twice a day for 3 days. SD rats (n = 30) were randomly divided into five groups: non-constipation group (control, n = 6), constipation group (constipation, n = 6), constipation + SLIGRL-NH2 low-dosage group (SLIGRL-NH2 low, n=6), constipation + SLIGRL-NH2 high-dosage group (SLIGRL-NH2 high, n = 6), and constipation + prucalopride (positive control, n = 6). The SLIGRL-NH2 low group and SLIGRL-NH2 high group were administered with 2.5 μmol/kg and 5 μmol/kg SLIGRL-NH2, respectively, and the prucalopride group received 2 mg/kg prucalopride. The control and constipation group received 1× PBS under the same pattern. SLIGRL-NH2 and prucalopride were orally administrated once daily for 7 days. On the final day of oral administration, food intake, water intake, the number of stool pellets, weight, and fecal water content was calculated; moreover, the colons of rats in different groups were collected and histological features were examined by hematoxylin and eosin staining; furthermore, the expression of anoctamin-1 was determined by Immunohistochemical methods, and the expressions of c-kit and PAR-2 were examined using real-time quantitative polymerase chain reaction and Western blot methods; finally, the expressions of neurotransmitter vasoactive intestinal peptide (VIP) and substance P (SP) were examined using enzyme-linked immuno-sorbent assay methods. Results The feeding and excretion behaviors, intestinal transit ratio, and the histological feature of the colon in the constipated rats were all improved by SLIGRL-NH2 treatment; moreover, SLIGRL-NH2 treatment induced significant increase in the expression of PAR-2 and also increased number of interstitial Cajal cells. Furthermore, SLIGRL-NH2 also decreased the contents of the inhibitory neurotransmitter VIP and increased the expression of the excitatory neurotransmitter SP. High dose of SLIGRL-NH2 has shown similar anti-constipation effects as prucalopride. Conclusion These results suggested that SLIGRL-NH2 can enhance gastrointestinal transit and alleviate in rats with loperamide-induced constipation.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Tingrui Ge
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Ping Xiang
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Haibing Mao
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Shumin Tang
- Department of Colorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Aimin Li
- Department of Neurosurgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Lin Lin
- Department of Gastroenterology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinting Wei
- Department of Gastroenterology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang 222000, China,
| |
Collapse
|
21
|
Jiang Y, Yau MK, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. A Potent Antagonist of Protease-Activated Receptor 2 That Inhibits Multiple Signaling Functions in Human Cancer Cells. J Pharmacol Exp Ther 2018; 364:246-257. [PMID: 29263243 DOI: 10.1124/jpet.117.245027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 01/15/2023] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell surface protein linked to G-protein dependent and independent intracellular signaling pathways that produce a wide range of physiological responses, including those related to metabolism, inflammation, pain, and cancer. Certain proteases, peptides, and nonpeptides are known to potently activate PAR2. However, no effective potent PAR2 antagonists have been reported yet despite their anticipated therapeutic potential. This study investigates antagonism of key PAR2-dependent signaling properties and functions by the imidazopyridazine compound I-191 (4-(8-(tert-butyl)-6-(4-fluorophenyl)imidazo[1,2-b]pyridazine-2-carbonyl)-3,3-dimethylpiperazin-2-one) in cancer cells. At nanomolar concentrations, I-191 inhibited PAR2 binding of and activation by structurally distinct PAR2 agonists (trypsin, peptide, nonpeptide) in a concentration-dependent manner in cells of the human colon adenocarcinoma grade II cell line (HT29). I-191 potently attenuated multiple PAR2-mediated intracellular signaling pathways leading to Ca2+ release, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, Ras homologue gene family, member A (RhoA) activation, and inhibition of forskolin-induced cAMP accumulation. The mechanism of action of I-191 was investigated using binding and calcium mobilization studies in HT29 cells where I-191 was shown to be noncompetitive and a negative allosteric modulator of the agonist 2f-LIGRL-NH2 The compound alone did not activate these PAR2-mediated pathways, even at high micromolar concentrations, indicating no bias in these signaling properties. I-191 also potently inhibited PAR2-mediated downstream functional responses, including expression and secretion of inflammatory cytokines and cell apoptosis and migration, in human colon adenocarcinoma grade II cell line (HT29) and human breast adenocarcinoma cells (MDA-MB-231). These findings indicate that I-191 is a potent PAR2 antagonist that inhibits multiple PAR2-induced signaling pathways and functional responses. I-191 may be a valuable tool for characterizing PAR2 functions in cancer and in other cellular, physiological, and disease settings.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mei-Kwan Yau
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Ha HS, Lee SE, Lee HS, Kim GH, Yoon CJ, Han JS, Lee JY, Sohn UD. The signaling of protease-activated receptor-2 activating peptide-induced contraction in cat esophageal smooth muscle cells. Arch Pharm Res 2017; 40:1443-1454. [PMID: 29098568 DOI: 10.1007/s12272-017-0975-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 11/26/2022]
Abstract
Protease-activated receptors (PARs) are a family of G protein-coupled receptors with a unique activation mechanism involving proteolytic cleavage of the extracellular N-terminal domain of the receptor. PAR2 has a contractile effect on esophageal smooth muscle. We investigate the signaling pathways of the PAR2-activating peptide (PAR2-AP) induced contraction in cat esophageal smooth muscle cells. The length of freshly isolated smooth muscle cells and permeabilized cells from feline esophagus were measured by scanning micrometry, and by confirming molecular basis via western blot analysis. The responses to PAR2-AP were initial and sustained contractions, depending on time. The maximum contraction of the initial phase occurred at 60 s. The PAR2-AP-induced contraction was mediated by Gαi1, Gαi3, and Gαq protein activation, leading to phospholipase-c (PLC) and myosin light chain kinase (MLCK) activation. 20 kDa myosin light chain (MLC20) was phosphorylated by PAR2-AP. Rho kinase-2 (ROCK-2), an activator of 17 kDa C-kinase potentiated Protein phosphatase-1 Inhibitor (CPI-17), was increased by PAR2 receptor activation. In conclusion, PAR2-AP produced an initial contraction mediated by Gαi1, Gαi3, and Gαq protein activation, resulting in PLC and MLCK activation. The sustained contraction by PAR2-AP was mediated by the Rho/Rho kinase-dependent pathway.
Collapse
Affiliation(s)
- Hyun Su Ha
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Se Eun Lee
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Hyun Seok Lee
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Gil Hyung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Chan Jong Yoon
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Jong Soo Han
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Ji-Yun Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
23
|
Yoon H, Radulovic M, Walters G, Paulsen AR, Drucker K, Starski P, Wu J, Fairlie DP, Scarisbrick IA. Protease activated receptor 2 controls myelin development, resiliency and repair. Glia 2017; 65:2070-2086. [PMID: 28921694 DOI: 10.1002/glia.23215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Grant Walters
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Alex R Paulsen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Kristen Drucker
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Phillip Starski
- Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| |
Collapse
|
24
|
Gao S, Zhu H, Yang H, Zhang H, Li Q, Luo H. The role and mechanism of cathepsin G in dermatomyositis. Biomed Pharmacother 2017; 94:697-704. [PMID: 28797985 DOI: 10.1016/j.biopha.2017.07.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
Dermatomyositis (DM) is an idiopathic inflammatory myopathy characterized by CD4+ T cells and B cells infiltration in perivascular and muscle tissue. Although the infiltration of inflammatory cells plays a key role in muscle damage, the exact mechanism is not clear. Cathepsin G (CTSG) is a member of the serine proteases family and can increase the permeability of vascular endothelial cells and the chemotaxis of inflammatory cells. In this study, we found that the expression of CTSG was increased in peripheral blood mononuclear cells and muscle tissues of DM patients. The activity of CTSG was significantly increased in DM patients and correlated with disease activity. Serum CTSG induced the expression of protease activated receptor 2 (PAR2) and altered the cytoskeleton of human dermal microvascular endothelial cells. Our studies indicate, for the first time, that CTSG may play an important role in muscle inflammatory cells infiltration by increasing the permeability of vascular endothelial cells.
Collapse
Affiliation(s)
- Siming Gao
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
25
|
Ngkelo A, Richart A, Kirk JA, Bonnin P, Vilar J, Lemitre M, Marck P, Branchereau M, Le Gall S, Renault N, Guerin C, Ranek MJ, Kervadec A, Danelli L, Gautier G, Blank U, Launay P, Camerer E, Bruneval P, Menasche P, Heymes C, Luche E, Casteilla L, Cousin B, Rodewald HR, Kass DA, Silvestre JS. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J Exp Med 2017; 213:1353-74. [PMID: 27353089 PMCID: PMC4925026 DOI: 10.1084/jem.20160081] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022] Open
Abstract
Ngkelo et al. use a mast cell–deficient mouse model to reveal a protective role of mast cells in myocardial infarction, through regulation of the cardiac contractile machinery. Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.
Collapse
Affiliation(s)
- Anta Ngkelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Adèle Richart
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Jonathan A Kirk
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Philippe Bonnin
- INSERM, U965, Hôpital Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, F-75010 Paris, France
| | - Jose Vilar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathilde Lemitre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Pauline Marck
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Maxime Branchereau
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Sylvain Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Nisa Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Coralie Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mark J Ranek
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Anaïs Kervadec
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Gregory Gautier
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Ulrich Blank
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Pierre Launay
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Eric Camerer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Philippe Menasche
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Christophe Heymes
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Elodie Luche
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Béatrice Cousin
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Jean-Sébastien Silvestre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
26
|
段 园, 唐 旭, 王 凤, 马 祥. PAR-2信号通路与功能性胃肠病. Shijie Huaren Xiaohua Zazhi 2017; 25:1159-1165. [DOI: 10.11569/wcjd.v25.i13.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
功能性胃肠病(functional gastrointestinal disorders, FGIDs)是一组排除器质性病变的胃肠道疾病, 其症状复杂且无特异性. 该类疾病在人群中患病率不断升高, 虽不致死, 但伴随精神症状大大降低了患者生活质量, 病情反复且周期长, 给患者家庭和社会造成了一定经济压力. 探索其发病机制以制定更佳治疗策略成为当前重任. 近年研究证实蛋白酶激活受体2(protease-activated receptor 2, PAR-2)在FGIDs发病机制中的作用确切, 相关研究亦越来越深入. 但众多研究各持一角, 不免混杂, 故本文就近几年PAR-2的相关研究作了梳理, 以便后续研究能有所借鉴, 看到不足, 并能做进一步的深入研究.
Collapse
|
27
|
Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol 2017; 7:497. [PMID: 28101054 PMCID: PMC5209375 DOI: 10.3389/fphar.2016.00497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Obesity is associated with impaired vascular function. In the cardiovascular system, protease-activated receptor 2 (PAR2) exerts multiple functions such as the control of the vascular tone. In pathological conditions, PAR2 is related to vascular inflammation. However, little is known about the impact of obesity on PAR2 in the vasculature. Therefore, we explored the role of PAR2 as a potential link between obesity and cardiovascular diseases. Methods: C57BL/6 mice were fed with either a chow or a 60% high fat diet for 24 weeks prior to isolation of aortas. Furthermore, human coronary artery endothelial cells (HCAEC) and human coronary smooth muscle cells (HCSMC) were treated with conditioned medium obtained from in vitro differentiated primary human adipocytes. To investigate receptor interaction vascular endothelial growth factor receptor 2 (VEGFR2) was blocked by exposure to calcium dobesilate and a VEGFR2 neutralization antibody, before treatment with PAR2 activating peptide. Student's t-test or one-way were used to determine statistical significance. Results: Both, high fat diet and exposure to conditioned medium increased PAR2 expression in aortas and human vascular cells, respectively. In HCSMC, conditioned medium elicited proliferation as well as cyclooxygenase 2 induction, which was suppressed by the PAR2 antagonist GB83. Specific activation of PAR2 by the PAR2 activating peptide induced proliferation and cyclooxygenase 2 expression which were abolished by blocking the VEGFR2. Additionally, treatment of HCSMC with the PAR2 activating peptide triggered VEGFR2 phosphorylation. Conclusion: Under obesogenic conditions, where circulating levels of pro-inflammatory adipokines are elevated, PAR2 arises as an important player linking obesity-related adipose tissue inflammation to atherogenesis. We show for the first time that the underlying mechanisms of these pro-atherogenic effects involve a potential transactivation of the VEGFR2 by PAR2.
Collapse
Affiliation(s)
- Ira Indrakusuma
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center Düsseldorf, Germany
| | - Tania Romacho
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes CenterDüsseldorf, Germany; German Center for Diabetes Research (DZD e.V.)Düsseldorf, Germany
| |
Collapse
|
28
|
Proteinase-activated receptors (PARs) as targets for antiplatelet therapy. Biochem Soc Trans 2016; 44:606-12. [PMID: 27068977 DOI: 10.1042/bst20150282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/07/2023]
Abstract
Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.
Collapse
|
29
|
Using Oral and Colon Cancer Cells for Studying the Anticancer Properties of Antimicrobial Peptides. Methods Mol Biol 2016. [PMID: 28013517 DOI: 10.1007/978-1-4939-6737-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antimicrobial peptides (AMPs) are of importance in defense mechanism of many organisms and are potential candidate for treatment of infections in animals and humans. AMPs exhibit a wide range of immunomodulatory activities related to innate immunity, wound healing, and inflammation. AMPs also serve as drug delivery vectors, antitumor agents, and mitogenic agents. Here, we describe the investigation of anticancer and cytotoxic activities of antimicrobial peptides by colorimetric MTT assay using smooth muscle, dental pulp stem cell, human colon cancer cell line (SW620), and human oral squamous carcinoma cell line (HSC4).
Collapse
|
30
|
Stahn S, Thelen L, Albrecht IM, Bitzer J, Henkel T, Teusch NE. Teleocidin A2 inhibits human proteinase-activated receptor 2 signaling in tumor cells. Pharmacol Res Perspect 2016; 4:e00230. [PMID: 28116092 PMCID: PMC5242168 DOI: 10.1002/prp2.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Enhanced expression of the proteinase‐activated receptor 2 (PAR2) is linked to cell proliferation and migration in many cancer cell types. The role of PAR2 in cancer progression strongly illustrates the need for PAR2‐inhibiting compounds. However, to date, potent and selective PAR2 antagonists have not been reported. The natural product teleocidin A2 was characterized against PAR2‐activating peptide SLIGKV‐NH2, and trypsin‐induced PAR2‐dependent intracellular Ca2+ mobilization in tumor and in primary endothelial or epithelial cells. Further biochemical and cell‐based studies were conducted to evaluate teleocidin specificity. The antagonizing effect of teleocidin A2 was confirmed in PAR2‐dependent cell migration and rearrangement of actin cytoskeleton of human breast adenocarcinoma cell line (MDA‐MB 231) breast cancer cells. Teleocidin A2 antagonizes PAR2‐dependent intracellular Ca2+ mobilization induced by either SLIGKV‐NH2 or trypsin with IC50 values from 15 to 25 nmol/L in MDA‐MB 231, lung carcinoma cell line, and human umbilical vein endothelial cell. Half maximal inhibition of either PAR1 or P2Y receptor‐dependent Ca2+ release is only achieved with 10‐ to 20‐fold higher concentrations of teleocidin A2. In low nanomolar concentrations, teleocidin A2 reverses both SLIGKV‐NH2 and trypsin‐mediated PAR2‐dependent migration of MDA‐MB 231 cells, and has no effect itself on cell migration and no effect on cell viability. Teleocidin A2 further controls PAR2‐induced actin cytoskeleton rearrangement of MDA‐MB 231 cells. Thus, for the first time, the small molecule natural product teleocidin A2 exhibiting PAR2 antagonism in the low nanomolar range with potent antimigratory activity is described.
Collapse
Affiliation(s)
- Sonja Stahn
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| | - Lisa Thelen
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| | - Ina-Maria Albrecht
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| | | | | | - Nicole Elisabeth Teusch
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| |
Collapse
|
31
|
Perrino BA. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles. J Neurogastroenterol Motil 2016; 22:213-25. [PMID: 26701920 PMCID: PMC4819859 DOI: 10.5056/jnm15186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
32
|
Tillery LC, Epperson TA, Eguchi S, Motley ED. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells. Exp Biol Med (Maywood) 2016; 241:569-80. [PMID: 26729042 DOI: 10.1177/1535370215622584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632, suggesting protease-activated receptor coupling to Gq and G12/13, respectively. These data suggest a vascular bed specific differential coupling of protease-activated receptors to the signaling pathways that regulate endothelial nitric oxide synthase and nitric oxide production that may be responsible for endothelial dysfunction associated with cardiovascular disease.
Collapse
Affiliation(s)
- Lakeisha C Tillery
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Tenille A Epperson
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Satoru Eguchi
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Evangeline D Motley
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
33
|
Elrick MM, Samson WK, Corbett JA, Salvatori AS, Stein LM, Kolar GR, Naatz A, Yosten GLC. Neuronostatin acts via GPR107 to increase cAMP-independent PKA phosphorylation and proglucagon mRNA accumulation in pancreatic α-cells. Am J Physiol Regul Integr Comp Physiol 2015; 310:R143-55. [PMID: 26561648 DOI: 10.1152/ajpregu.00369.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/08/2015] [Indexed: 12/17/2022]
Abstract
Neuronostatin (NST) is a recently described peptide that is produced from the somatostatin preprohormone in pancreatic δ-cells. NST has been shown to increase glucagon secretion from primary rat pancreatic islets in low-glucose conditions. Here, we demonstrate that NST increases proglucagon message in α-cells and identify a potential mechanism for NST's cellular activities, including the phosphorylation of PKA following activation of the G protein-coupled receptor, GPR107. GPR107 is abundantly expressed in the pancreas, particularly, in rodent and human α-cells. Compromise of GPR107 in pancreatic α-cells results in failure of NST to increase PKA phosphorylation and proglucagon mRNA levels. We also demonstrate colocalization of GPR107 and NST on both mouse and human pancreatic α-cells. Taken together with our group's observation that NST infusion in conscious rats impairs glucose clearance in response to a glucose challenge and that plasma levels of the peptide are elevated in the fasted compared with the fed or fasted-refed state, these studies support the hypothesis that endogenous NST regulates islet cell function by interacting with GPR107 and initiating signaling in glucagon-producing α-cells.
Collapse
Affiliation(s)
- Mollisa M Elrick
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison S Salvatori
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lauren M Stein
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri; and
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
34
|
Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG. Cell Biochem Biophys 2015; 70:867-80. [PMID: 24777815 DOI: 10.1007/s12013-014-9992-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In gastrointestinal smooth muscle, agonists that bind to Gi-coupled receptors activate preferentially PLC-β3 via Gβγ to stimulate phosphoinositide (PI) hydrolysis and generate inositol 1,4,5-trisphosphate (IP3) leading to IP3-dependent Ca(2+) release and muscle contraction. In the present study, we identified the mechanism of inhibition of PLC-β3-dependent PI hydrolysis by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). Cyclopentyl adenosine (CPA), an adenosine A1 receptor agonist, caused an increase in PI hydrolysis in a concentration-dependent fashion; stimulation was blocked by expression of the carboxyl-terminal sequence of GRK2(495-689), a Gβγ-scavenging peptide, or Gαi minigene but not Gαq minigene. Isoproterenol and S-nitrosoglutathione (GSNO) induced phosphorylation of PLC-β3 and inhibited CPA-induced PI hydrolysis, Ca(2+) release, and muscle contraction. The effect of isoproterenol on all three responses was inhibited by PKA inhibitor, myristoylated PKI, or AKAP inhibitor, Ht-31, whereas the effect of GSNO was selectively inhibited by PKG inhibitor, Rp-cGMPS. GSNO, but not isoproterenol, also phosphorylated Gαi-GTPase-activating protein, RGS2, and enhanced association of Gαi3-GTP and RGS2. The effect of GSNO on PI hydrolysis was partly reversed in cells (i) expressing constitutively active GTPase-resistant Gαi mutant (Q204L), (ii) phosphorylation-site-deficient RGS2 mutant (S46A/S64A), or (iii) siRNA for RGS2. We conclude that PKA and PKG inhibit Gβγi-dependent PLC-β3 activity by direct phosphorylation of PLC-β3. PKG, but not PKA, also inhibits PI hydrolysis indirectly by a mechanism involving phosphorylation of RGS2 and its association with Gαi-GTP. This allows RGS2 to accelerate Gαi-GTPase activity, enhance Gαβγi trimer formation, and inhibit Gβγi-dependent PLC-β3 activity.
Collapse
|
35
|
Andoh T, Kuraishi Y. Antipruritic mechanisms of topical E6005, a phosphodiesterase 4 inhibitor: inhibition of responses to proteinase-activated receptor 2 stimulation mediated by increase in intracellular cyclic AMP. J Dermatol Sci 2014; 76:206-13. [PMID: 25458869 DOI: 10.1016/j.jdermsci.2014.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/11/2014] [Accepted: 10/14/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Phosphodiesterase 4 (PDE4), which catalyses the conversion of cyclic adenosine 3',5'-monophosphate (cAMP) to 5'-AMP, plays a critical role in the pathogenesis of inflammatory disorders. Pruritus is the main symptom of dermatitides, such as atopic dermatitis, and is very difficult to control. Recent studies have shown that the activation of proteinase-activated receptor 2 (PAR2) is involved in pruritus in dermatoses in humans and rodents. OBJECTIVE To investigate the inhibitory effect of E6005, a topically effective PDE4 inhibitor, on PAR2-associated itching in mice. METHODS Mice were given an intradermal injection of SLIGRL-NH2 (100 nmol/site), a PAR2 agonist peptide, into the rostral part of the back. E6005 and 8-bromo-cAMP were applied topically and injected intradermally, respectively, to the same site. Scratching bouts were observed as an itch-related behavior, and firing activity of the cutaneous nerve was electrophysiologically recorded. Keratinocytes were isolated from the skin of neonatal mice and cultured for in vitro experiments. The concentrations of cAMP and leukotriene B4 (LTB4) were measured by enzyme immunoassay. The distribution of PDE4 subtypes in the skin was investigated by immunostaining. RESULTS Topical E6005 and intradermal 8-bromo-cAMP significantly inhibited SLIGRL-NH2-induced scratching and cutaneous nerve firing. Topical E6005 increased cutaneous cAMP content. Topical E6005 and intradermal 8-bromo-cAMP inhibited cutaneous LTB4 production induced by SLIGRL-NH2, which has been shown to elicit LTB4-mediated scratching. E6005 and 8-bromo-cAMP inhibited SLIGRL-NH2-induced LTB4 production in the cultured murine keratinocytes also. PDE4 subtypes were mainly expressed in keratinocytes and mast cells in the skin. CONCLUSIONS The results suggest that topical E6005 treatment inhibits PAR2-associated itching. Inhibition of LTB4 production mediated by an increase in cAMP may be partly involved in the antipruritic action of E6005.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yasushi Kuraishi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
36
|
Nalli AD, Kumar DP, Mahavadi S, Al-Shboul O, Alkahtani R, Kuemmerle JF, Grider JR, Murthy KS. Hypercontractility of intestinal longitudinal smooth muscle induced by cytokines is mediated by the nuclear factor-κB/AMP-activated kinase/myosin light chain kinase pathway. J Pharmacol Exp Ther 2014; 350:89-98. [PMID: 24769544 PMCID: PMC4056271 DOI: 10.1124/jpet.113.212522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/24/2014] [Indexed: 01/25/2023] Open
Abstract
Recent studies have identified AMP-activated kinase (AMPK) as a target of Ca(2+)/calmodulin-dependent kinase kinase (CaMKKβ) and a negative regulator of myosin light-chain (MLC) kinase (MLCK). The present study examined whether a change in expression or activity of AMPK is responsible for hypercontractility of intestinal longitudinal muscle during inflammation or in response to proinflammatory cytokines. In mouse colonic longitudinal muscle cells, acetylcholine (ACh) stimulated AMPK and MLCK phosphorylation and activity and induced MLC20 phosphorylation and muscle contraction. Blockade of CaMKKβ with STO609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate) inhibited AMPK and MLCK phosphorylation and augmented MLCK activity, MLC20 phosphorylation, and smooth muscle cell contraction. In muscle cells isolated from the colon of TNBS (2,4,6-trinitrobenzenesulfonic acid)-treated mice or from strips treated with interleukin-1β or tumor necrosis factor-α, nuclear factor κB was activated as indicated by an increase in p65 phosphorylation and IκBα degradation, and AMPK was phosphorylated at a cAMP-dependent protein kinase (PKA)-specific site (Ser(485)) that is distinct from the stimulatory CaMKKβ site (Thr(172)), resulting in attenuation of ACh-stimulated AMPK activity and augmentation of MLCK activity and muscle cell contraction. Inhibition of nuclear factor-κB activity with MG-132 (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal Z-LLL-CHO) or PKA activity with myristoylated PKA inhibitor 14-22 amide blocked phosphorylation of AMPK at Ser(485) and restored MLCK activity and muscle cell contraction to control levels. The results imply that PKA released from IκBα complex phosphorylated AMPK at a PKA-specific site and inhibited its activity, thereby relieving the inhibitory effect of AMPK on MLCK and increasing MLCK activity and muscle cell contraction. We conclude that hypercontractility of intestinal longitudinal muscle induced by inflammation or proinflammatory cytokines is mediated by nuclear factor κB/PKA-dependent inhibition of AMPK and activation of MLCK.
Collapse
Affiliation(s)
- Ancy D Nalli
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Othman Al-Shboul
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Reem Alkahtani
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
PAR2-mediated upregulation of BDNF contributes to central sensitization in bone cancer pain. Mol Pain 2014; 10:28. [PMID: 24886294 PMCID: PMC4027994 DOI: 10.1186/1744-8069-10-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/28/2014] [Indexed: 12/01/2022] Open
Abstract
Background Bone cancer pain is currently a major clinical challenge for the management of cancer patients, and the cellular and molecular mechanisms underlying the spinal sensitization remain unclear. While several studies demonstrated the critical role of proteinase-activated receptor (PAR2) in the pathogenesis of several types of inflammatory or neuropathic pain, the involvement of spinal PAR2 and the pertinent signaling in the central sensitization is not determined yet in the rodent model of bone cancer pain. Findings Implantation of tumor cells into the tibias induced significant thermal hyperalgesia and mechanical allodynia, and enhanced glutamatergic strength in the ipsilateral dorsal horn. Significantly increased brain-derived neurotrophic factor (BDNF) expression was detected in the dorsal horn, and blockade of spinal BDNF signaling attenuated the enhancement of glutamatergic strength, thermal hyperalgesia and mechanical allodynia in the rats with bone cancer pain. Significantly increased spinal PAR2 expression was also observed, and inhibition of PAR2 signaling ameliorated BDNF upsurge, enhanced glutamatergic strength, and thermal hyperalgesia and mechanical allodynia. Inhibition of NF-κB pathway, the downstream of PAR2 signaling, also significantly decreased the spinal BDNF expression, glutamatergic strength of dorsal horn neurons, and thermal hyperalgesia and mechanical allodynia. Conclusion The present study demonstrated that activation of PAR2 triggered NF-κB signaling and significantly upregulated the BDNF function, which critically contributed to the enhancement of glutamatergic transmission in spinal dorsal horn and thermal and mechanical hypersensitivity in the rats with bone cancer. This indicated that PAR2 - NF-κB signaling might become a novel target for the treatment of pain in patients with bone cancer.
Collapse
|
38
|
PAR2-mediated epigenetic upregulation of α-synuclein contributes to the pathogenesis of Parkinson׳s disease. Brain Res 2014; 1565:82-9. [DOI: 10.1016/j.brainres.2014.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022]
|
39
|
Al-Shboul O, Nalli AD, Kumar DP, Zhou R, Mahavadi S, Kuemmerle JF, Grider JR, Murthy KS. Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained hypercontraction of longitudinal smooth muscle in inflammation. Am J Physiol Cell Physiol 2014; 306:C1129-41. [PMID: 24740538 DOI: 10.1152/ajpcell.00021.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The signaling pathways mediating sustained contraction of mouse colonic longitudinal smooth muscle and the mechanisms involved in hypercontractility of this muscle layer in response to cytokines and TNBS-induced colitis have not been fully explored. In control longitudinal smooth muscle cells, ACh acting via m3 receptors activated sequentially Gα12, RhoGEF (LARG), and the RhoA/Rho kinase pathway. There was abundant expression of MYPT1, minimal expression of CPI-17, and a notable absence of a PKC/CPI-17 pathway. LARG expression was increased in longitudinal muscle cells isolated from muscle strips cultured for 24 h with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice. The increase in LARG expression was accompanied by a significant increase in ACh-stimulated Rho kinase and ZIP kinase activities, and sustained muscle contraction. The increase in LARG expression, Rho kinase and ZIP kinase activities, and sustained muscle contraction was abolished in cells pretreated with the Jun kinase inhibitor, SP600125. Expression of the MLCP activator, telokin, and MLCP activity were also decreased in longitudinal muscle cells from TNBS-treated mice or from strips treated with IL-1β or TNF-α. In contrast, previous studies had shown that sustained contraction in circular smooth muscle is mediated by sequential activation of Gα13, p115RhoGEF, and dual RhoA-dependent pathways involving phosphorylation of MYPT1 and CPI-17. In colonic circular smooth muscle cells isolated from TNBS-treated mice or from strips treated with IL-1β or TNF-α, CPI-17 expression and sustained muscle contraction were decreased. The disparate changes in the two muscle layers contribute to intestinal dysmotility during inflammation.
Collapse
Affiliation(s)
- Othman Al-Shboul
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ruizhe Zhou
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
40
|
Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 2014; 5:67. [PMID: 24860547 PMCID: PMC4026716 DOI: 10.3389/fendo.2014.00067] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/22/2014] [Indexed: 01/06/2023] Open
Abstract
In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions.
Collapse
Affiliation(s)
- Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Matthew Metcalf
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Nigel W. Bunnett, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia e-mail:
| |
Collapse
|
41
|
Ayoub MA, Pin JP. Interaction of Protease-Activated Receptor 2 with G Proteins and β-Arrestin 1 Studied by Bioluminescence Resonance Energy Transfer. Front Endocrinol (Lausanne) 2013; 4:196. [PMID: 24391627 PMCID: PMC3869048 DOI: 10.3389/fendo.2013.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors are well recognized as being able to activate several signaling pathways through the activation of different G proteins as well as other signaling proteins such as β-arrestins. Therefore, understanding how such multiple GPCR-mediated signaling can be integrated constitute an important aspect. Here, we applied bioluminescence resonance energy transfer (BRET) to shed more light on the G protein coupling profile of trypsin receptor, or protease-activated receptor 2 (PAR2), and its interaction with β-arrestin1. Using YFP and Rluc fusion constructs expressed in COS-7 cells, BRET data revealed a pre-assembly of PAR2 with both Gαi1 and Gαo and a rapid and transient activation of these G proteins upon receptor activation. In contrast, no pre-assembly of PAR2 with Gα12 could be detected and their physical association can be measured with a very slow and sustained kinetics similar to that of β-arrestin1 recruitment. These data demonstrate the coupling of PAR2 with Gαi1, Gαo, and Gα12 in COS-7 cells with differences in the kinetics of GPCR-G protein coupling, a parameter that very likely influences the cellular response. Moreover, this further illustrates that pre-assembly or agonist-induced G protein interaction depends on receptor-G protein pairs indicating another level of complexity and regulation of the signaling of GPCR-G protein complexes and its multiplicity.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Département de Pharmacologie Moléculaire, Institut de Génomique Fonctionnelle, Montpellier, France
- UMR5203, Centre national de la recherche scientifique, Universités Montpellier 1 & 2, Montpellier, France
- U661, Institut national de la santé et de la recherche médicale, Universités Montpellier 1 & 2, Montpellier, France
| | - Jean-Philippe Pin
- Département de Pharmacologie Moléculaire, Institut de Génomique Fonctionnelle, Montpellier, France
- UMR5203, Centre national de la recherche scientifique, Universités Montpellier 1 & 2, Montpellier, France
- U661, Institut national de la santé et de la recherche médicale, Universités Montpellier 1 & 2, Montpellier, France
| |
Collapse
|