1
|
Escarrat V, Reato D, Blivet G, Touchon J, Rougon G, Bos R, Debarbieux F. Dorsoventral photobiomodulation therapy safely reduces inflammation and sensorimotor deficits in a mouse model of multiple sclerosis. J Neuroinflammation 2024; 21:321. [PMID: 39696356 DOI: 10.1186/s12974-024-03294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Non-invasive photobiomodulation therapy (PBMT), employing specific infrared light wavelengths to stimulate biological tissues, has recently gained attention for its application to treat neurological disorders. Here, we aimed to uncover the cellular targets of PBMT and assess its potential as a therapeutic intervention for multiple sclerosis (MS). METHODS We applied daily dorsoventral PBMT in an experimental autoimmune encephalomyelitis (EAE) mouse model, which recapitulates key features of MS, and revealed a strong positive impact of PBMT on the sensorimotor deficits. To understand the cellular mechanisms underlying these striking effects, we used state-of-the-art tools and methods ranging from two-photon longitudinal imaging of triple fluorescent reporter mice to histological investigations and patch-clamp electrophysiological recordings. RESULTS We found that PBMT induced anti-inflammatory and neuroprotective effects in the dorsal spinal cord. PBMT prevented peripheral immune cell infiltration, glial reactivity, as well as the EAE-induced hyperexcitability of spinal interneurons, both in dorsal and ventral areas, which likely underlies the behavioral effects of the treatment. Thus, aside from confirming the safety of PBMT in healthy mice, our preclinical investigation suggests that PBMT exerts a systemic and beneficial effect on the physiopathology of EAE, primarily resulting in the modulation of the inflammatory processes. CONCLUSION PBMT may therefore represent a new valuable therapeutic option to treat MS symptoms.
Collapse
Affiliation(s)
- Vincent Escarrat
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- REGEnLIFE, Paris, France
| | - Davide Reato
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
- Département BEL, Mines Saint-Etienne, Centre CMP, 13541, Gardanne, France
| | | | | | - Geneviève Rougon
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France
| | - Rémi Bos
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France.
| | - Franck Debarbieux
- Aix Marseille Univ, CNRS, INT, Inst. Neurosci. Timone, Marseille, France.
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Ahmed Z. The benefits of photobiomodulation in animal models of multiple sclerosis: a systematic review and meta-analysis. Front Neurol 2024; 15:1482096. [PMID: 39502387 PMCID: PMC11534619 DOI: 10.3389/fneur.2024.1482096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background Photobiomodulation (PBM), using red- or near-infrared light, has been used to treat tendinopathies, nerve injuries, osteoarthritis and wounds and evaluated in experimental allergic encephalomyelitis (EAE). To date, only a few studies have been performed in EAE but surprisingly, a few clinical studies in humans have already been performed, despite the paucity of preclinical evidence. Objective Therefore, this study systematically reviewed the usefulness of PBM in ameliorating the clinical signs of EAE, a commonly used animal model of multiple sclerosis, and determine if there is enough evidence to warrant human studies. Methods PubMed, EMBASE and Web of Science were searched in July 2024 for studies relating to PBM and EAE without any language restrictions. Since only three studies have been published, all studies were included in the systematic review and data related to clinical signs of EAE was pooled together to conduct a meta-analysis. Non-homogenous data was also reported and thematically synthesized. Results A meta-analysis of the pooled data from the three included studies demonstrated a significant reduction of the clinical severity of EAE, with a mean reduction of 1.44, 95% CI (-2.45, -0.42), p = 0.006. PBM also significantly reduced other parameters such as infiltration of mononuclear cells, CNS demyelination, apoptosis markers and pro-inflammatory cytokines. However, there was an overall high risk of bias in all of the studies. Conclusion The meta-analysis supports the use of PBM to ameliorate the symptoms of EAE, but the paucity of studies and the high risk of bias in the included studies warrants further preclinical investigation before conducting human studies.
Collapse
|
3
|
Oliveira de Andrade Filho V, Amarante MOC, Gonzalez-Lima F, Gomes da Silva S, Cardoso FDS. Systematic review of photobiomodulation for multiple sclerosis. Front Neurol 2024; 15:1465621. [PMID: 39329016 PMCID: PMC11424438 DOI: 10.3389/fneur.2024.1465621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory chronic autoimmune and neurodegenerative disorder of the brain and spinal cord, resulting in loss of motor, sensorial, and cognitive function. Among the non-pharmacological interventions for several brain conditions, photobiomodulation (PBM) has gained attention in medical society for its neuroprotective effects. We systematically reviewed the effects of PBM on MS. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: PBM, low-level laser therapy, multiple sclerosis, autoimmune encephalomyelitis, demyelination, and progressive multiple sclerosis. Data search was limited from 2012 to July 2024. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The initial systematic search identified 126 articles. Of these, 68 articles were removed by duplicity and 50 by screening. Thus, 8 studies satisfied the inclusion criteria. Results The reviewed studies showed that PBM modulates brain markers linked to inflammation, oxidative stress, and apoptosis. Improvements in motor, sensorial, and cognitive functions in MS patients were also observed after PBM therapy. No study reported adverse effects of PBM. Conclusion These findings suggest the potential of PBM as a promising non-pharmacological intervention for the management of MS, although further research is needed to standardize PBM protocols and assess its long-term effects.
Collapse
Affiliation(s)
| | | | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário FAMINAS, Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
- Centro Universitário Redentor (UniREDENTOR/Afya), Itaperuna, RJ, Brazil
| | - Fabrízio Dos Santos Cardoso
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
- Centro Universitário Redentor (UniREDENTOR/Afya), Itaperuna, RJ, Brazil
| |
Collapse
|
4
|
Ma H, Du Y, Xie D, Wei ZZ, Pan Y, Zhang Y. Recent advances in light energy biotherapeutic strategies with photobiomodulation on central nervous system disorders. Brain Res 2024; 1822:148615. [PMID: 37783261 DOI: 10.1016/j.brainres.2023.148615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Transcranial photobiomodulation refers to irradiation of the brain through the skull using low-intensity red or near-infrared light, which is the most commonly studied method of light energy biotherapy for central nervous system disorders. The absorption of photons by specific chromophores within the cell elevates ATP synthesis, reduces oxidative stress damage, alleviates inflammation or mediates the activation of transcription factors and signaling mediators through secondary mediators, which in turn trigger downstream signaling pathways to cause a series of photobiological effects including upregulation of neurotrophic factors. Multiple mechanisms are simultaneously involved in the pathological process of central nervous system disorders. The pleiotropic treatment of transcranial photobiomodulation towards multiple targets plays a beneficial role in improving hemodynamics, neural repair and improving behaviors in central nervous system disorders such as ischemic stroke, traumatic brain injury, neurodegenerative diseases, epilepsy and depression. This review mainly introduces the mechanism and recent preclinical and clinical advances of transcranial photobiomodulation for central nervous system disorders, which will provide a reference for clinicians to understand and engage in related studies, and calls for more and larger studies to validate and develop a wider application of transcranial photobiomodulation in central nervous system.
Collapse
Affiliation(s)
- Huixuan Ma
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yitong Du
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Xie
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; The People's Hospital of Wu Hai Inner Mongolia, Inner Mongolia, China
| | - Zheng Z Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuhualei Pan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Moskvin SV, Kochetkov AV, Aleksandrova NA, Gameeva EV. [Low-level laser therapy in multiple sclerosis: justification and optimization methods of application. (Literature review)]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:45-56. [PMID: 39487619 DOI: 10.17116/kurort202410105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease that is based on a complex of autoimmune inflammatory and neurodegenerative processes leading to multiple focal and diffuse damage of central nervous system. Treatment of MS causes great difficulties. OBJECTIVE To analyze scientific data on the effectiveness and optimization of applying low-level laser therapy methods in patients with MS. MATERIAL AND METHODS Databases and libraries, namely PubMed, Scopus, ResearchGate, Google Scholar, J-STAGE, eLibrary.ru, were used for search. Publications of interest towards analysis of the ways of optimization of low-level laser therapy techniques and its effectiveness improvement, prospects for the development of this treatment method were selected. The total number of publications equal 87, mostly in English and Russian, was found. RESULTS It was demonstrated, that low-level laser therapy can be considered a promising method of MS treatment. Mechanisms of therapeutic action of low-intensity laser radiation were shown, as well as the results of several clinical studies were presented. CONCLUSION It was concluded that optimal values of all technique's indicators, namely wavelength, operation mode, power, frequency, exposure, etc., should be used. Laser blood irradiation (intravenous or external) and laser acupuncture, systemic techniques of low-level laser therapy are obligatory carried out with local irradiation of lesions.
Collapse
Affiliation(s)
- S V Moskvin
- Academy of Postgraduate Education of the Federal Clinical and Scientific Center for Specialized Medical Care and Technologies of the Federal Biological Medical Agency, Moscow, Russia
| | - A V Kochetkov
- Academy of Postgraduate Education of the Federal Clinical and Scientific Center for Specialized Medical Care and Technologies of the Federal Biological Medical Agency, Moscow, Russia
| | - N A Aleksandrova
- Academy of Postgraduate Education of the Federal Clinical and Scientific Center for Specialized Medical Care and Technologies of the Federal Biological Medical Agency, Moscow, Russia
| | - E V Gameeva
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical-Biological Agency, Moscow, Russia
| |
Collapse
|
6
|
Mohammed HS, Hosny EN, Sawie HG, Khadrawy YA. Transcranial photobiomodulation ameliorates midbrain and striatum neurochemical impairments and behavioral deficits in reserpine-induced parkinsonism in rats. Photochem Photobiol Sci 2023; 22:2891-2904. [PMID: 37917308 DOI: 10.1007/s43630-023-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Faculty of Science, Biophysics Department, Cairo University, Giza, Egypt.
| | - Eman N Hosny
- Medical Division, Medical Physiology Department, National Research Centre, Giza, Egypt
| | - Hussein G Sawie
- Medical Division, Medical Physiology Department, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Division, Medical Physiology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Bouboulis D, Huff A, Burawski L. Twenty cases of perennial and seasonal allergic rhinitis treated with LumiMed® Nasal Device. J Med Case Rep 2023; 17:263. [PMID: 37312188 DOI: 10.1186/s13256-023-03980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Allergic rhinitis is the most common allergic disease, with a prevalence up to 40% in the general population. Allergic rhinitis requires daily treatment to block inflammatory mediators and suppress the inflammatory response. However, these medications may have harmful side effects. Photobiomodulation as a treatment modality to reduce inflammation has been beneficial in many chronic disorders, yet therapy has not been US Food and Drug Administration approved for the treatment of allergic rhinitis. The LumiMed Nasal Device was designed to address the limitations associated with the treatment of allergic rhinitis with photobiomodulation. This in-office study hopes to show efficacy, usability, and comfortability of the LumiMed Nasal Device. CASE PRESENTATION Twenty patients with allergic rhinitis were treated during high allergy season with LumiMed Nasal Device. The average age of patients was 35 years (10-75); 11 were female and 9 were male. The population's ethnicities were white (n = 11), Black (n = 6), Oriental (n = 2), and Iranian (n = 1). Patients were treated with twice-daily dosing, 10 seconds in each nostril, for 10 consecutive days. After 10 days, patients were evaluated for symptom relief, device comfort and device ease of use. The Total Nasal Symptom Score was used to assess severity of main symptoms of allergic rhinitis. The sum of Total Nasal Symptom Scores for each symptom category was calculated (total possible scores per patient were 0-9). Rhinorrhea/nasal secretions, nasal congestion, and nasal itching/sneezing were evaluated on a scale of 0-3 (0 no symptoms, 1 mild symptoms, 2 moderate symptoms, 3 severe symptoms). Device comfort was evaluated on a scale of 0-3 (0 no discomfort, 1 mild discomfort, 2 moderate discomfort, 3 severe discomfort). Device ease of use was evaluated on a scale of 0-3 (0 very easy, 1 somewhat difficult, 2 difficult, 3 very difficult). CONCLUSIONS The results from these case studies indicated that of the 20 patients in this case study, 100% of patients experienced improvement in overall Total Nasal Symptom Score after using LumiMed Nasal Device. Of those patients, 40% brought their Total Nasal Symptom Score down to 0. Furthermore, 95% felt the LumiMed Nasal Device was comfortable to use, while 85% of patients felt the LumiMed Nasal Device was easy to use.
Collapse
Affiliation(s)
| | - Avery Huff
- LumiMed, 106 Noroton Ave Suite 101, Darien, CT, 06820, USA
| | | |
Collapse
|
8
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
9
|
Tolentino M, Cho CC, Lyons JA. Photobiomodulation at 830 nm Reduced Nitrite Production by Peripheral Blood Mononuclear Cells Isolated from Multiple Sclerosis Subjects. Photobiomodul Photomed Laser Surg 2022; 40:480-487. [DOI: 10.1089/photob.2021.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miguel Tolentino
- Biomedical Sciences Department, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Chi C. Cho
- College of Health Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeri-Anne Lyons
- Biomedical Sciences Department, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Effect of photobiomodulation on fatigue in individuals with relapsing-remitting multiple sclerosis: a pilot study. Lasers Med Sci 2022; 37:3107-3113. [PMID: 35499744 DOI: 10.1007/s10103-022-03567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammation and destruction of the myelin sheath. Fatigue is one of the main symptoms of this disease, with a negative impact on quality of life and few treatment options. Photobiomodulation is used for several inflammatory conditions and may be beneficial for the treatment of fatigue in individuals with multiple sclerosis. Conduct a pilot study to analyze the effect of photobiomodulation on fatigue in individuals with relapsing-remitting multiple sclerosis. The participants were recruited from the UNINOVE Integrated Health Clinic and randomly allocated to two groups: group 1, administration of photobiomodulation (808 nm, 36 J for 360 s) under the tongue and group 2, administration of photobiomodulation over the radial artery. Fatigue was measured using the Modified Fatigue Impact Scale (MFIS). No significant differences were found regarding the total MFIS score or subscale scores (p < 0.05, two-way ANOVA). Photobiomodulation with the parameters employed in the present study had no effect on fatigue in individuals with multiple sclerosis. ClinicalTrials.gov Identifier: NCT03360487.
Collapse
|
11
|
Bathini M, Raghushaker CR, Mahato KK. The Molecular Mechanisms of Action of Photobiomodulation Against Neurodegenerative Diseases: A Systematic Review. Cell Mol Neurobiol 2022. [PMID: 33301129 DOI: 10.1007/s10571-020-01016-9,33301129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Collapse
Affiliation(s)
- Mayukha Bathini
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Bathini M, Raghushaker CR, Mahato KK. The Molecular Mechanisms of Action of Photobiomodulation Against Neurodegenerative Diseases: A Systematic Review. Cell Mol Neurobiol 2022; 42:955-971. [PMID: 33301129 PMCID: PMC8942959 DOI: 10.1007/s10571-020-01016-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases might be slow but relentless, as we continue to fail in treating or delaying their progression. Given the complexity in the pathogenesis of these diseases, a broad-acting approach like photobiomodulation can prove promising. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits, working by stimulating growth and proliferation. The implications of photobiomodulation have been studied in several neurodegenerative disease models. It has been shown to improve cell survival, decrease apoptosis, alleviate oxidative stress, suppress inflammation, and rescue mitochondrial function. In in vivo models, it has reportedly preserved motor and cognitive skills. Beyond mitochondrial stimulation, the molecular mechanisms by which photobiomodulation protects against neurodegeneration have not been very well studied. This review has systematically been undertaken to study the effects of photobiomodulation at a molecular level and identify the different biochemical pathways and molecular changes in the process. The data showed the involvement of pathways like extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and protein kinase B (Akt). In addition, the expression of several genes and proteins playing different roles in the disease mechanisms was found to be influenced by PBM, such as neurotrophic factors and secretases. Studying the literature indicated that PBM can be translated to a potential therapeutic tool, acting through a spectrum of mechanisms that work together to decelerate disease progression in the organism, which is difficult to achieve through pharmacological interventions.
Collapse
Affiliation(s)
- Mayukha Bathini
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
13
|
Zhang WW, Wang XY, Chu YX, Wang YQ. Light-emitting diode phototherapy: pain relief and underlying mechanisms. Lasers Med Sci 2022; 37:2343-2352. [DOI: 10.1007/s10103-022-03540-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
|
14
|
Dos Santos Cardoso F, Mansur FCB, Araújo BHS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation Improves the Inflammatory Response and Intracellular Signaling Proteins Linked to Vascular Function and Cell Survival in the Brain of Aged Rats. Mol Neurobiol 2021; 59:420-428. [PMID: 34708330 DOI: 10.1007/s12035-021-02606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Photobiomodulation is a non-pharmacological tool widely used to reduce inflammation in many tissues. However, little is known about its effects on the inflammatory response in the aged brain. We conducted the study to examine anti-inflammatory effects of photobiomodulation in aging brains. We used aged rats (20 months old) with control (handled, laser off) or transcranial laser (660 nm wavelength, 100 mW power) treatments for 10 consecutive days and evaluated the level of inflammatory cytokines and chemokines, and the expression and activation of intracellular signaling proteins in the cerebral cortex and the hippocampus. Inflammatory analysis showed that aged rats submitted to transcranial laser treatment had increased levels of IL-1alpha and decreased levels of IL-5 in the cerebral cortex. In the hippocampus, the laser treatment increased the levels of IL-1alpha and decreased levels of IL-5, IL-18, and fractalkine. Regarding the intracellular signaling proteins, a reduction in the ERK and p38 expression and an increase in the STAT3 and ERK activation were observed in the cerebral cortex of aged rats from the laser group. In addition, the laser treatment increased the hippocampal expression of p70S6K, STAT3, and p38 of aged rats. Taken together, our data indicate that transcranial photobiomodulation can improve the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the aged brain.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, SP, 08780-911, Brazil. .,Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA. .,Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brasil.
| | | | - Bruno Henrique Silva Araújo
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa Em Energia E Materiais (CNPEM), Campinas, SP, Brazil
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, SP, 08780-911, Brazil. .,Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil. .,Hospital Do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
15
|
Cardoso FDS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the aging brain. Ageing Res Rev 2021; 70:101415. [PMID: 34325071 DOI: 10.1016/j.arr.2021.101415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Longevity is one of the great triumphs of humanity. Worldwide, the elderly is the fastest growing segment of the population. As a consequence, the number of cases of age-related cognitive decline and neurological diseases associated with aging, such as Alzheimer's and Parkinson's, has been increasing. Among the non-pharmacological interventions studied for the treatment or prevention of age-related neurocognitive impairment, photobiomodulation (PBM) has gained prominence for its beneficial effects on brain functions relevant to aging brains. In animal models, the neuroprotective and neuromodulatory capacity of PBM has been observed. Studies using both animals and humans have shown promising metabolic and hemodynamic effects of PBM on the brain, such as improved mitochondrial and vascular functions. Studies in humans have shown that PBM can improve electrophysiological activity and cognitive functions such as attention, learning, memory and mood in older people. In this paper we will review the main brain effects of PBM during aging, discuss its mechanisms of action relevant to the aging brain, and call for more controlled studies in older populations.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
16
|
Chatterji A, Banerjee D, Billiar TR, Sengupta R. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases. Free Radic Biol Med 2021; 172:604-621. [PMID: 34245859 DOI: 10.1016/j.freeradbiomed.2021.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
S-nitrosylation is a very fundamental post-translational modification of protein and non-protein thiols due the involvement of it in a variety of cellular processes including activation/inhibition of several ion channels such as ryanodine receptor in the cardiovascular system; blood vessel dilation; cGMP signaling and neurotransmission. S-nitrosothiol homeostasis in the cell is tightly regulated and perturbations in homeostasis result in an altered redox state leading to a plethora of disease conditions. However, the exact role of S-nitrosylated proteins and nitrosative stress metabolites in inflammation and in inflammation modulation is not well-reviewed. The cell utilizes its intricate defense mechanisms i.e. cellular denitrosylases such as Thioredoxin (Trx) and S-nitrosoglutathione reductase (GSNOR) systems to combat nitric oxide (NO) pathology which has also gained current attraction as novel anti-inflammatory molecules. This review attempts to provide state-of-the-art knowledge from past and present research on the mechanistic role of nitrosative stress intermediates (RNS, OONO-, PSNO) in pulmonary and autoimmune diseases and how cellular denitrosylases particularly GSNOR and Trx via imparting opposing effects can modulate and reduce inflammation in several health and disease conditions. This review would also bring into notice the existing gaps in current research where denitrosylases can be utilized for ameliorating inflammation that would leave avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Ajanta Chatterji
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Debasmita Banerjee
- Department of Molecular Biology and Biotechnology, University of Kalyani, Block C, Nadia, Kalyani, West Bengal, 741235, India
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 5213, USA
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
17
|
Red Light Irradiation In Vivo Upregulates DJ-1 in the Retinal Ganglion Cell Layer and Protects against Axotomy-Related Dendritic Pruning. Int J Mol Sci 2021; 22:ijms22168380. [PMID: 34445085 PMCID: PMC8395066 DOI: 10.3390/ijms22168380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13–15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/−) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/− retinas. Immunohistochemistry revealed that aged Opa1+/− RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/− RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.
Collapse
|
18
|
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 2021; 37:11-18. [PMID: 33624187 DOI: 10.1007/s10103-021-03277-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghadas Fazeli
- Occupational Medicine Research Center (OMRC), Iran University of Medical Sciences, Tehran, Iran.,International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
19
|
Heiskanen V, Pfiffner M, Partonen T. Sunlight and health: shifting the focus from vitamin D3 to photobiomodulation by red and near-infrared light. Ageing Res Rev 2020; 61:101089. [PMID: 32464190 DOI: 10.1016/j.arr.2020.101089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Both sun exposure and serum vitamin D levels have been associated with lower risks of all-cause mortality and chronic age-related diseases, e.g., cancer, diabetes and cardiovascular disease, in epidemiological studies. These associations have mainly been ascribed to beneficial effects of vitamin D. However, a vast body of randomized controlled trials (RCTs) and Mendelian randomization studies have failed to confirm any major health benefits from vitamin D supplementation. In this review, we present tentative evidence showing that red and near-infrared light, both being present in sunlight, could explain the associations between sunlight exposure and better health status. Body irradiation with red and near-infrared light, usually termed as photobiomodulation (PBM), has demonstrated beneficial effects in animal models of chronic diseases. Beyond this, preliminary evidence from RCTs suggest potential clinical benefit from PBM for chronic diseases. PBM is currently being investigated in many pre-registered clinical trials, results of which will eventually clarify the role of red and near-infrared light in the prevention and treatment of common age-related chronic diseases.
Collapse
|
20
|
Silva T, Fragoso YD, Destro Rodrigues MFS, Gomes AO, da Silva FC, Andreo L, Viana A, Teixeira da Silva DDF, Chavantes MC, Tempestini Horliana ACR, De Angelis K, Deana AM, Branco LP, Santos Fernandes KP, Motta LJ, Mesquita-Ferrari RA, Bussadori SK. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis - Randomized clinical trial. PLoS One 2020; 15:e0230551. [PMID: 32255785 PMCID: PMC7138327 DOI: 10.1371/journal.pone.0230551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Investigate the effects of photobiomodulation (PBM) on the expression of IL-10 and nitrites in individuals with Relapsing-Remitting multiple sclerosis (MS), as these biomarkers play a fundamental role in the physiopathology of the disease. The modulation of IL-10 and nitrites through treatment with PBM may be a novel treatment modality for MS. Methods A randomized, uncontrolled, clinical trial was conducted involving 14 individuals with a diagnosis of Relapsing-Remitting MS and a score of up to 6.0 on the Expanded Disability Status Scale (EDSS). The participants were randomized to two groups Group 1 –PBM in the sublingual region; Group 2 –PBM over the radial artery. Irradiation was administered with a wavelength of 808 nm and output power of 100 mW for 360 seconds twice a week, totaling 24 sessions. Peripheral blood was analyzed for the determination of serum levels of IL-10 and nitrites. Results After treatment with PBM, the expression of IL-10 increased in both the sublingual group (pre-treatment: 2.8 ± 1.4 pg/ml; post-treatment: 8.3 ± 2.4 pg/ml) and the radial artery group (pre-treatment: 2.7 pg/ml ± 1.4; post-treatment: 11.7 ± 3.8 pg/ml). In contrast, nitrite levels were not modulated in the sublingual group (pre-treatment: 65 ± 50 nmol/mg protein; post-treatment: 51 ± 42 nmol/mg protein) or the radial artery group (pre-treatment: 51 ± 16 nmol/mg protein; post-treatment: 42 ± 7 nmol/mg protein). Conclusion Treatment with PBM positively modulated the expression of IL-10 but had no effect on nitrite levels. Further studies should be conducted with a larger sample and a control group, as PBM may be a promising complementary treatment for the management of MS. This trial is registered at ClinicalTrials.gov. Identifier: NCT03360487.
Collapse
Affiliation(s)
- Tamiris Silva
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | | | | | | | - Lucas Andreo
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | - Ariane Viana
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | | | | | - Kátia De Angelis
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
21
|
Exploring the Effects of Near Infrared Light on Resting and Evoked Brain Activity in Humans Using Magnetic Resonance Imaging. Neuroscience 2019; 422:161-171. [DOI: 10.1016/j.neuroscience.2019.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
22
|
Mandrillo PM, Fischetto G, Odorisio P, Cura F, Avantaggiato A, Carinci F. Effects of light-emitting diode (led 640nm) on human gingival fibroblasts: a comparative in vitro study. ACTA ACUST UNITED AC 2018; 10:151-161. [PMID: 29876040 DOI: 10.11138/orl/2017.10.2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose The light-emitting diodes (LEDs) have been applied in oral surgery for tissue stimulation and wound healing. Several Authors have highlighted that fibroblasts subjected to phototherapy have an increased viability, proliferation, biomodulation of inflammatory cytokines and genes expression. It remains to be determined which are the best irradiation parameters (energy, wavelength, power) for each type of cell in order to obtain the best bio-stimulation. The aim of this study was to investigate the effects of LED irradiation on primary human gingival fibroblast cells (HGF) on DSP, ELN, HAS1, ELANE, HYAL1, RPL13 genes activation using Real Time PCR. These genes activation is directly connected with elastin protein production and HGF functionality. Materials and methods Human gingival tissue biopsies were obtained from three healthy patients during extraction of teeth. The gingival pieces were fragmented with a scalpel and transferred in culture dishes for allow the cells growth. Human gingival fibroblasts at the second passage were seeded on multiple 6-well plates and were stimulated with three different light-emitting diodes (LEDs) fixture. After irradiation, the cells were trypsinized, harvested and lysed for RNA extraction. Genes expression was quantified using Real Time PCR. Results We didn't found significant differences in genes activation of HGF of the three different LEDs. The LED irradiation seems to be directly correlated with the elastin and hyaluronoglucosaminidase 1 genes activation that are directly connected with proteins production and HGF functionality. Conclusions HGF show an increased deposition of elastin as well as enhanced expression of collagen type I, which is the main protein related to the synthesis and of the collagen-rich matrix.
Collapse
Affiliation(s)
| | | | | | - F Cura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - F Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
da Silva T, da Silva FC, Gomes AO, Viana AO, Gonçalves MLL, Rodrigues MFSD, Horliana ACRT, da Silva DDFT, Chavantes MC, Fragoso YD, Branco LP, Motta LJ, Fernandes KPS, Mesquita-Ferrari RA, Bussadori SK. Effect of photobiomodulation treatment in the sublingual, radial artery region, and along the spinal column in individuals with multiple sclerosis: Protocol for a randomized, controlled, double-blind, clinical trial. Medicine (Baltimore) 2018; 97:e0627. [PMID: 29742699 PMCID: PMC5959421 DOI: 10.1097/md.0000000000010627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease, for which the forms of treatment are medication and rehabilitation. However, in vitro and in vivo studies have demonstrated that photobiomodulation can be an effective treatment modality for inflammatory diseases, including MS. Photobiomodulation has a broad range of benefits, such as the avoidance of cell and tissue death, the stimulation of healing and injury repair, reductions in pain, edema and inflammation, cell proliferation, and even apoptosis. The outcomes of photobiomodulation include the regeneration of cells, the stimulation of the growth of Schwann cells, a reduction in spasticity, functional improvements, a reduction in nitric oxide levels, and the upregulation of the cytokine IL10, demonstrating that this therapeutic modality can offer neuroprotection. METHODS A randomized, controlled, double-blind, clinical trial is proposed. The patients will be divided into 6 groups. Groups 1 and 2 will receive sham and active photobiomodulation in the sublingual region, respectively. Groups 3 and 4 will receive sham and active photobiomodulation along the spinal cord, respectively. Group 5 will receive placebo treatment with photobiomodulation on the skin in the region of the radial artery with a specific bracelet. Group 6 will be treated with photobiomodulation on the skin in the region of the radial artery. DISCUSSION Treatment for MS is directed at the immune response and slowing the progression of the disease. This is one of the first clinical trials involving photobiomodulation in the sublingual region and along the spinal cord, which could help establish a promising new form of nonpharmacological treatment for autoimmune diseases. This is one of the first clinical trials with sublingual photobiomodulation and along the spinal cord that could help establish a new form of promising treatment of the disease associated with pharmacological treatment.
Collapse
|
24
|
Cheng Y, Du Y, Liu H, Tang J, Veenstra A, Kern TS. Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy. Diabetes 2018; 67:291-298. [PMID: 29167189 PMCID: PMC5780063 DOI: 10.2337/db17-0803] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Previous studies demonstrated that brief (3 to 4 min) daily application of light at 670 nm to diabetic rodents inhibited molecular and pathophysiologic processes implicated in the pathogenesis of diabetic retinopathy (DR) and reversed diabetic macular edema in small numbers of patients studied. Whether or not this therapy would inhibit the neural and vascular lesions that characterize the early stages of the retinopathy was unknown. We administered photobiomodulation (PBM) therapy daily for 8 months to streptozotocin-diabetic mice and assessed effects of PBM on visual function, retinal capillary permeability, and capillary degeneration using published methods. Vitamin D receptor and Cyp24a1 transcripts were quantified by quantitative real-time PCR, and the abundance of c-Kit+ stem cells in blood and retina were assessed. Long-term daily administration of PBM significantly inhibited the diabetes-induced leakage and degeneration of retinal capillaries and also significantly inhibited the diabetes-induced reduction in visual function. PBM also inhibited diabetes-induced reductions in retinal Cyp24a1 mRNA levels and numbers of circulating stem cells (CD45-/c-Kit+), but these effects may not account for the beneficial effects of PBM on the retinopathy. PBM significantly inhibits the functional and histopathologic features of early DR, and these effects likely are mediated via multiple mechanisms.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yunpeng Du
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Haitao Liu
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jie Tang
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Alex Veenstra
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Timothy S Kern
- Department of Medicine, Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center Research Service 151, Cleveland, OH
| |
Collapse
|
25
|
Photobiomodulation Therapy Improves Acute Inflammatory Response in Mice: the Role of Cannabinoid Receptors/ATP-Sensitive K+ Channel/p38-MAPK Signalling Pathway. Mol Neurobiol 2017; 55:5580-5593. [DOI: 10.1007/s12035-017-0792-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/26/2017] [Indexed: 01/10/2023]
|
26
|
Abstract
Photobiomodulation (PBM) also known as low-level level laser therapy is the use of red and near-infrared light to stimulate healing, relieve pain, and reduce inflammation. The primary chromophores have been identified as cytochrome c oxidase in mitochondria, and calcium ion channels (possibly mediated by light absorption by opsins). Secondary effects of photon absorption include increases in ATP, a brief burst of reactive oxygen species, an increase in nitric oxide, and modulation of calcium levels. Tertiary effects include activation of a wide range of transcription factors leading to improved cell survival, increased proliferation and migration, and new protein synthesis. There is a pronounced biphasic dose response whereby low levels of light have stimulating effects, while high levels of light have inhibitory effects. It has been found that PBM can produce ROS in normal cells, but when used in oxidatively stressed cells or in animal models of disease, ROS levels are lowered. PBM is able to up-regulate anti-oxidant defenses and reduce oxidative stress. It was shown that PBM can activate NF-kB in normal quiescent cells, however in activated inflammatory cells, inflammatory markers were decreased. One of the most reproducible effects of PBM is an overall reduction in inflammation, which is particularly important for disorders of the joints, traumatic injuries, lung disorders, and in the brain. PBM has been shown to reduce markers of M1 phenotype in activated macrophages. Many reports have shown reductions in reactive nitrogen species and prostaglandins in various animal models. PBM can reduce inflammation in the brain, abdominal fat, wounds, lungs, spinal cord.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Beirne K, Rozanowska M, Votruba M. Photostimulation of mitochondria as a treatment for retinal neurodegeneration. Mitochondrion 2017; 36:85-95. [PMID: 28499983 DOI: 10.1016/j.mito.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/15/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Absorption of photon energy by neuronal mitochondria leads to numerous downstream neuroprotective effects. Red and near infrared (NIR) light are associated with significantly less safety concerns than light of shorter wavelengths and they are therefore, the optimal choice for irradiating the retina. Potent neuroprotective effects have been demonstrated in various models of retinal damage, by red/NIR light, with limited data from human studies showing its ability to improve visual function. Improved neuronal mitochondrial function, increased blood flow to neural tissue, upregulation of cell survival mediators and restoration of normal microglial function have all been proposed as potential underlying mechanisms of red/NIR light.
Collapse
Affiliation(s)
- Kathy Beirne
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Institute for Tissue Engineering and Repair, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
28
|
Beirne K, Rozanowska M, Votruba M. Red Light Treatment in an Axotomy Model of Neurodegeneration. Photochem Photobiol 2016; 92:624-31. [DOI: 10.1111/php.12606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Kathy Beirne
- School of Optometry and Vision Sciences; Cardiff University; Cardiff UK
- Cardiff Institute for Tissue Engineering and Repair; Cardiff University; Cardiff UK
| | - Malgorzata Rozanowska
- School of Optometry and Vision Sciences; Cardiff University; Cardiff UK
- Cardiff Institute for Tissue Engineering and Repair; Cardiff University; Cardiff UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences; Cardiff University; Cardiff UK
- Cardiff Institute for Tissue Engineering and Repair; Cardiff University; Cardiff UK
- Cardiff Eye Unit; University Hospital of Wales; Cardiff UK
| |
Collapse
|
29
|
Knels L, Valtink M, Piazena H, de la Vega Marin J, Gommel K, Lupp A, Roehlecke C, Mehner M, Funk RHW. Effects of Narrow-band IR-A and of Water-Filtered Infrared A on Fibroblasts. Photochem Photobiol 2016; 92:475-87. [DOI: 10.1111/php.12579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 01/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Lilla Knels
- Institute of Anatomy, Faculty of Medicine; TU Dresden; Dresden Germany
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine; TU Dresden; Dresden Germany
| | - Helmut Piazena
- Charité - University Medicine Berlin; Medical Photobiology Group; Berlin Germany
| | | | - Kerstin Gommel
- Institute of Anatomy, Faculty of Medicine; TU Dresden; Dresden Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology; Jena University Hospital; Jena Germany
| | - Cora Roehlecke
- Institute of Anatomy, Faculty of Medicine; TU Dresden; Dresden Germany
| | - Mirko Mehner
- Department of Anaesthesiology and Intensive Care Medicine; Clinical Sensoring and Monitoring; Faculty of Medicine Carl Gustav Carus; TU Dresden; Dresden Germany
| | | |
Collapse
|
30
|
Schweintzger NA, Gruber-Wackernagel A, Shirsath N, Quehenberger F, Obermayer-Pietsch B, Wolf P. Influence of the season on vitamin D levels and regulatory T cells in patients with polymorphic light eruption. Photochem Photobiol Sci 2016; 15:440-6. [PMID: 26911519 PMCID: PMC4841162 DOI: 10.1039/c5pp00398a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
The exact mechanisms of photohardening in polymorphic light eruption (PLE) are still unknown, but medical photohardening was shown to increase regulatory T cell (Treg) numbers in the blood of PLE patients, similar to natural hardening. Furthermore, oral vitamin D supplementation increased peripheral Tregs in healthy individuals. We herein report on a post hoc analysis of 26 screened PLE patients of a clinical trial (ClinicalTrials.gov No. NCT01595893), in which the influence of the progressing season was investigated on baseline CD4+CD25+FoxP3+CD127- Treg numbers by flow cytometry and Treg suppressive function by co-culture assays with T effector cells as a secondary endpoint, together with 25-hydroxy vitamin D (25(OH)D) serum levels at the study's screening visit, taking place in the period from January to June. The mean 25(OH)D serum level of all patients was 33.2 ng ml(-1). Ten of those patients (38.5%) were identified with low 25(OH)D levels (<30 ng ml(-1)). Significantly higher baseline 25(OH)D serum levels (plus 34.4%; P = 0.0182) as well as higher relative Treg percentages in CD4+ population (plus 62.8%; P = 0.0157) and in total lymphocyte population (plus 59.6%; P = 0.0372) and higher absolute Treg numbers (plus 100.2%; P = 0.0042) were observed in the late spring/early summer period (April to June) compared to the winter period (January to February). No significant relationship was observed when Treg numbers and function were correlated with 25(OH)D levels. These data indicate that in PLE patients Treg numbers and their suppressive function are independent of vitamin D serum levels and suggest that UV light and/or other seasonal factors may affect these cells via the non-vitamin D related pathway(s).
Collapse
Affiliation(s)
- N. A. Schweintzger
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
- Center for Medical Research , Medical University of Graz , Graz , Austria
| | - A. Gruber-Wackernagel
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
| | - N. Shirsath
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
- Center for Medical Research , Medical University of Graz , Graz , Austria
| | - F. Quehenberger
- Institute for Medical Informatics , Statistics and Documentation , Medical University of Graz , Graz , Austria
| | - B. Obermayer-Pietsch
- Division of Endocrinology and Metabolism , Department of Internal Medicine , Medical University of Graz , Graz , Austria
| | - P. Wolf
- Research Unit for Photodermatology , Department of Dermatology , Medical University of Graz , Graz , Austria . ; Fax: +43 316 385-12466 ; Tel: +43 316 385-12371
| |
Collapse
|
31
|
Abstract
Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, 201 Calle Norzagaray, San Juan 00901, Puerto Rico
| |
Collapse
|
32
|
Giacoppo S, Galuppo M, Lombardo GE, Ulaszewska MM, Mattivi F, Bramanti P, Mazzon E, Navarra M. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2015; 103:171-86. [PMID: 25863350 DOI: 10.1016/j.fitote.2015.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
In the last 20 years, wine phenolic compounds have received increasing interest since several epidemiological studies have suggested associations between regular consumption of moderate amount of wine and prevention of certain chronic pathologies, such as neurodegenerative diseases. This study was aimed to investigate the possible neuroprotective role of a polyphenolic white grape juice extract (WGJe) in an experimental mice model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS) in vivo. EAE mimics the main features of MS, including paralysis, weight loss, demyelination, central nervous system (CNS) inflammation and blood-brain barrier (BBB) breakdown. Our study demonstrated that oral administration of WGJe (20 and 40 mg/kg/day) may exert neuroprotective effects against MS, diminishing both clinical signs and histological score typical of disease (lymphocytic infiltration and demyelination). In particular, by western blot, histological evaluations and immunolocalization of the main markers of inflammation, oxidative stress and apoptosis (TNF-α, iNOS, Nitrotyrosine, PARP, Foxp3, Bcl-2, Caspase 3 and DNA fragmentation), we documented that WGJe counteracts the alteration of all these inflammatory and oxidative pathway, without any apparent sign of toxicity. On these bases, we propose this natural product as putative novel helpful tools for the prevention of autoimmune and neurodegenerative diseases such as MS. WGJe could have considerable implication for future therapies of MS, and this study may represents the starting point for further investigation on the role of WGJe in neuroinflammation.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy
| | - Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy
| | - Giovanni Enrico Lombardo
- Università degli Studi di Messina, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168, Messina, Italy
| | - Maria Malgorzata Ulaszewska
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Dipartimento Qualità Alimentare e Nutrizione, Via E. Mach 1, 38010 - San Michele all'Adige, Trento, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach, Centro Ricerca e Innovazione, Dipartimento Qualità Alimentare e Nutrizione, Via E. Mach 1, 38010 - San Michele all'Adige, Trento, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy.
| | - Michele Navarra
- Università degli Studi di Messina, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168, Messina, Italy
| |
Collapse
|
33
|
Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 2015. [PMID: 26346298 DOI: 10.2147/ndt] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10-15 W, 0.45%-2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10-15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10-15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Centennial, CO, USA ; Neuro-Laser Foundation, Lakewood, CO, USA
| | | |
Collapse
|
34
|
Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 2015; 11:2191-208. [PMID: 26346298 PMCID: PMC4552256 DOI: 10.2147/ndt.s78182] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10-15 W, 0.45%-2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10-15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10-15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Centennial, CO, USA ; Neuro-Laser Foundation, Lakewood, CO, USA
| | | |
Collapse
|
35
|
IFN-β inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis. Mol Immunol 2014; 64:152-62. [PMID: 25433436 DOI: 10.1016/j.molimm.2014.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic neuroinflammatory autoimmune diseases characterized by axonal loss, demyelination and neurodegeneration of the central nervous system (CNS). Overactivation of CD4(+)T cells, especially the Th1 and Th17 subsets, is thought to play a causal role in this disease. In this study, we investigated the immunomodulatory effects of IFN-β treatment in EAE. IFN-β significantly inhibits disease severity, and decreases levels of CCR2, CCR4, CCR5, CCR6 and CXCR3 in the CNS. This was associated with fewer Th1/Th17 cells expressing these chemokine receptors. Furthermore, levels of their corresponding ligands CCL2, CCL3, CCL4, CCL5, CCL20, CCL22 and CXCL10 were also reduced, coinciding with reduced CNS inflammation and demyelination. Chemokine expression significantly correlated with disease severity. Furthermore, we demonstrate that IFN-β reduces CCL2/CCL5 induced-T cell migration by inhibiting p38-MAPK and ERK1/2 activation. Our results reveal that IFN-β reduces the expression of chemokines and chemokine receptors expressed by encephalitogenic Th1/Th17 cells, thereby decreasing their migration into the CNS.
Collapse
|
36
|
Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, Bramanti P, Mazzon E. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2014; 95:160-74. [PMID: 24685508 DOI: 10.1016/j.fitote.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/12/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022]
Abstract
Glucomoringin (4(α-L-rhamnosyloxy)-benzyl glucosinolate) (GMG) is an uncommon member of glucosinolate group belonging to the Moringaceae family, of which Moringa oleifera Lam. is the most widely distributed. Bioactivation of GMG with the enzyme myrosinase forms the corresponding isothiocyanate (4(α-L-rhamnosyloxy)-benzyl isothiocyanate) (GMG-ITC), which can play a key role in antitumoral activity and counteract the inflammatory response. The aim of this study was to assess the effect of GMG-ITC treatment in an experimental mouse model of multiple sclerosis (MS), an inflammatory demyelinating disease with neurodegeneration characterized by demyelinating plaques, neuronal, and axonal loss. For this reason, C57Bl/6 male mice were injected with myelin oligodendrocyte glycoprotein35-55 which is able to evoke an autoimmune response against myelin fibers miming human multiple sclerosis physiopatogenesis. Results clearly showed that the treatment was able to counteract the inflammatory cascade that underlies the processes leading to severe MS. In particular, GMG-ITC was effective against proinflammatory cytokine TNF-α. Oxidative species generation including the influence of iNOS, nitrotyrosine tissue expression and cell apoptotic death pathway was also evaluated resulting in a lower Bax/Bcl-2 unbalance. Taken together, this work adds new interesting properties and applicability of GMG-ITC and this compound can be suggested as a useful drug for the treatment or prevention of MS, at least in association with current conventional therapy.
Collapse
Affiliation(s)
- Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Michele Navarra
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Giovanni Enrico Lombardo
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|