1
|
Cyndari KI, Scorza BM, Zacharias ZR, Pessôa-Pereira D, Strand L, Mahachi K, Oviedo JM, Gibbs L, Butler KL, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident synovial macrophages in synovial fluid: Implications for immunoregulation. Clin Immunol 2025; 271:110422. [PMID: 39701169 DOI: 10.1016/j.clim.2024.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Resident synovial macrophages (RSMs) are anti-inflammatory, self-renewing macrophages that provide physical immune sequestration of the joint space from the peripheral immune system. Increased permeability of this structure is associated with peripheral immune cells in the synovial fluid (SF). Direct measures of synovial barrier integrity are possible with tissue histology, but after barrier breakdown, if these cells perpetuate or initiate chronic inflammation in SF remains unknown. We sought to identify RSM in human SF as an indirect measure of synovial barrier integrity. To validate findings, we created a novel ex vivo explant model using human synovium. scRNA-seq revealed these SF RSMs upregulated pro-fibrotic and pro-osteoclastic pathways in inflammatory arthritis, but not septic arthritis. Increased frequencies of RSMs in SF was associated with increased sRANKL regardless of underlying pathology. These findings suggest the frequency of RSMs in SF may correlate with synovial barrier damage and in turn, potential damage to joint structures.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, United States of America; Center for Emerging Infectious Diseases, United States of America.
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA, United States of America; Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Danielle Pessôa-Pereira
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Leela Strand
- Harvard University, Cambridge, MA, United States of America
| | - Kurayi Mahachi
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Juan Marcos Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Katherine L Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Graham Ausdal
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Rika Yahashiri
- Williams College, Williamstown, MA, United States of America
| | - Jacob M Elkins
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Trevor Gulbrandsen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Andrew R Peterson
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christine A Petersen
- College of Veterinary Medicine, Ohio State University, OH, United States of America
| |
Collapse
|
2
|
Mol BA, Wasinda JJ, Xu YF, Gentle NL, Meyer V. 1,25-dihydroxyvitamin D 3 augments low-dose PMA-based monocyte-to-macrophage differentiation in THP-1 cells. J Immunol Methods 2024; 532:113716. [PMID: 38960065 DOI: 10.1016/j.jim.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The human monocytic THP-1 cell line is the most routinely employed in vitro model for studying monocyte-to-macrophage differentiation. Despite the wide use of this model, differentiation protocols using phorbol 12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D3 (1,25D3) vary drastically between studies. Given that differences in differentiation protocols have the potential to impact the characteristics of the macrophages produced, we aimed to assess the efficacy of three different THP-1 differentiation protocols by assessing changes in morphology and gene- and cell surface macrophage marker expression. THP-1 cells were differentiated with either 5 nM PMA, 10 nM 1,25D3, or a combination thereof, followed by a rest period. The results indicated that all three protocols significantly increased the expression of the macrophage markers, CD11b (p < 0.001) and CD14 (p < 0.010). Despite this, THP-1 cells exposed to 1,25D3 alone did not adopt the morphological and expression characteristics associated with macrophages. PMA was required to produce these characteristics, which were found to be more pronounced in the presence of 1,25D3. Both PMA- and PMA with 1,25D3-differentiated THP-1 cells were capable of M1 and M2 macrophage polarization, though the gene expression of polarization-associated markers was most pronounced in PMA with 1,25D3-differentiated THP-1 cells. Moreover, the combination of PMA with 1,25D3 appeared to support the process of commitment to a particular polarization state.
Collapse
Affiliation(s)
- Bronwyn A Mol
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Janet J Wasinda
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Yi F Xu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Nikki L Gentle
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa.
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Cyndari KI, Scorza BM, Zacharias ZR, Strand L, Mahachi K, Oviedo JM, Gibbs L, Pessoa-Pereira D, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident Synovial Macrophages in Synovial Fluid: Implications for Immunoregulation in Infectious and Inflammatory Arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560183. [PMID: 37873090 PMCID: PMC10592878 DOI: 10.1101/2023.09.29.560183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objectives Resident synovial macrophages (RSM) provide immune sequestration of the joint space and are likely involved in initiation and perpetuation of the joint-specific immune response. We sought to identify RSM in synovial fluid (SF) and demonstrate migratory ability, in additional to functional changes that may perpetuate a chronic inflammatory response within joint spaces. Methods We recruited human patients presenting with undifferentiated arthritis in multiple clinical settings. We used flow cytometry to identify mononuclear cells in peripheral blood and SF. We used a novel transwell migration assay with human ex-vivo synovium obtained intra-operatively to validate flow cytometry findings. We used single cell RNA-sequencing (scRNA-seq) to further identify macrophage/monocyte subsets. ELISA was used to evaluate the bone-resorption potential of SF. Results We were able to identify a rare population of CD14dim, OPG+, ZO-1+ cells consistent with RSM in SF via flow cytometry. These cells were relatively enriched in the SF during infectious processes, but absolutely decreased compared to healthy controls. Similar putative RSM were identified using ex vivo migration assays when MCP-1 and LPS were used as migratory stimulus. scRNA-seq revealed a population consistent with RSM transcriptionally related to CD56+ cytotoxic dendritic cells and IDO+ M2 macrophages. Conclusion We identified a rare cell population consistent with RSM, indicating these cells are likely migratory and able to initiate or coordinate both acute (septic) or chronic (autoimmune or inflammatory) arthritis. RSM analysis via scRNA-seq indicated these cells are M2 skewed, capable of antigen presentation, and have consistent functions in both septic and inflammatory arthritis.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA
- Center for Emerging Infectious Diseases
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, Iowa City, IA
| | | | - Kurayi Mahachi
- Research and Analytics, Enterprise Analytics, Sentara Health
| | | | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Danielle Pessoa-Pereira
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Graham Ausdal
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | | | - Jacob M Elkins
- Department of Orthopedics, University of Iowa, Iowa City, IA
| | | | | | | | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Christine A Petersen
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Alkakhan W, Farrar N, Sikora V, Emecen-Huja P, Huja SS, Yilmaz Ö, Pandruvada SN. Statins Modulate Microenvironmental Cues Driving Macrophage Polarization in Simulated Periodontal Inflammation. Cells 2023; 12:1961. [PMID: 37566040 PMCID: PMC10417531 DOI: 10.3390/cells12151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory disorder characterized by the destruction of connective tissue, tooth loss, and systemic infections. Clinically, treatment of PD includes control of the etiologic factors via several modalities: initial therapy including scaling and root planing (SRP), corrective phase of surgical treatment, both with and without adjunct antimicrobial/pharmacological agents, followed by a maintenance/supportive periodontal therapy phase. Each treatment phase aims to control oral biofilm by addressing risk factors and etiology. Monotherapy of systemic antibiotics is insufficient compared to their use as an adjunct to SRP. The critical issue of systemic antimicrobial usage includes adverse patient outcomes and increased bacterial resistance. Therefore, alternative adjuncts to periodontal therapy have been sought. Statins are widely prescribed for the treatment of hypercholesterolemia and cardiovascular disease. Statins have demonstrated anti-inflammatory properties and immunomodulatory effects, and a few retrospective studies showed that statin patients exhibit fewer signs of periodontal inflammation than subjects without the medication. Despite the available clinical studies on the local administration of statins for PD, no studies have reported the macrophage polarization response. We have developed a gingival fibroblast-macrophage co-culture model to track macrophage response when exposed to a battery of microenvironmental cues mimicking macrophage polarization/depolarization observed in vivo. Using our model, we demonstrate that simvastatin suppresses macrophage inflammatory response and upregulates tissue homeostasis and M2 macrophage markers. Our findings support the usage of statins to mitigate periodontal inflammation as a valid strategy.
Collapse
Affiliation(s)
- Waleed Alkakhan
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA (Ö.Y.)
- Division of Periodontics, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Nico Farrar
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA (Ö.Y.)
| | - Vanessa Sikora
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA (Ö.Y.)
| | - Pinar Emecen-Huja
- Division of Periodontics, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Sarandeep S. Huja
- Division of Orthodontics, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Özlem Yilmaz
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA (Ö.Y.)
| | - Subramanya N. Pandruvada
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA (Ö.Y.)
| |
Collapse
|
5
|
Rynikova M, Adamkova P, Hradicka P, Stofilova J, Harvanova D, Matejova J, Demeckova V. Transcriptomic Analysis of Macrophage Polarization Protocols: Vitamin D 3 or IL-4 and IL-13 Do Not Polarize THP-1 Monocytes into Reliable M2 Macrophages. Biomedicines 2023; 11:biomedicines11020608. [PMID: 36831144 PMCID: PMC9953291 DOI: 10.3390/biomedicines11020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Two main types of macrophages (Mφ) include inflammatory (M1) and anti-inflammatory (M2) macrophages. These cells can be obtained in vitro by polarization of monocytic cell lines using various stimuli. Since there is currently no consensus on the best method for the acquisition of reliable M1 and M2 macrophages from the THP-1 cell line, we decided to compare three different polarization protocols at the transcriptomic level. Whole transcriptomes of Mφ polarized according to the chosen protocols were analyzed using RNA-seq. Differential expression of genes and functional enrichment for gene ontology terms were assessed. Compared with other protocols, M1 macrophages polarized using PMA (61.3 ng/mL) and IFN-γ along with LPS had the highest expression of M1-associated regulatory genes and genes for M1 cytokines and chemokines. According to the GO enrichment analysis, genes involved in defensive and inflammatory processes were differentially expressed in these Mφ. However, all three chosen protocols which use Vit D3, IL-13/IL-4, and IL-4, respectively, failed to promote the polarization of macrophages with a reliable M2 phenotype. Therefore, optimization or development of a new M2 polarization protocol is needed to achieve macrophages with a reliable anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Maria Rynikova
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Petra Adamkova
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Petra Hradicka
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jana Stofilova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| | - Jana Matejova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| | - Vlasta Demeckova
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
- Correspondence:
| |
Collapse
|
6
|
Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines. Microorganisms 2022; 10:microorganisms10102087. [PMID: 36296363 PMCID: PMC9607601 DOI: 10.3390/microorganisms10102087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Probiotic bacteria modulate macrophage immune inflammatory responses, with functional cytokine responses determined by macrophage subset polarisation, stimulation and probiotic strain. Mucosal macrophages exhibit subset functional heterogeneity but are organised in a 3-dimensional tissue, over-laid by barrier epithelial cells. This study aimed to investigate the effects of the probiotic Lacticaseibacillus casei strain Shirota (LcS) on macrophage-epithelial cell cytokine responses, pattern recognition receptor (PRR) expression and LPS responses and the impacts on barrier integrity. THP-1-derived M1 and M2 subset macrophages were co-cultured in a transwell system with differentiated Caco-2 epithelial cells in the presence or absence of enteropathogenic LPS. Both Caco-2 cells in monoculture and macrophage co-culture were assayed for cytokines, PRR expression and barrier integrity (TEER and ZO-1) by RT-PCR, ELISA, IHC and electrical resistance. Caco-2 monocultures expressed distinct cytokine profiles (IL-6, IL-8, TNFα, endogenous IL-10), PRRs and barrier integrity, determined by inflammatory context (TNFα or IL-1β). In co-culture, LcS rescued ZO-1 and TEER in M2/Caco-2, but not M1/Caco-2. LcS suppressed TLR2, TLR4, MD2 expression in both co-cultures and differentially regulated NOD2, TLR9, Tollip and cytokine secretion. In conclusion, LcS selectively modulates epithelial barrier integrity, pathogen sensing and inflammatory cytokine profile; determined by macrophage subset and activation status.
Collapse
|
7
|
Bartosova M, Borilova Linhartova P, Musilova K, Broukal Z, Kukletova M, Kukla L, Izakovicova Holla L. Association of the CD14 -260C/T polymorphism with plaque-induced gingivitis depends on the presence of Porphyromonas gingivalis. Int J Paediatr Dent 2022; 32:223-231. [PMID: 34097794 DOI: 10.1111/ipd.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plaque-induced gingivitis is the most prevalent periodontal disease associated with pathogenic biofilms. The host immune system responds to pathogens through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and their co-receptor cluster of differentiation 14 (CD14). AIM This study investigated the association between the functional polymorphism in the CD14 gene and the dental plaque microbiota in children with gingivitis. DESIGN A total of 590 unrelated children (307 with plaque-induced gingivitis and 283 controls, aged 13-15 years) were enrolled in this case-control study. Dental plaque was processed using a ParoCheck® 20 detection kit. The CD14 -260C/T (rs2569190) polymorphism was determined with the PCR-RFLP method. RESULTS Gingivitis was detected in 64.2% of boys and 35.8% of girls (P < .001). Children with gingivitis had a significantly higher occurrence of dental caries (P < .001). No significant differences in the CD14 -260C/T allele and genotype distribution among individuals with or without gingivitis in the whole cohort were found. Children with gingivitis and P gingivalis, however, were significantly more frequent carriers of the CT and TT genotypes than children with gingivitis without P gingivalis or healthy controls (P < .05). CONCLUSIONS The CD14 -260C/T polymorphism acts in cooperation with P gingivalis to trigger plaque-induced gingivitis in Czech children.
Collapse
Affiliation(s)
- Michaela Bartosova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Petra Borilova Linhartova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Musilova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Zdenek Broukal
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Kukletova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Lubomir Kukla
- Research Centre for Toxic Compounds in the Environment (RECETOX), Chemistry Section, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment (RECETOX), Chemistry Section, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Larsson L, Garaicoa-Pazmino C, Asa'ad F, Castilho RM. Understanding the role of endotoxin tolerance in chronic inflammatory conditions and periodontal disease. J Clin Periodontol 2021; 49:270-279. [PMID: 34970759 DOI: 10.1111/jcpe.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This review aims to present the current understanding of endotoxin tolerance (ET) in chronic inflammatory diseases and explores the potential connection with periodontitis. SUMMARY Subsequent exposure to lipopolysaccharides (LPS) triggers ET, a phenomenon regulated by different mechanisms and pathways, including toll-like receptors (TLRs), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), apoptosis of immune cells, epigenetics, and microRNAs (miRNAs). These mechanisms interconnect ET with chronic inflammatory diseases that include periodontitis. While the direct correlation between ET and periodontal destruction has not been fully elucidated, emerging reports point towards the potential tolerization of human periodontal ligament cells (hPDLCs) and gingival tissues with a significant reduction of TLR levels. CONCLUSIONS There is a potential link between ET and periodontal diseases. Future studies should explore the crucial role of ET in the pathogenesis of periodontal diseases as evidence of a tolerized oral mucosa may represent an intrinsic mechanism capable of regulating the oral immune response. A clear understanding of this host immune regulatory mechanism might lead to effective and more predictable therapeutic strategies to treat chronic inflammatory diseases and periodontitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontology Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carlos Garaicoa-Pazmino
- Department of Periodontics, University of Iowa, College of Dentistry and Dental Clinics, Iowa City, IA, USA.,School of Dentistry, Espíritu Santo University, Samborondon, Ecuador
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Oral Biochemistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol 2021; 12:763334. [PMID: 34950140 PMCID: PMC8688840 DOI: 10.3389/fimmu.2021.763334] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Collapse
Affiliation(s)
- Xiaoyu Sun
- *Correspondence: Lei Zhang, ; Xiaoyu Sun,
| | | | | | | | - Lei Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Periodontology, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | | |
Collapse
|
10
|
The Influence of Bloom Index, Endotoxin Levels and Polyethylene Glycol Succinimidyl Glutarate Crosslinking on the Physicochemical and Biological Properties of Gelatin Biomaterials. Biomolecules 2021; 11:biom11071003. [PMID: 34356627 PMCID: PMC8301829 DOI: 10.3390/biom11071003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
In the medical device sector, bloom index and residual endotoxins should be controlled, as they are crucial regulators of the device’s physicochemical and biological properties. It is also imperative to identify a suitable crosslinking method to increase mechanical integrity, without jeopardising cellular functions of gelatin-based devices. Herein, gelatin preparations with variable bloom index and endotoxin levels were used to fabricate non-crosslinked and polyethylene glycol succinimidyl glutarate crosslinked gelatin scaffolds, the physicochemical and biological properties of which were subsequently assessed. Gelatin preparations with low bloom index resulted in hydrogels with significantly (p < 0.05) lower compression stress, elastic modulus and resistance to enzymatic degradation, and significantly higher (p < 0.05) free amine content than gelatin preparations with high bloom index. Gelatin preparations with high endotoxin levels resulted in films that induced significantly (p < 0.05) higher macrophage clusters than gelatin preparations with low endotoxin level. Our data suggest that the bloom index modulates the physicochemical properties, and the endotoxin content regulates the biological response of gelatin biomaterials. Although polyethylene glycol succinimidyl glutarate crosslinking significantly (p < 0.05) increased compression stress, elastic modulus and resistance to enzymatic degradation, and significantly (p < 0.05) decreased free amine content, at the concentration used, it did not provide sufficient structural integrity to support cell culture. Therefore, the quest for the optimal gelatin crosslinker continues.
Collapse
|
11
|
Ghiboub M, Zhao J, Li Yim AYF, Schilderink R, Verseijden C, van Hamersveld PHP, Duarte JM, Hakvoort TBM, Admiraal I, Harker NR, Tough DF, Henneman P, de Winther MPJ, de Jonge WJ. HDAC3 Mediates the Inflammatory Response and LPS Tolerance in Human Monocytes and Macrophages. Front Immunol 2020; 11:550769. [PMID: 33123128 PMCID: PMC7573361 DOI: 10.3389/fimmu.2020.550769] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes that control histone deacetylation and bear potential to direct expression of large gene sets. We determined the effect of HDAC inhibitors (HDACi) on human monocytes and macrophages, with respect to their polarization, activation, and their capabilities of inducing endotoxin tolerance. To address the role for HDACs in macrophage polarization, we treated monocytes with HDAC3i, HDAC6i or pan-HDACi prior to polarization into M1 or M2 macrophages using IFNγ or IL-4 respectively. To study the HDAC inhibition effect on cytokine expression, macrophages were treated with HDACi prior to LPS-stimulation. TNFα, IL-6, and p40 were measured with ELISA, whereas modifications of Histone 3 and STAT1 were assessed using western blot. To address the role for HDAC3 in repeated LPS challenge induction, HDAC3i or HDAC3 siRNA was added to monocytes prior to incubation with IFNγ, which were then repeatedly challenged with LPS and analyzed by means of protein analyses and transcriptional profiling. Pan-HDACi and HDAC3i reduced cytokine secretion in monocytes and M1 macrophages, whereas HDAC6i yielded no such effect. Notably, neither pan-HDACi nor HDAC3i reduced cytokine secretion in M2 macrophages. In contrast to previous reports in mouse macrophages, HDAC3i did not affect macrophage polarization in human cells. Likewise, HDAC3 was not required for IFNγ signaling or IFNβ secretion. Cytokine and gene expression analyses confirmed that IFNγ-treated macrophages consistently develop a cytokine response after LPS repeated challenge, but pretreatment with HDAC3i or HDAC3 siRNA reinstates a state of tolerance reflected by general suppression of tolerizable genes, possibly through decreasing TLRs expression, and particularly TLR4/CD14. The development of endotoxin tolerance in macrophages is important to reduce exacerbated immune response and limit tissue damage. We conclude that HDAC3 is an attractive protein target to mediate macrophage reactivity and tolerance induction in inflammatory macrophages.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Epigenetics Discovery Performance Unit, Immunoinflammation Therapy Area Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Jing Zhao
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Epigenetics Discovery Performance Unit, Immunoinflammation Therapy Area Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom.,Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Schilderink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Caroline Verseijden
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jose M Duarte
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iris Admiraal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicola R Harker
- Epigenetics Discovery Performance Unit, Immunoinflammation Therapy Area Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - David F Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Peter Henneman
- Epigenetics Discovery Performance Unit, Immunoinflammation Therapy Area Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Medicine, Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of Periodontal/Periapical Lesion Stability and Progression. J Dent Res 2020; 100:29-36. [PMID: 32866421 DOI: 10.1177/0022034520952341] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal and periapical lesions are infectious inflammatory osteolitytic conditions in which a complex inflammatory immune response mediates bone destruction. However, the uncertainty of a lesion's progressive or stable phenotype complicates understanding of the cellular and molecular mechanisms triggering lesion activity. Evidence from clinical and preclinical studies of both periodontal and periapical lesions points to a high receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio as the primary determinant of osteolytic activity, while a low RANKL/OPG ratio is often observed in inactive lesions. Proinflammatory cytokines directly modulate RANKL/OPG expression and consequently drive lesion progression, along with pro-osteoclastogenic support provided by Th1, Th17, and B cells. Conversely, the cooperative action between Th2 and Tregs subsets creates an anti-inflammatory and proreparative milieu associated with lesion stability. Interestingly, the trigger for lesion status switch from active to inactive can originate from an unanticipated RANKL immunoregulatory feedback, involving the induction of Tregs and a host response outcome with immunological tolerance features. In this context, dendritic cells (DCs) appear as potential determinants of host response switch, since RANKL imprint a tolerogenic phenotype in DCs, described to be involved in both Tregs and immunological tolerance generation. The tolerance state systemically and locally suppresses the development of exacerbated and pathogenic responses and contributes to lesions stability. However, immunological tolerance break by comorbidities or dysbiosis could explain lesions relapse toward activity. Therefore, this article will provide a critical review of the current knowledge concerning periodontal and periapical lesions activity and the underlying molecular mechanisms associated with the host response. Further studies are required to unravel the role of immunological responsiveness or tolerance in the determination of lesion status, as well as the potential cooperative and/or inhibitory interplay among effector cells and their impact on RANKL/OPG balance and lesion outcome.
Collapse
Affiliation(s)
- F Cavalla
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - A Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - R M Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,Department of Endodontics, University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, SP, Brazil
| |
Collapse
|
13
|
Al-Shaghdali K, Durante B, Hayward C, Beal J, Foey A. Macrophage subsets exhibit distinct E. coli-LPS tolerisable cytokines associated with the negative regulators, IRAK-M and Tollip. PLoS One 2019; 14:e0214681. [PMID: 31120887 PMCID: PMC6533032 DOI: 10.1371/journal.pone.0214681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
Macrophages (Mϕs) play a central role in mucosal immunity by pathogen sensing and instruction of adaptive immune responses. Prior challenge to endotoxin can render Mφs refractory to secondary exposure, suppressing the inflammatory response. Previous studies demonstrated a differential subset-specific sensitivity to endotoxin tolerance (ET), mediated by LPS from the oral pathogen, Porphyromonas gingivalis (PG). The aim of this study was to investigate ET mechanisms associated with Mφ subsets responding to entropathogenic E. coli K12-LPS. M1- and M2-like Mφs were generated in vitro from the THP-1 cell line by differentiation with PMA and Vitamin D3, respectively. This study investigated ET mechanisms induced in M1 and M2 Mφ subsets, by measuring modulation of expression by RT-PCR, secretion of cytokines by sandwich ELISA, LPS receptor, TLR4, as well as endogenous TLR inhibitors, IRAK-M and Tollip by Western blotting. In contrast to PG-LPS tolerisation, E. coli K12-LPS induced ET failed to exhibit a subset-specific response with respect to the pro-inflammatory cytokine, TNFα, whereas exhibited a differential response for IL-10 and IL-6. TNFα expression and secretion was significantly suppressed in both M1- and M2-like Mφs. IL-10 and IL-6, on the other hand, were suppressed in M1s and refractory to suppression in M2s. ET suppressed TLR4 mRNA, but not TLR4 protein, yet induced differential augmentation of the negative regulatory molecules, Tollip in M1 and IRAK-M in M2 Mφs. In conclusion, E. coli K12-LPS differentially tolerises Mφ subsets at the level of anti-inflammatory cytokines, associated with a subset-specific divergence in negative regulators and independent of TLR4 down-regulation.
Collapse
Affiliation(s)
- Khalid Al-Shaghdali
- School of Biomedical Sciences, Faculty of Medicine & Dentistry, University of Plymouth, Drake Circus, Plymouth, United Kingdom
- College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Barbara Durante
- School of Biomedical Sciences, Faculty of Medicine & Dentistry, University of Plymouth, Drake Circus, Plymouth, United Kingdom
| | - Christopher Hayward
- Department of Gastroenterology, Derriford Hospital, Plymouth, United Kingdom
| | - Jane Beal
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, United Kingdom
| | - Andrew Foey
- School of Biomedical Sciences, Faculty of Medicine & Dentistry, University of Plymouth, Drake Circus, Plymouth, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Strachan A, Harrington Z, McIlwaine C, Jerreat M, Belfield LA, Kilar A, Jackson SK, Foey A, Zaric S. Subgingival lipid A profile and endotoxin activity in periodontal health and disease. Clin Oral Investig 2018; 23:3527-3534. [PMID: 30543027 DOI: 10.1007/s00784-018-2771-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Regulation of lipopolysaccharide (LPS) chemical composition, particularly its lipid A domain, is an important, naturally occurring mechanism that drives bacteria-host immune system interactions into either a symbiotic or pathogenic relationship. Members of the subgingival oral microbiota can critically modulate host immuno-inflammatory responses by synthesizing different LPS isoforms. The objectives of this study were to analyze subgingival lipid A profiles and endotoxin activities in periodontal health and disease and to evaluate the use of the recombinant factor C assay as a new, lipid A-based biosensor for personalized, point-of-care periodontal therapy. MATERIALS AND METHODS Subgingival plaque samples were collected from healthy individuals and chronic periodontitis patients before and after periodontal therapy. Chemical composition of subgingival lipid A moieties was determined by ESI-Mass Spectrometry. Endotoxin activity of subgingival LPS extracts was assessed using the recombinant factor C assay, and their inflammatory potential was examined in THP-1-derived macrophages by measuring TNF-α and IL-8 production. RESULTS Characteristic lipid A molecular signatures, corresponding to over-acylated, bi-phosphorylated lipid A isoforms, were observed in diseased samples. Healthy and post-treatment samples were characterized by lower m/z peaks, related to under-acylated, hypo-phosphorylated lipid A structures. Endotoxin activity levels and inflammatory potentials of subgingival LPS extracts from periodontitis patients were significantly higher compared to healthy and post-treatment samples. CONCLUSIONS This is the first study to consider structure-function-clinical implications of different lipid A isoforms present in the subgingival niche and sheds new light on molecular pathogenic mechanisms of subgingival biofilm communities. CLINICAL RELEVANCE Subgingival endotoxin activity (determined by lipid A chemical composition) could be a reliable, bacterially derived biomarker and a risk assessment tool for personalized periodontal care.
Collapse
Affiliation(s)
- Alexander Strachan
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Zoe Harrington
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Clare McIlwaine
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Matthew Jerreat
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Louise A Belfield
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Aniko Kilar
- Medical School, Institute of Bioanalysis, University of Pécs, Pécs, Hungary
| | - Simon K Jackson
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Andrew Foey
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Svetislav Zaric
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
15
|
Pandruvada SN, Ebersole JL, Huja SS. Inhibition of osteoclastogenesis by opsonized Porphyromonas gingivalis. FASEB Bioadv 2018; 1:213-226. [PMID: 31355360 PMCID: PMC6660169 DOI: 10.1096/fba.2018-00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A crucial step in the pathogenesis of periodontal disease (PD) is activation of osteoclasts (OC) by numerous virulence factors produced by Porphyromonas gingivalis (Pg). To understand pathogenesis of PD and the role of specific adaptive immune responses, effects of antibodies on Pg‐induced OC differentiation and function were investigated. Human peripheral blood‐derived monocytes were differentiated to OC in the presence or absence of: (a) Pg; (b) antibodies to Pg; and (c) antibody‐opsonized Pg. Findings suggest significant induction of osteoclastogenesis by Pg when compared to control cultures, whereas opsonization decreased osteoclastogenesis by 45%. Immune receptor gene expression profile in the presence of opsonized Pg showed marked upregulation of TLR1 (three‐fold) and TLR2 (twofold) along with FcγRIIB (two‐fold) and FcγRIII receptors (five‐fold), but not TLR4 and FcRγ receptors. Interestingly, blocking FcγRIIB, but not FcγRIII receptor, reversed the inhibitory effects of opsonized Pg suggesting a critical role played by FcγRIIB in osteoclastogenesis. Furthermore, opsonized Pg transformed OC precursors to a “macrophage phenotype” suggesting a bone protective role of the immune complexes in modulating osteoclastogenesis, probably by competing as an agonist for pattern recognition receptors, and inducing selective activation of FcγRs with simultaneous suppression of FcRγ which regulates bone resorptive process. Further defining effective antibody isotypes, avidity, and antigenic specificity could improve targets for eliciting protective immunity.
Collapse
Affiliation(s)
- Subramanya N Pandruvada
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Current address: College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Current address: School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Sarandeep S Huja
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Current address: College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Wang F, Johnson RL, DeSmet ML, Snyder PW, Fairfax KC, Fleet JC. Vitamin D Receptor-Dependent Signaling Protects Mice From Dextran Sulfate Sodium-Induced Colitis. Endocrinology 2017; 158:1951-1963. [PMID: 28368514 PMCID: PMC5460931 DOI: 10.1210/en.2016-1913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
Low vitamin D status potentiates experimental colitis, but the vitamin D-responsive cell in colitis has not been defined. We hypothesized that vitamin D has distinct roles in colonic epithelial cells and in nonepithelial cells during colitis. We tested this hypothesis by using mice with vitamin D receptor (VDR) deletion from colon epithelial cells (CEC-VDRKO) or nonintestinal epithelial cells (NEC-VDRKO). Eight-week-old mice were treated with 1.35% dextran sulfate sodium (DSS) for 5 days and then euthanized 2 or 10 days after removal of DSS. DSS induced body weight loss and increased disease activity index and spleen size. This response was increased in NEC-VDRKO mice but not CEC-VDRKO mice. DSS-induced colon epithelial damage and immune cell infiltration scores were increased in both mouse models. Although the epithelium healed between 2 and 10 days after DSS administration in control and CEC-VDRKO mice, epithelial damage remained high in NEC-VDRKO mice 10 days after removal of DSS, indicating delayed epithelial healing. Gene expression levels for the proinflammatory, M1 macrophage (Mɸ) cytokines tumor necrosis factor-α, nitric oxide synthase 2, and interleukin-1β were significantly elevated in the colon of NEC-VDRKO mice at day 10. In vitro experiments in murine peritoneal Mɸs demonstrated that 1,25 dihydroxyvitamin D directly inhibited M1 polarization, facilitated M2 polarization, and regulated Mɸ phenotype switching toward the M2 and away from the M1 phenotype. Our data revealed unique protective roles for vitamin D signaling during colitis in the colon epithelium as well as nonepithelial cells in the colon microenvironment (i.e., modulation of Mɸ biology).
Collapse
Affiliation(s)
- Fa Wang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47906
| | - Robert L. Johnson
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47906
| | - Marsha L. DeSmet
- Purdue University Interdisciplinary Life Sciences Ph.D. Training Program, Purdue University, West Lafayette, Indiana 47906
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47906
- Center for Cancer Research, West Lafayette, Indiana 47907
| | - Keke C. Fairfax
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47906
| | - James C. Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47906
- Center for Cancer Research, West Lafayette, Indiana 47907
| |
Collapse
|
18
|
Porphyromonas gingivalis-stimulated macrophage subsets exhibit differential induction and responsiveness to interleukin-10. Arch Oral Biol 2017; 73:282-288. [DOI: 10.1016/j.archoralbio.2016.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
|
19
|
Papadopoulos G, Shaik-Dasthagirisaheb YB, Huang N, Viglianti GA, Henderson AJ, Kantarci A, Gibson FC. Immunologic environment influences macrophage response to Porphyromonas gingivalis. Mol Oral Microbiol 2016; 32:250-261. [PMID: 27346827 DOI: 10.1111/omi.12168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 02/03/2023]
Abstract
Macrophages adapt both phenotypically and functionally to the cytokine balance in host tissue microenvironments. Recent studies established that macrophages contribute an important yet poorly understood role in the development of infection-elicited oral bone loss. We hypothesized that macrophage adaptation to inflammatory signals encountered before pathogen interaction would significantly influence the subsequent immune response of these cells to the keystone oral pathobiont Porphyromonas gingivalis. Employing classically activated (M1) and alternatively activated (M2) murine bone-marrow-derived macrophage (BMDMø), we observed that immunologic activation of macrophages before P. gingivalis challenge dictated phenotype-specific changes in the expression of inflammation-associated molecules important to sensing and tuning host response to bacterial infection including Toll-like receptors 2 and 4, CD14, CD18 and CD11b (together comprising CR3), major histocompatibility complex class II, CD80, and CD86. M2 cells responded to P. gingivalis with higher expression of tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, regulated on activation normal T cell expressed and secreted, and KC than M1 cells. M1 BMDMø expressed higher levels of interleukin-10 to P. gingivalis than M2 BMDMø. Functionally, we observed that M2 BMDMø bound P. gingivalis more robustly than M1 BMDMø. These data describe an important contribution of macrophage skewing in the subsequent development of the cellular immune response to P. gingivalis.
Collapse
Affiliation(s)
- G Papadopoulos
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Y B Shaik-Dasthagirisaheb
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - N Huang
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - G A Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - A J Henderson
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - A Kantarci
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA
| | - F C Gibson
- Section of infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Huang CB, Alimova Y, Ebersole JL. Macrophage polarization in response to oral commensals and pathogens. Pathog Dis 2016; 74:ftw011. [PMID: 26884502 DOI: 10.1093/femspd/ftw011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 01/03/2023] Open
Abstract
Macrophages have been identified in the periodontium. Data have phenotypically described these cells, demonstrated changes with progressing periodontal disease, and identified their ability to function in antigen-presentation critical for adaptive immune responses to individual oral bacterium. Recent evidence has emphasized an important role for the plasticity of macrophage phenotypes, not only in the resulting function of these cells in various tissues, but also clear differences in the stimulatory signals that result in M1 (classical activation, inflammatory) and M2 (alternative activation/deactivated, immunomodulatory) cells. This investigation hypothesized that the oral pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans induce M1-type cells, while oral commensal bacteria primarily elicit macrophage functions consistent with an M2 phenotype. However, we observed that the M1 output from P. gingivalis challenge, showed exaggerated levels of pro-inflammatory cytokines, with a much lower production of chemokines related to T-cell recruitment. This contrasted with A. actinomycetemcomitans infection that increased both the pro-inflammatory cytokines and T-cell chemokines. Thus, it appears that P. gingivalis, as an oral pathogen, may have a unique capacity to alter the programming of the M1 macrophage resulting in a hyperinflammatory environment and minimizing the ability for T-cell immunomodulatory influx into the lesions.
Collapse
Affiliation(s)
- Chifu B Huang
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| | - Yelena Alimova
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
21
|
The association between rheumatoid arthritis and periodontitis. Best Pract Res Clin Rheumatol 2015; 29:189-201. [PMID: 26362738 DOI: 10.1016/j.berh.2015.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 01/07/2023]
Abstract
The relationship between rheumatoid arthritis and poor oral health has been recognised for many decades. The association between periodontal infection and the risk of developing RA has been the subject of epidemiological, clinical and basic science research in recent times. Converging and reproducible evidence now makes a clear case for the role of specific periodontal infective pathogens in initiating, amplifying and perpetuating rheumatoid arthritis. The unique enzymatic properties of the periodontal pathogen Porphyromonas gingivalis and its contribution to the burden of citrullinated peptides is now well established. The impact of localized infection such as periodontitis in shaping specific anti-citrullinated peptide immune responses highlights a key area for treatment, prevention and risk assessment in rheumatoid arthritis.
Collapse
|
22
|
Amar S, Engelke M. Periodontal innate immune mechanisms relevant to atherosclerosis. Mol Oral Microbiol 2014; 30:171-85. [PMID: 25388989 DOI: 10.1111/omi.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a common cardiovascular disease in the USA where it is a leading cause of illness and death. Atherosclerosis is the most common cause for heart attack and stroke. Most commonly, people develop atherosclerosis as a result of diabetes, genetic risk factors, high blood pressure, a high-fat diet, obesity, high blood cholesterol levels, and smoking. However, a sizable number of patients suffering from atherosclerosis do not harbor the classical risk factors. Ongoing infections have been suggested to play a role in this process. Periodontal disease is perhaps the most common chronic infection in adults with a wide range of clinical variability and severity. Research in the past decade has shed substantial light on both the initiating infectious agents and host immunological responses in periodontal disease. Up to 46% of the general population harbors the microorganism(s) associated with periodontal disease, although many are able to limit the progression of periodontal disease or even clear the organism(s) if infected. In the last decade, several epidemiological studies have found an association between periodontal infection and atherosclerosis. This review focuses on exploring the molecular consequences of infection by pathogens that exacerbate atherosclerosis, with the focus on infections by the periodontal bacterium Porphyromonas gingivalis as a running example.
Collapse
Affiliation(s)
- S Amar
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
23
|
Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun 2014; 82:4190-203. [PMID: 25047849 DOI: 10.1128/iai.02325-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is associated with chronic periodontitis, an inflammatory disease of the tooth's supporting tissues. Macrophages are important in chronic inflammatory conditions, infiltrating tissue and becoming polarized to an M1 or M2 phenotype. As responses to stimuli differ between these phenotypes, we investigated the effect of P. gingivalis lipopolysaccharide (LPS) on M1 and M2 macrophages. M1 and M2 polarized macrophages were produced from murine bone marrow macrophages (BMMϕ) primed with gamma interferon (IFN-γ) or interleukin-4 (IL-4), respectively, and incubated with a low or high dose of P. gingivalis LPS or control TLR2 and TLR4 ligands. In M1-Mϕ, the high dose of P. gingivalis LPS (10 μg/ml) significantly increased the expression of CD40, CD86, inducible nitric oxide synthase, and nitric oxide secretion. The low dose of P. gingivalis LPS (10 ng/ml) did not induce costimulatory or antibacterial molecules but did increase the secretion of IL-1α, IL-6, IL-12p40, IL-12p70, and tumor necrosis factor alpha (TNF-α). P. gingivalis LPS marginally increased the expression of CD206 and YM-1, but it did enhance arginase expression by M2-Mϕ. Furthermore, the secretion of the chemokines KC, RANTES, eotaxin, and MCP-1 from M1, M2, and nonpolarized Mϕ was enhanced by P. gingivalis LPS. TLR2/4 knockout macrophages combined with the TLR activation assays indicated that TLR2 is the main activating receptor for P. gingivalis LPS and whole cells. In conclusion, although P. gingivalis LPS weakly activated M1-Mϕ or M2-Mϕ compared to control TLR ligands, it induced the secretion of inflammatory cytokines, particularly TNF-α from M1-Mϕ and IL-10 from M2-Mϕ, as well as chemotactic chemokines from polarized macrophages.
Collapse
|
24
|
Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS. Mediators Inflamm 2013; 2013:407562. [PMID: 24363500 PMCID: PMC3865690 DOI: 10.1155/2013/407562] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/19/2013] [Indexed: 12/21/2022] Open
Abstract
We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g.) LPS. The expression of Toll-like receptor 2 (TLR2), TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.
Collapse
|