1
|
Hart TM, Cui Y, Telford SR, Marín-López A, Calloway K, Dai Y, Matias J, DePonte K, Jaycox J, DeBlasio M, Hoornstra D, Belperron AA, Cibichakravarthy B, Johnson EE, Alameh MG, Dwivedi G, Hovius JWR, Bockenstedt LK, Weissman D, Ring AM, Fikrig E. Tick feeding or vaccination with tick antigens elicits immunity to the Ixodes scapularis exoproteome in guinea pigs and humans. Sci Transl Med 2025; 17:eads9207. [PMID: 40138454 PMCID: PMC12067475 DOI: 10.1126/scitranslmed.ads9207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Ixodes scapularis is a primary vector of tick-borne pathogens in North America. Repeated exposure to these ticks can induce a humoral response to tick antigens and acquired tick resistance. However, identifying antigens contributing to this resistance is challenging because of the vast number of I. scapularis proteins secreted during feeding. To address this, we developed I. scapularis rapid extracellular antigen monitoring (IscREAM), a technique to detect antibody responses to more than 3000 tick antigens. We validated IscREAM with immunoglobulin G (IgG) from guinea pigs vaccinated with tick antigens, including a cement antigen cocktail that induced tick resistance. Furthermore, we explored the natural response to tick bites by profiling antigens recognized by IgG isolated from a tick-resistant individual, as well as from others with Lyme disease and tick-bitten guinea pigs and mice, to identify 199 recognized antigens. We observed that several antigens contained histamine-binding domains. This work enhances our understanding of the host immune response to I. scapularis and defines immunogen candidates for future antitick vaccines.
Collapse
Affiliation(s)
- Thomas M. Hart
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Molecular Microbiology and Immunology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sam R. Telford
- Department of Infectious Disease and Global Health, Tufts Lyme Disease Initiative, Tufts University, North Grafton, MA 01536, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Keith Calloway
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jillian Jaycox
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98102, USA
| | - Melody DeBlasio
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dieuwertje Hoornstra
- Department of Internal Medicine, Division of Infectious Diseases & Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam 1105 AZ, Netherlands
- Amsterdam Institute for Immunology & Infectious Diseases, Amsterdam 1105 AZ, Netherlands
| | - Alexia A. Belperron
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Emily E. Johnson
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mohamad-Gabriel Alameh
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Garima Dwivedi
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Joppe W. R. Hovius
- Department of Internal Medicine, Division of Infectious Diseases & Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam 1105 AZ, Netherlands
- Amsterdam Institute for Immunology & Infectious Diseases, Amsterdam 1105 AZ, Netherlands
| | - Linda K. Bockenstedt
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Drew Weissman
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Hemajha L, Singh S, Biji CA, Balde A, Benjakul S, Nazeer RA. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. Int Immunopharmacol 2024; 142:113130. [PMID: 39278056 DOI: 10.1016/j.intimp.2024.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Inflammation is an initial biological reaction that occurs in response to infection caused by foreign pathogens or injury. This process involves a tightly controlled series of signaling events at the molecular and cellular levels, with the ultimate goal of restoring tissue balance and protecting against invading pathogens. Malfunction in the process of inflammation can result in a diverse array of diseases, such as cardiovascular, neurological, and autoimmune disorders. Therefore, the management of inflammation is of utmost importance in modern medicine. Nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids have long been the mainstays of pharmacological treatment for inflammation, effectively alleviating symptoms in many patients. Recently, toxins and venom, formerly seen as mostly harmful to the human body, have been recognized as possible medicinal substances for treating inflammation. Organisms that are venomous, such as spiders, scorpions, snakes, and certain marine species, have developed a wide range of powerful toxins that can effectively disable or discourage predators. Remarkably, the majority of these poisons and venoms consist of proteins and peptides, which are acknowledged as significant bioactive compounds with medicinal potential. The goal of this review is to investigate the medicinal potential of peptides derived from venoms and their complex mechanism of action in suppressing inflammation. This review also discusses various challenges and future prospects for effective venom delivery.
Collapse
Affiliation(s)
- Lakshmikanthan Hemajha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Simran Singh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
3
|
Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: Biological role and pharmacological potential. ADVANCES IN PARASITOLOGY 2024; 126:229-251. [PMID: 39448192 DOI: 10.1016/bs.apar.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hard ticks (family Ixodidae) are significant vectors of pathogens affecting humans and animals. This review explores the composition of tick saliva, focusing on proteases and protease inhibitors, their biological roles, and their potential in vaccines and therapies. Tick saliva contains various proteases, mostly metalloproteases, serpins, cystatins, and Kunitz-type inhibitors, which modulate host hemostatic, immune, and wound healing responses to facilitate blood feeding and pathogen transmission. Proteases inhibit blood clotting, degrade extracellular matrix components, and modulate immune responses. Serpins, cystatins, and Kunitz-type inhibitors further inhibit key proteases involved in coagulation and inflammation, making them promising candidates for anticoagulant, anti-inflammatory, and immunomodulatory therapies. Several tick proteases and protease inhibitors have shown potential as vaccine targets, reducing tick feeding success and pathogen transmission. Future research should focus on comprehensive proteomic and genomic analyses, detailed structural and functional studies, and vaccine trials. Advanced omics approaches and bioinformatics tools will be crucial in uncovering the complex interactions between ticks, hosts, and pathogens, improving tick control strategies and public health outcomes.
Collapse
Affiliation(s)
- Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States; Laboratory of Host-Pathogen Dynamics, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
4
|
Ibrahim MA, Masoud HMM. Purification and characterization of thrombin from camel plasma: interaction with camel tick salivary gland thrombin inhibitor. J Genet Eng Biotechnol 2023; 21:7. [PMID: 36689046 PMCID: PMC9871101 DOI: 10.1186/s43141-023-00464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Thrombin is the most important enzyme in the hemostatic process by permitting rapid and localized coagulation in case of tissue damage. Camel thrombin is the natural and proper target enzyme for the previously purified camel tick salivary gland thrombin inhibitor. RESULTS In this study, the camel thrombin was purified homogenously in a single affinity chromatographic step on the heparin-agarose affinity column with a specific activity of 3242 NIH units/mg proteins. On SDS-PAGE, the purified camel thrombin contained two forms, 37 kDa α-thrombin and 28 kDa β-thrombin, and the camel prothrombin was visualized as 72 kDa. The camel thrombin Km value was found out as 60 µM of N-(p-Tosyl)-Gly-Pro-Arg-p-nitroanilide acetate and displayed its optimum activity at pH 8.3. The PMSF was the most potent inhibitor of camel thrombin. Camel tick salivary gland thrombin inhibitor has two binding sites on camel thrombin and inhibited it competitively with Ki value of 0.45 µM. CONCLUSIONS The purified camel thrombin was found to be more susceptible toward the camel tick salivary gland thrombin inhibitor than bovine thrombin.
Collapse
Affiliation(s)
- Mahmoud A. Ibrahim
- grid.419725.c0000 0001 2151 8157Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt ,grid.419725.c0000 0001 2151 8157Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Hassan M. M. Masoud
- grid.419725.c0000 0001 2151 8157Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt ,grid.419725.c0000 0001 2151 8157Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Lu J, Wang K, Gao Z, Zhang S, Li H, Shi Y, Song X, Liu J, Yu Z, Yang X. Doenitin-1: A novel Kunitz family protein with versatile functions during feeding and reproduction of the tick Haemaphysalis doenitzi. Front Vet Sci 2022; 9:872244. [PMID: 36032296 PMCID: PMC9399790 DOI: 10.3389/fvets.2022.872244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
As obligate blood-feeding ectoparasites, ticks secrete a great diversity of antithrombin molecules during feeding. In this study, a novel antithrombin gene named Doenitin-1 was characterized from the tick Haemaphysalis doenitzi. It has an open reading frame size of 426 bp; it encodes 141 amino acids and has a predicted molecular weight of 15.8 kDa. The fibrinogen coagulation test showed that the time of coagulation was increased significantly with increase in rDoenitin-1 protein concentration, and the activated partial thromboplastin time (APTT) and prothrombin time (PT) assays showed that rDoenitin-1 significantly prolonged the coagulation time of APTT, indicating that rDoenitin-1 has an anticoagulant activity in vitro. In addition, rDoenitin-1 presents a significant inhibitory activity in thrombin and cathepsin G. The hemolysis rate of rDoenitin-1 in healthy human blood cells was 4.25%, and no obvious hemolysis activity was observed. The comparison with other life stages shows that the higher expression occurs in adults, and tissue comparison indicated a higher expression in the midgut. The RNAi results indicated that interference of Doenitin-1 significantly reduced the engorgement rate and egg hatchability of H. doenitzi, and that the engorged body weight was slightly reduced. In conclusion, the results suggested that the novel gene Doenitin-1 functions in blood-feeding of H. doenitzi and performs various functions during feeding and reproduction of H. doenitzi. Doenitin-1 may be a potential vaccine candidate for tick control and for developing new antithrombotic drugs in the future.
Collapse
|
6
|
Liu L, Tang H, Duan DY, Liu JB, Wang J, Feng LL, Cheng TY. Characterization of AV422 from Haemaphysalis flava ticks in vitro. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:809-823. [PMID: 34297228 DOI: 10.1007/s10493-021-00645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Ticks are hematophagous ectoparasites and cause a major public health threat worldwide. Development of anti-tick vaccines is regarded to be an optimal alternative for tick control. AV422, a unique protein in ticks, is secreted into hosts during blood-feeding, but its roles are not confirmed in Haemaphysalis flava ticks. We retrieved a gene fragment encoding AV422 from a transcriptome dataset of H. flava, and based on it, we reconstructed the full length of AV422 from H. flava (Hf-AV422) by rapid amplification of cDNA ends. Expression profiles of Hf-AV422 in whole ticks and organs of different engorgement levels were determined by qPCR. Then its opening reading frame (ORF) was expressed in Escherichia coli strain BL21 (DE3). The prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) assays were conducted to test anticoagulant activities of the purified recombinant protein (rHf-AV422). The full length of AV422 was 1152 bp. Hf-AV422 showed to be conserved as indicated by multiple sequence alignment. Expression of Hf-AV422 was significantly higher in salivary glands and cuticles than in ovaries. Its expression in whole ticks decreased during engorgement with the highest levels in 1/4 engorged ticks. rHf-AV422 prolonged PT, APTT and TT when incubated with rabbit plasma. Our data demonstrated that Hf-AV422 is a conserved salivary protein with anticoagulant activity. Further studies are needed to test in detail its functional properties to ensure it an adequate antigen candidate for the development of broad-spectrum vaccines against ticks.
Collapse
Affiliation(s)
- Lei Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Tang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - De-Yong Duan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jin-Bao Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Li-Li Feng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Costa GCA, Ribeiro ICT, Melo-Junior O, Gontijo NF, Sant'Anna MRV, Pereira MH, Pessoa GCD, Koerich LB, Oliveira F, Valenzuela JG, Giunchetti RC, Fujiwara RT, Bartholomeu DC, Araujo RN. Amblyomma sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines. Front Immunol 2021; 11:611104. [PMID: 33633731 PMCID: PMC7901972 DOI: 10.3389/fimmu.2020.611104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Amblyomma sculptum is the main tick associated with human bites in Brazil and the main vector of Rickettsia rickettsii, the causative agent of the most severe form of Brazilian spotted fever. Molecules produced in the salivary glands are directly related to feeding success and vector competence. In the present study, we identified sequences of A. sculptum salivary proteins that may be involved in hematophagy and selected three proteins that underwent functional characterization and evaluation as vaccine antigens. Among the three proteins selected, one contained a Kunitz_bovine pancreatic trypsin inhibitor domain (named AsKunitz) and the other two belonged to the 8.9 kDa and basic tail families of tick salivary proteins (named As8.9kDa and AsBasicTail). Expression of the messenger RNA (mRNA) encoding all three proteins was detected in the larvae, nymphs, and females at basal levels in unfed ticks and the expression levels increased after the start of feeding. Recombinant proteins rAs8.9kDa and rAsBasicTail inhibited the enzymatic activity of factor Xa, thrombin, and trypsin, whereas rAsKunitz inhibited only thrombin activity. All three recombinant proteins inhibited the hemolysis of both the classical and alternative pathways; this is the first description of tick members of the Kunitz and 8.9kDa families being inhibitors of the classical complement pathway. Mice immunization with recombinant proteins caused efficacies against A. sculptum females from 59.4% with rAsBasicTail immunization to more than 85% by immunization with rAsKunitz and rAs8.9kDa. The mortality of nymphs fed on immunized mice reached 70–100%. Therefore, all three proteins are potential antigens with the possibility of becoming a new tool in the control of A. sculptum.
Collapse
Affiliation(s)
- Gabriel Cerqueira Alves Costa
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Cosso Tavares Ribeiro
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otoni Melo-Junior
- Laboratory of Cell-Cell Interactions, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nelder F Gontijo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcos H Pereira
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Grasielle C D Pessoa
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo B Koerich
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jesus G Valenzuela
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo N Araujo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, Robson A, Wu MJ, Daffre S, Hovius JW, Fikrig E. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat Commun 2017; 8:184. [PMID: 28775250 PMCID: PMC5543126 DOI: 10.1038/s41467-017-00208-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/12/2017] [Indexed: 01/07/2023] Open
Abstract
The Lyme disease agent, Borrelia burgdorferi, colonizes the gut of the tick Ixodes scapularis, which transmits the pathogen to vertebrate hosts including humans. Here we show that B. burgdorferi colonization increases the expression of several tick gut genes including pixr, encoding a secreted gut protein with a Reeler domain. RNA interference-mediated silencing of pixr, or immunity against PIXR in mice, impairs the ability of B. burgdorferi to colonize the tick gut. PIXR inhibits bacterial biofilm formation in vitro and in vivo. Abrogation of PIXR function in vivo results in alterations in the gut microbiome, metabolome and immune responses. These alterations influence the spirochete entering the tick gut in multiple ways. PIXR abrogation also impairs larval molting, indicative of its role in tick biology. This study highlights the role of the tick gut in actively managing its microbiome, and how this impacts B. burgdorferi colonization of its arthropod vector. Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the tick Ixodes scapularis. Here, the authors show that a tick secreted protein (PIXR) modulates the tick gut microbiota and facilitates B. burgdorferi colonization.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA.
| | - Tim J Schuijt
- Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| | - Nabil M Abraham
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Nallakkandi Rajeevan
- Yale Centre for Medical Informatics, 300 George Street, New Haven, CT, 06511, USA.,Clinical Epidemiology Research Centre, VA Cooperative Studies Program, West Haven, CT, 06516, USA
| | - Jeroen Coumou
- Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| | - Morven Graham
- Yale Centre for Cellular and Molecular Imaging, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Andrew Robson
- Program in Vertebrate Developmental Biology, Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, 06420, USA
| | - Ming-Jie Wu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA
| | - Sirlei Daffre
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Joppe W Hovius
- Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
9
|
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:199. [PMID: 28589099 PMCID: PMC5438962 DOI: 10.3389/fcimb.2017.00199] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.
Collapse
Affiliation(s)
| | - Thierry Foulon
- Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Biogenèse des Signaux Peptidiques, Sorbonne Universités, UPMC Univ. Paris 06Paris, France
| | | |
Collapse
|
10
|
Iqbal A, Goldfeder MB, Marques-Porto R, Asif H, Souza JGD, Faria F, Chudzinski-Tavassi AM. Revisiting antithrombotic therapeutics; sculptin, a novel specific, competitive, reversible, scissile and tight binding inhibitor of thrombin. Sci Rep 2017; 7:1431. [PMID: 28469161 PMCID: PMC5431157 DOI: 10.1038/s41598-017-01486-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 02/01/2023] Open
Abstract
Thrombin is a multifunctional enzyme with a key role in the coagulation cascade. Its functional modulation can culminate into normal blood coagulation or thrombosis. Thus, the identification of novel potent inhibitors of thrombin are of immense importance. Sculptin is the first specific thrombin inhibitor identified in the transcriptomics analysis of tick’s salivary glands. It consists of 168 residues having four similar repeats and evolutionary diverged from hirudin. Sculptin is a competitive, specific and reversible inhibitor of thrombin with a Ki of 18.3 ± 1.9 pM (kon 4.04 ± 0.03 × 107 M−1 s−1 and koff 0.65 ± 0.04 × 10−3 s−1). It is slowly consumed by thrombin eventually losing its activity. Contrary, sculptin is hydrolyzed by factor Xa and each polypeptide fragment is able to inhibit thrombin independently. A single domain of sculptin alone retains ~45% of inhibitory activity, which could bind thrombin in a bivalent fashion. The formation of a small turn/helical-like structure by active site binding residues of sculptin might have made it a more potent thrombin inhibitor. In addition, sculptin prolongs global coagulation parameters. In conclusion, sculptin and its independent domain(s) have strong potential to become novel antithrombotic therapeutics.
Collapse
Affiliation(s)
- Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Rafael Marques-Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Huma Asif
- Laboratory of Gene Expression in Eukaryotes, Butantan Institute, São Paulo, SP, Brazil
| | - Jean Gabriel de Souza
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Faria
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil. .,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
12
|
Tian Y, Chen W, Mo G, Chen R, Fang M, Yedid G, Yan X. An Immunosuppressant Peptide from the Hard Tick Amblyomma variegatum. Toxins (Basel) 2016; 8:133. [PMID: 27153086 PMCID: PMC4885048 DOI: 10.3390/toxins8050133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Ixodid ticks are well known for spreading transmitted tick-borne pathogens while being attached to their hosts for almost 1-2 weeks to obtain blood meals. Thus, they must secrete many immunosuppressant factors to combat the hosts' immune system. In the present work, we investigated an immunosuppressant peptide of the hard tick Amblyomma variegatum. This peptide, named amregulin, is composed of 40 residues with an amino acid sequence of HLHMHGNGATQVFKPRLVLKCPNAAQLIQPGKLQRQLLLQ. A cDNA of the precursor peptide was obtained from the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA). In rat splenocytes, amregulin exerts significant anti-inflammatory effects by inhibiting the secretion of inflammatory factors in vitro, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-8 (IL-8) and interferon-gamma (IFN-γ). In rat splenocytes, treated with amregulin, compared to lipopolysaccharide (LPS) alone, the inhibition of the above inflammatory factors was significant at all tested concentrations (2, 4 and 8 µg/mL). Amregulin shows strong free radical scavenging and antioxidant activities (5, 10 and 20 µg/mL) in vitro. Amregulin also significantly inhibits adjuvant-induced paw inflammation in mouse models in vivo. This peptide may facilitate the ticks' successful blood feeding and may lead to host immunotolerance of the tick. These findings have important implications for the understanding of tick-host interactions and the co-evolution between ticks and the viruses that they bear.
Collapse
Affiliation(s)
- Yufeng Tian
- Clinical Laboratory, People's Hospital of Rizhao, 126th Taian Road, Rizhao 276826, Shandong, China.
- College of Life Sciences, Nanjing Agricultural University, Weigang #1, Nanjing 210095, Jiangsu, China.
| | - Wenlin Chen
- Yunnan Clinical Research Center of Breast Cancer, The Third Affiliated Hospital of Kunming Medical College, Kunming 650032, China.
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Weigang #1, Nanjing 210095, Jiangsu, China.
| | - Ran Chen
- College of Life Sciences, Nanjing Agricultural University, Weigang #1, Nanjing 210095, Jiangsu, China.
| | - Mingqian Fang
- College of Life Sciences, Nanjing Agricultural University, Weigang #1, Nanjing 210095, Jiangsu, China.
| | - Gabriel Yedid
- College of Life Sciences, Nanjing Agricultural University, Weigang #1, Nanjing 210095, Jiangsu, China.
| | - Xiuwen Yan
- College of Life Sciences, Nanjing Agricultural University, Weigang #1, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
13
|
Coumou J, Narasimhan S, Trentelman JJ, Wagemakers A, Koetsveld J, Ersoz JI, Oei A, Fikrig E, Hovius JW. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut. J Mol Med (Berl) 2015; 94:361-70. [PMID: 26594018 PMCID: PMC4803822 DOI: 10.1007/s00109-015-1365-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
Abstract
Abstract The causative agent of Lyme borreliosis, Borrelia burgdorferi, is transmitted by Ixodes ticks. During tick feeding, B. burgdorferi migrates from the tick gut to the salivary glands from where transmission to the host occurs. B. burgdorferi-interacting tick proteins might serve as vaccine targets to thwart B. burgdorferi transmission. A previous screening for B. burgdorferi-interacting Ixodes scapularis gut proteins identified an I. scapularis putative dystroglycan protein (ISCW015049). Here, we describe the ISCW015049’s protein structure and its cellular location in the tick gut in relation to B. burgdorferi migration. Secondly, in vivo B. burgdorferi–tick attachment murine models were performed to study the role of ISCW015049 during B. burgdorferi migration and transmission. In silico analysis confirmed that ISCW015049 is similar to dystroglycan and was named I. scapularis dystroglycan-like protein (ISDLP). Confocal microscopy of gut tissue showed that ISDLP is expressed on the surface of gut cells, is upregulated during tick feeding, and is expressed significantly higher in infected ticks compared to uninfected ticks. Inhibition of ISDLP by RNA interference (RNAi) resulted in lower B. burgdorferi transmission to mice. In conclusion, we have identified a dystroglycan-like protein in I. scapularis gut that can bind to B. burgdorferi and promotes B. burgdorferi migration from the tick gut. Key messages B. burgdorferi exploits tick proteins to orchestrate its transmission to the host. B. burgdorferi is able bind to an I. scapularis dystroglycan-like protein (ISDLP). Inhibition of ISDLP in ticks results in lower B. burgdorferi transmission to mice. ISDLP is a potential target to prevent Lyme borreliosis.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1365-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeroen Coumou
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Sukanya Narasimhan
- Department of Internal Medicine, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Jos J Trentelman
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Alex Wagemakers
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Jasmin I Ersoz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Anneke Oei
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
14
|
A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLoS Pathog 2014; 10:e1004278. [PMID: 25102051 PMCID: PMC4125277 DOI: 10.1371/journal.ppat.1004278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized a yeast surface display library of tick gut proteins to perform a global screen for tick gut proteins that might interact with Borrelia membrane proteins. A putative fibronectin type III domain-containing tick gut protein (Ixofin3D) was most frequently identified from this screen and prioritized for further analysis. Immunization against Ixofin3D and RNA interference-mediated reduction in expression of Ixofin3D resulted in decreased spirochete burden in tick salivary glands and in the murine host. Microscopic examination showed decreased aggregation of spirochetes on the gut epithelium concomitant with reduced expression of Ixofin3D. Our observations suggest that the interaction between Borrelia and Ixofin3D facilitates spirochete congregation to the gut during transmission, and provides a “molecular exit” direction for spirochete egress from the gut. Lyme borreliosis, the most common vector-borne illness in Northeastern parts of USA, is caused by Borrelia burgdorferi sensu lato spirochetes, and transmitted by the Ixodes scapularis ticks. Currently there is no vaccine available to prevent Lyme borreliosis. A better understanding of tick proteins that interact with Borrelia to facilitate spirochete transmission could identify new targets for the development of a tick-based vaccine to prevent Lyme borreliosis. Spirochete growth and exit from the gut is central to transmission, and might involve intimate interactions between the spirochete and the tick gut. We therefore performed a global screen to identify Borrelia-interacting tick gut proteins. One of the four Borrelia-interacting tick proteins, referred to as Ixofin3D, was further characterized. RNA-interference-mediated down-regulation of Ixofin3D resulted in decreased spirochete numbers in the salivary glands and consequently decreased transmission to the host during tick feeding. We demonstrate that Ixofin3D aids spirochete congregation to the gut epithelium, a critical first step that might direct spirochete exit from the gut.
Collapse
|
15
|
Radulović ŽM, Kim TK, Porter LM, Sze SH, Lewis L, Mulenga A. A 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genomics 2014; 15:518. [PMID: 24962723 PMCID: PMC4099483 DOI: 10.1186/1471-2164-15-518] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/12/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple tick saliva proteins, the majority of which are unknown, confer tick resistance in repeatedly infested animals. The objective of this study was to identify the 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. The 24-48 h tick-feeding phase is critical to tick parasitism as it precedes important events in tick biology, blood meal feeding and disease agent transmission. Fed male, 24 and 96 h fed female phage display cDNA expression libraries were biopanned using rabbit antibodies to 24 and 48 h fed A. americanum female tick saliva proteins. Biopanned immuno-cDNA libraries were subjected to next generation sequencing, de novo assembly, and bioinformatic analysis. RESULTS More than 800 transcripts that code for 24-48 h fed A. americanum immuno-proteins are described. Of the 895 immuno-proteins, 52% (464/895) were provisionally identified based on matches in GenBank. Of these, ~19% (86/464) show high level of identity to other tick hypothetical proteins, and the rest include putative proteases (serine, cysteine, leukotriene A-4 hydrolase, carboxypeptidases, and metalloproteases), protease inhibitors (serine and cysteine protease inhibitors, tick carboxypeptidase inhibitor), and transporters and/or ligand binding proteins (histamine binding/lipocalin, fatty acid binding, calreticulin, hemelipoprotein, IgG binding protein, ferritin, insulin-like growth factor binding proteins, and evasin). Others include enzymes (glutathione transferase, cytochrome oxidase, protein disulfide isomerase), ribosomal proteins, and those of miscellaneous functions (histamine release factor, selenoproteins, tetraspanin, defensin, heat shock proteins). CONCLUSIONS Data here demonstrate that A. americanum secretes a complex cocktail of immunogenic tick saliva proteins during the first 24-48 h of feeding. Of significance, previously validated immunogenic tick saliva proteins including AV422 protein, calreticulin, histamine release factor, histamine binding/lipocalins, selenoproteins, and paramyosin were identified in this screen, supporting the specificity of the approach in this study. While descriptive, this study opens opportunities for in-depth tick feeding physiology studies.
Collapse
Affiliation(s)
- Željko M Radulović
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Tae K Kim
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Lindsay M Porter
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Sing-Hoi Sze
- />Department of Computer Sciences and Engineering, Texas A & M University, College Station, TX77843 USA
- />Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX77843 USA
| | - Lauren Lewis
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Albert Mulenga
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| |
Collapse
|