1
|
Richardson B, Goedert T, Quraishe S, Deinhardt K, Mudher A. How do neurons age? A focused review on the aging of the microtubular cytoskeleton. Neural Regen Res 2024; 19:1899-1907. [PMID: 38227514 DOI: 10.4103/1673-5374.390974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is the leading risk factor for Alzheimer's disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer's disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer's disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease.
Collapse
Affiliation(s)
- Brad Richardson
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas Goedert
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Shmma Quraishe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Amritpal Mudher
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Thornburg-Suresh EJC, Summers DW. Microtubules, Membranes, and Movement: New Roles for Stathmin-2 in Axon Integrity. J Neurosci Res 2024; 102:e25382. [PMID: 39253877 PMCID: PMC11407747 DOI: 10.1002/jnr.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood. Stathmins are microtubule-associated proteins that function as relays between kinase signaling and microtubule polymerization. In this review, we describe the prolific role of Stathmins in microtubule homeostasis with an emphasis on emerging roles for Stathmin-2 (Stmn2) in axon integrity and neurodegeneration. Stmn2 levels are altered in Amyotrophic Lateral Sclerosis and loss of Stmn2 provokes motor and sensory neuropathies. There is growing potential for employing Stmn2 as a disease biomarker or even a therapeutic target. Meeting this potential requires a mechanistic understanding of emerging complexity in Stmn2 function. In particular, Stmn2 palmitoylation has a surprising contribution to axon maintenance through undefined mechanisms linking membrane association, tubulin interaction, and axon transport. Exploring these connections will reveal new insight on neuronal cell biology and novel opportunities for disease intervention.
Collapse
Affiliation(s)
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Bertin F, Jara-Wilde J, Auer B, Köhler-Solís A, González-Silva C, Thomas U, Sierralta J. Drosophila Atlastin regulates synaptic vesicle mobilization independent of bone morphogenetic protein signaling. Biol Res 2023; 56:49. [PMID: 37710314 PMCID: PMC10503011 DOI: 10.1186/s40659-023-00462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) contacts endosomes in all parts of a motor neuron, including the axon and presynaptic terminal, to move structural proteins, proteins that send signals, and lipids over long distances. Atlastin (Atl), a large GTPase, is required for membrane fusion and the structural dynamics of the ER tubules. Atl mutations are the second most common cause of Hereditary Spastic Paraplegia (HSP), which causes spasticity in both sexes' lower extremities. Through an unknown mechanism, Atl mutations stimulate the BMP (bone morphogenetic protein) pathway in vertebrates and Drosophila. Synaptic defects are caused by atl mutations, which affect the abundance and distribution of synaptic vesicles (SV) in the bouton. We hypothesize that BMP signaling, does not cause Atl-dependent SV abnormalities in Drosophila. RESULTS We show that atl knockdown in motor neurons (Atl-KD) increases synaptic and satellite boutons in the same way that constitutively activating the BMP-receptor Tkv (thick veins) (Tkv-CA) increases the bouton number. The SV proteins Cysteine string protein (CSP) and glutamate vesicular transporter are reduced in Atl-KD and Tkv-CA larvae. Reducing the activity of the BMP receptor Wishful thinking (wit) can rescue both phenotypes. Unlike Tkv-CA larvae, Atl-KD larvae display altered activity-dependent distributions of CSP staining. Furthermore, Atl-KD larvae display an increased FM 1-43 unload than Control and Tkv-CA larvae. As decreasing wit function does not reduce the phenotype, our hypothesis that BMP signaling is not involved is supported. We also found that Rab11/CSP colocalization increased in Atl-KD larvae, which supports the concept that late recycling endosomes regulate SV movements. CONCLUSIONS Our findings reveal that Atl modulates neurotransmitter release in motor neurons via SV distribution independently of BMP signaling, which could explain the observed SV accumulation and synaptic dysfunction. Our data suggest that Atl is involved in membrane traffic as well as formation and/or recycling of the late endosome.
Collapse
Affiliation(s)
- Francisca Bertin
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Computational Sciences, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Andrés Köhler-Solís
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ulrich Thomas
- Functional Genetics of the Synapse, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Estades Ayuso V, Pickles S, Todd T, Yue M, Jansen-West K, Song Y, González Bejarano J, Rawlinson B, DeTure M, Graff-Radford NR, Boeve BF, Knopman DS, Petersen RC, Dickson DW, Josephs KA, Petrucelli L, Prudencio M. TDP-43-regulated cryptic RNAs accumulate in Alzheimer's disease brains. Mol Neurodegener 2023; 18:57. [PMID: 37605276 PMCID: PMC10441763 DOI: 10.1186/s13024-023-00646-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Inclusions of TAR DNA-binding protein 43 kDa (TDP-43) has been designated limbic-predominant, age-related TDP-43 encephalopathy (LATE), with or without co-occurrence of Alzheimer's disease (AD). Approximately, 30-70% AD cases present TDP-43 proteinopathy (AD-TDP), and a greater disease severity compared to AD patients without TDP-43 pathology. However, it remains unclear to what extent TDP-43 dysfunction is involved in AD pathogenesis. METHODS To investigate whether TDP-43 dysfunction is a prominent feature in AD-TDP cases, we evaluated whether non-conserved cryptic exons, which serve as a marker of TDP-43 dysfunction in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), accumulate in AD-TDP brains. We assessed a cohort of 192 post-mortem brains from three different brain regions: amygdala, hippocampus, and frontal cortex. Following RNA and protein extraction, qRT-PCR and immunoassays were performed to quantify the accumulation of cryptic RNA targets and phosphorylated TDP-43 pathology, respectively. RESULTS We detected the accumulation of misspliced cryptic or skiptic RNAs of STMN2, KCNQ2, UNC13A, CAMK2B, and SYT7 in the amygdala and hippocampus of AD-TDP cases. The topographic distribution of cryptic RNA accumulation mimicked that of phosphorylated TDP-43, regardless of TDP-43 subtype classification. Further, cryptic RNAs efficiently discriminated AD-TDP cases from controls. CONCLUSIONS Overall, our results indicate that cryptic RNAs may represent an intriguing new therapeutic and diagnostic target in AD, and that methods aimed at detecting and measuring these species in patient biofluids could be used as a reliable tool to assess TDP-43 pathology in AD. Our work also raises the possibility that TDP-43 dysfunction and related changes in cryptic splicing could represent a common molecular mechanism shared between AD-TDP and FTLD-TDP.
Collapse
Affiliation(s)
- Virginia Estades Ayuso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Tiffany Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | | | | | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Pickles S, Zanetti Alepuz D, Koike Y, Yue M, Tong J, Liu P, Zhou Y, Jansen-West K, Daughrity LM, Song Y, DeTure M, Oskarsson B, Graff-Radford NR, Boeve BF, Petersen RC, Josephs KA, Dickson DW, Ward ME, Dong L, Prudencio M, Cook CN, Petrucelli L. CRISPR interference to evaluate modifiers of C9ORF72-mediated toxicity in FTD. Front Cell Dev Biol 2023; 11:1251551. [PMID: 37614226 PMCID: PMC10443592 DOI: 10.3389/fcell.2023.1251551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Treatments for neurodegenerative disease, including Frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS), remain rather limited, underscoring the need for greater mechanistic insight and disease-relevant models. Our ability to develop novel disease models of genetic risk factors, disease modifiers, and other FTD/ALS-relevant targets is impeded by the significant amount of time and capital required to develop conventional knockout and transgenic mice. To overcome these limitations, we have generated a novel CRISPRi interference (CRISPRi) knockin mouse. CRISPRi uses a catalytically dead form of Cas9, fused to a transcriptional repressor to knockdown protein expression, following the introduction of single guide RNA against the gene of interest. To validate the utility of this model we have selected the TAR DNA binding protein (TDP-43) splicing target, stathmin-2 (STMN2). STMN2 RNA is downregulated in FTD/ALS due to loss of TDP-43 activity and STMN2 loss is suggested to play a role in ALS pathogenesis. The involvement of STMN2 loss of function in FTD has yet to be determined. We find that STMN2 protein levels in familial FTD cases are significantly reduced compared to controls, supporting that STMN2 depletion may be involved in the pathogenesis of FTD. Here, we provide proof-of-concept that we can simultaneously knock down Stmn2 and express the expanded repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene, successfully replicating features of C9-associated pathology. Of interest, depletion of Stmn2 had no effect on expression or deposition of dipeptide repeat proteins (DPRs), but significantly decreased the number of phosphorylated Tdp-43 (pTdp-43) inclusions. We submit that our novel CRISPRi mouse provides a versatile and rapid method to silence gene expression in vivo and propose this model will be useful to understand gene function in isolation or in the context of other neurodegenerative disease models.
Collapse
Affiliation(s)
- Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yugui Zhou
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Keith A. Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
6
|
Baughn MW, Melamed Z, López-Erauskin J, Beccari MS, Ling K, Zuberi A, Presa M, Gil EG, Maimon R, Vazquez-Sanchez S, Chaturvedi S, Bravo-Hernández M, Taupin V, Moore S, Artates JW, Acks E, Ndayambaje IS, de Almeida Quadros ARA, Jafar-nejad P, Rigo F, Bennett CF, Lutz C, Lagier-Tourenne C, Cleveland DW. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science 2023; 379:1140-1149. [PMID: 36927019 PMCID: PMC10148063 DOI: 10.1126/science.abq5622] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023]
Abstract
Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.
Collapse
Affiliation(s)
- Michael W. Baughn
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Ze’ev Melamed
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Jone López-Erauskin
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Melinda S Beccari
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Karen Ling
- Ionis Pharmaceuticals; Carlsbad, CA 92010, USA
| | - Aamir Zuberi
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Maximilliano Presa
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Elena Gonzalo Gil
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Roy Maimon
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Sonia Vazquez-Sanchez
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Som Chaturvedi
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Mariana Bravo-Hernández
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Vanessa Taupin
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Stephen Moore
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Jonathan W. Artates
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Eitan Acks
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - I. Sandra Ndayambaje
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | - Ana R. Agra de Almeida Quadros
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals; Carlsbad, CA 92010, USA
| | | | - Cathleen Lutz
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
- Broad Institute of Harvard University and MIT; Cambridge, MA 02142, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
8
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
9
|
Jang HY, Oh JM, Kim IW. Drug repurposing using meta-analysis of gene expression in Alzheimer's disease. Front Neurosci 2022; 16:989174. [PMID: 36440278 PMCID: PMC9684643 DOI: 10.3389/fnins.2022.989174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Alzheimer's disease and other forms of dementia are disease that bring an increased global burden. However, the medicine developed to date remains limited. The purpose of this study is to predict drug repositioning candidates using a computational method that integrates gene expression profiles on Alzheimer's disease and compound-induced changes in gene expression levels. METHODS Gene expression data on Alzheimer's disease were obtained from the Gene Expression Omnibus (GEO) and we conducted a meta-analysis of their gene expression levels. The reverse scores of compound-induced gene expressions were computed based on the reversal relationship between disease and drug gene expression profiles. RESULTS Reversal genes and the candidate compounds were identified by the leave-one-out cross-validation procedure. Additionally, the half-maximal inhibitory concentration (IC50) values and the blood-brain barrier (BBB) permeability of candidate compounds were obtained from ChEMBL and PubChem, respectively. CONCLUSION New therapeutic target genes and drug candidates against Alzheimer's disease were identified by means of drug repositioning.
Collapse
Affiliation(s)
- Ha Young Jang
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jung Mi Oh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea,College of Pharmacy, Seoul National University, Seoul, South Korea
| | - In-Wha Kim
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea,*Correspondence: In-Wha Kim,
| |
Collapse
|
10
|
Guerra San Juan I, Nash LA, Smith KS, Leyton-Jaimes MF, Qian M, Klim JR, Limone F, Dorr AB, Couto A, Pintacuda G, Joseph BJ, Whisenant DE, Noble C, Melnik V, Potter D, Holmes A, Burberry A, Verhage M, Eggan K. Loss of mouse Stmn2 function causes motor neuropathy. Neuron 2022; 110:1671-1688.e6. [PMID: 35294901 PMCID: PMC9119928 DOI: 10.1016/j.neuron.2022.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/01/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Leslie A Nash
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kevin S Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcel F Leyton-Jaimes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Qian
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alexander B Dorr
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - D Eric Whisenant
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline Noble
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Veronika Melnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amie Holmes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Guan Y, Chen X, Zhao B, Shi Y, Han F. What Happened in the Hippocampal Axon in a Rat Model of Posttraumatic Stress Disorder. Cell Mol Neurobiol 2022; 42:723-737. [PMID: 32930942 PMCID: PMC11441271 DOI: 10.1007/s10571-020-00960-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
Studies from postmortem and animal models have revealed altered synapse morphology and function in the brain of posttraumatic stress disorder (PTSD). And the effects of PTSD on dendrites and spines have been reported, however, the effection on axon include microtubule (MT) and synaptic vesicles of presynaptic elements remains unknown. Hippocampus is involved in abnormal memory in PTSD. In the present study, we used the single prolonged stress (SPS) model to mimic PTSD. Quantitative real-time polymerase chain reaction (RT-qPCR) and high-throughput sequencing (GSE153081) were utilized to analyze differentially expressed genes (DEGs) in the hippocampus of control and SPS rats. Immunofluorescence and western blotting were performed to examine change in axon-related proteins. Synaptic function was evaluated by measuring miniature excitatory postsynaptic currents (mEPSCs). RNA-sequencing analysis revealed 230 significantly DEGs between the control and SPS groups. Gene Ontology analysis revealed upregulation in axonemal assembly, MT formation, or movement, but downregulation in axon initial segment and synaptic vesicles fusion in the hippocampus of SPS rats. Increased expression in tau, β-tubulin MAP1B, KIF9, CCDC40, DNAH12 and decreased expression in p-tau, stathmin suggested SPS induced axon extension. Increased protein expression in VAMP, STX1A, Munc18-1 and decreased expression in synaptotagmin-1 suggested SPS induced more SNARE complex formation but decreased ability in synaptic vesicle fusion to presynaptic active zone membrane in the hippocampus of SPS rats. Further, low mEPSC frequency in SPS rats indicated dysfunction in presynaptic membrane. These results suggest that axon extension and synaptic vesicles fusion abnormality are involved in dysfunction of PTSD.
Collapse
Affiliation(s)
- Yadi Guan
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Xinzhao Chen
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Beiying Zhao
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
12
|
Stathmins and Motor Neuron Diseases: Pathophysiology and Therapeutic Targets. Biomedicines 2022; 10:biomedicines10030711. [PMID: 35327513 PMCID: PMC8945549 DOI: 10.3390/biomedicines10030711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Motor neuron diseases (MNDs) are a group of fatal, neurodegenerative disorders with different etiology, clinical course and presentation, caused by the loss of upper and lower motor neurons (MNs). MNs are highly specialized cells equipped with long, axonal processes; axonal defects are some of the main players underlying the pathogenesis of these disorders. Microtubules are key components of the neuronal cytoskeleton characterized by dynamic instability, switching between rapid polymerization and shrinkage. Proteins of the stathmin family affect microtubule dynamics regulating the assembly and the dismantling of tubulin. Stathmin-2 (STMN2) is one of the most abundantly expressed genes in MNs. Following axonal injury, STMN2 expression is upregulated, and the protein is transported toward the growth cones of regenerating axons. STMN2 has a critical role in axonal maintenance, and its dysregulation plays an important role in neurodegenerative processes. Stathmin-1 (STMN1) is a ubiquitous protein that is highly expressed during the development of the nervous system, and its phosphorylation controls microtubule dynamics. In the present review, we summarize what is currently known about the involvement of stathmin alterations in MNDs and the potential therapeutic effect of their modulation, with a specific focus on the most common forms of MND, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).
Collapse
|
13
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Martinez D, Zhu M, Guidry JJ, Majeste N, Mao H, Yanofsky ST, Tian X, Wu C. Mask, the Drosophila ankyrin repeat and KH domain-containing protein, affects microtubule stability. J Cell Sci 2021; 134:272264. [PMID: 34553767 PMCID: PMC8572007 DOI: 10.1242/jcs.258512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
Proper regulation of microtubule (MT) stability and dynamics is vital for essential cellular processes, including axonal transportation and synaptic growth and remodeling in neurons. In the present study, we demonstrate that the Drosophila ankyrin repeat and KH domain-containing protein Mask negatively affects MT stability in both larval muscles and motor neurons. In larval muscles, loss-of-function of mask increases MT polymer length, and in motor neurons, loss of mask function results in overexpansion of the presynaptic terminal at the larval neuromuscular junctions (NMJs). mask genetically interacts with stathmin (stai), a neuronal modulator of MT stability, in the regulation of axon transportation and synaptic terminal stability. Our structure–function analysis of Mask revealed that its ankyrin repeats domain-containing N-terminal portion is sufficient to mediate Mask's impact on MT stability. Furthermore, we discovered that Mask negatively regulates the abundance of the MT-associated protein Jupiter in motor neuron axons, and that neuronal knocking down of Jupiter partially suppresses mask loss-of-function phenotypes at the larval NMJs. Taken together, our studies demonstrate that Mask is a novel regulator for MT stability, and such a role of Mask requires normal function of Jupiter. Summary: Mask is a novel regulator of MT stability in Drosophila. Mask shows prominent interplay with two important modulators of MT, Tau and Stathmin (Stai), whose mutations are related to human diseases.
Collapse
Affiliation(s)
- Daniel Martinez
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mingwei Zhu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jessie J Guidry
- Proteomics Core Facility, and the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Niles Majeste
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Mao
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sarah T Yanofsky
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Bu S, Yong WL, Lim BJW, Kondo S, Yu F. A systematic analysis of microtubule-destabilizing factors during dendrite pruning in Drosophila. EMBO Rep 2021; 22:e52679. [PMID: 34338441 DOI: 10.15252/embr.202152679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
It has long been thought that microtubule disassembly, one of the earliest cellular events, contributes to neuronal pruning and neurodegeneration in development and disease. However, how microtubule disassembly drives neuronal pruning remains poorly understood. Here, we conduct a systematic investigation of various microtubule-destabilizing factors and identify exchange factor for Arf6 (Efa6) and Stathmin (Stai) as new regulators of dendrite pruning in ddaC sensory neurons during Drosophila metamorphosis. We show that Efa6 is both necessary and sufficient to regulate dendrite pruning. Interestingly, Efa6 and Stai facilitate microtubule turnover and disassembly prior to dendrite pruning without compromising the minus-end-out microtubule orientation in dendrites. Moreover, our pharmacological and genetic manipulations strongly support a key role of microtubule disassembly in promoting dendrite pruning. Thus, this systematic study highlights the importance of two selective microtubule destabilizers in dendrite pruning and substantiates a causal link between microtubule disassembly and neuronal pruning.
Collapse
Affiliation(s)
- Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wei Lin Yong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Bryan Jian Wei Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Hahn I, Voelzmann A, Parkin J, Fülle JB, Slater PG, Lowery LA, Sanchez-Soriano N, Prokop A. Tau, XMAP215/Msps and Eb1 co-operate interdependently to regulate microtubule polymerisation and bundle formation in axons. PLoS Genet 2021; 17:e1009647. [PMID: 34228717 PMCID: PMC8284659 DOI: 10.1371/journal.pgen.1009647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other's localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.
Collapse
Affiliation(s)
- Ines Hahn
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Andre Voelzmann
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Jill Parkin
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Judith B. Fülle
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Paula G. Slater
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| |
Collapse
|
17
|
Effect of ethanol and cocaine on [ 11C]MPC-6827 uptake in SH-SY5Y cells. Mol Biol Rep 2021; 48:3871-3876. [PMID: 33880672 PMCID: PMC8172511 DOI: 10.1007/s11033-021-06336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 10/26/2022]
Abstract
Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.
Collapse
|
18
|
Klim JR, Pintacuda G, Nash LA, Guerra San Juan I, Eggan K. Connecting TDP-43 Pathology with Neuropathy. Trends Neurosci 2021; 44:424-440. [PMID: 33832769 DOI: 10.1016/j.tins.2021.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 01/22/2023]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43), a multifunctional nucleic acid-binding protein, is a primary component of insoluble aggregates associated with several devastating nervous system disorders; mutations in TARDBP, its encoding gene, are a cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we review established and emerging roles of TDP-43 and consider how its dysfunction impinges on RNA homeostasis in the nervous system, thereby contributing to neural degeneration. Notably, improper splicing of the axonal growth-associated factor STMN2 has recently been connected to TDP-43 dysfunction, providing a mechanistic link between TDP-43 proteinopathies and neuropathy. This review highlights how a deep understanding of the function of TDP-43 in the brain might be leveraged to develop new targeted therapies for several neurological disorders.
Collapse
Affiliation(s)
- Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leslie A Nash
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Goel P, Dickman D. Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. Cell Mol Life Sci 2021; 78:3159-3179. [PMID: 33449150 PMCID: PMC8044042 DOI: 10.1007/s00018-020-03732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Homeostatic signaling systems are fundamental forms of biological regulation that maintain stable functionality in a changing environment. In the nervous system, synapses are crucial substrates for homeostatic modulation, serving to establish, maintain, and modify the balance of excitation and inhibition. Synapses must be sufficiently flexible to enable the plasticity required for learning and memory but also endowed with the stability to last a lifetime. In response to the processes of development, growth, remodeling, aging, and disease that challenge synapses, latent forms of adaptive plasticity become activated to maintain synaptic stability. In recent years, new insights into the homeostatic control of synaptic function have been achieved using the powerful Drosophila neuromuscular junction (NMJ). This review will focus on work over the past 10 years that has illuminated the cellular and molecular mechanisms of five homeostats that operate at the fly NMJ. These homeostats adapt to loss of postsynaptic neurotransmitter receptor functionality, glutamate imbalance, axonal injury, as well as aberrant synaptic growth and target innervation. These diverse homeostats work independently yet can be simultaneously expressed to balance neurotransmission. Growing evidence from this model glutamatergic synapse suggests these ancient homeostatic signaling systems emerged early in evolution and are fundamental forms of plasticity that also function to stabilize mammalian cholinergic NMJs and glutamatergic central synapses.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
Glass JD. Stathmin-2: adding another piece to the puzzle of TDP-43 proteinopathies and neurodegeneration. J Clin Invest 2021; 130:5677-5680. [PMID: 33074248 DOI: 10.1172/jci142854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytoplasmic aggregated proteins are a common neuropathological feature of neurodegenerative diseases. Cytoplasmic mislocalization and aggregation of TAR-DNA binding protein 43 (TDP-43) is found in the majority of patients with amyotrophic lateral sclerosis (ALS) and in approximately 50% of patients dying of frontotemporal lobar degeneration (FTLD). In this issue of the JCI, Prudencio, Humphrey, Pickles, and colleagues investigated the relationship of TDP-43 pathology with the loss of stathmin-2 (STMN2), an essential protein for axonal growth and maintenance. Comparing genetic, cellular, and neuropathological data from patients with TDP-43 proteinopathies (ALS, ALS-frontotemporal dementia [ALS-FTD], and FTLD-TDP-43 [FTLD-TDP]) with data from patients with non-TDP-related neurodegenerations, they demonstrate a direct relationship between TDP-43 pathology and STMN2 reduction. Loss of the normal transcription suppressor function of TDP-43 allowed transcription of an early termination cryptic axon, resulting in truncated, nonfunctional mRNA. The authors suggest that measurement of truncated STMN2 mRNA could be a biomarker for discerning TDP proteinopathies from other pathologies.
Collapse
|
21
|
Perry S, Goel P, Tran NL, Pinales C, Buser C, Miller DL, Ganetzky B, Dickman D. Developmental arrest of Drosophila larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development 2020; 147:dev.186312. [PMID: 32345746 DOI: 10.1242/dev.186312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy L Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | - Daniel L Miller
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.,National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD 20824, USA
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
23
|
Scarpelli EM, Trinh VY, Tashnim Z, Krans JL, Keller LC, Colodner KJ. Developmental expression of human tau in Drosophila melanogaster glial cells induces motor deficits and disrupts maintenance of PNS axonal integrity, without affecting synapse formation. PLoS One 2019; 14:e0226380. [PMID: 31821364 PMCID: PMC6903755 DOI: 10.1371/journal.pone.0226380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the abnormal phosphorylation and accumulation of the microtubule-associated protein, tau, in both neuronal and glial cells. Though tau pathology in glial cells is a prominent feature of many of these disorders, the pathological contribution of these lesions to tauopathy pathogenesis remains largely unknown. Moreover, while tau pathology is predominantly found in the central nervous system, a role for tau in the cells of the peripheral nervous system has been described, though not well characterized. To investigate the effects of glial tau expression on the development and maintenance of the peripheral nervous system, we utilized a Drosophila melanogaster model of tauopathy that expresses human wild-type tau in glial cells during development. We found that glial tau expression during development results in larval locomotor deficits and organismal lethality at the pupal stage, without affecting larval neuromuscular junction synapse development or post-synaptic amplitude. There was, however, a significant decrease in the decay time of synaptic potentials upon repeated stimulation of the motoneuron. Behavioral abnormalities were accompanied by glial cell death, disrupted maintenance of glial-axonal integrity, and the abnormal accumulation of the presynaptic protein, Bruchpilot, in peripheral nerve axons. Together, these data demonstrate that human tau expression in Drosophila glial cells does not affect neuromuscular junction synapse formation during development, but is deleterious to the maintenance of glial-axonal interactions in the peripheral nervous system.
Collapse
Affiliation(s)
- Enrico M. Scarpelli
- Frank H. Netter, M.D. School of Medicine, Quinnipiac University, North Haven, CT, United States of America
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, United States of America
| | - Van Y. Trinh
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| | - Zarrin Tashnim
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| | - Jacob L. Krans
- Department of Neuroscience, Western New England University, Springfield, MA, United States of America
| | - Lani C. Keller
- Frank H. Netter, M.D. School of Medicine, Quinnipiac University, North Haven, CT, United States of America
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, United States of America
| | - Kenneth J. Colodner
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| |
Collapse
|
24
|
Xu A, Zhang Z, Ko SH, Fisher AL, Liu Z, Chen L. Microtubule regulators act in the nervous system to modulate fat metabolism and longevity through DAF-16 in C. elegans. Aging Cell 2019; 18:e12884. [PMID: 30638295 PMCID: PMC6413656 DOI: 10.1111/acel.12884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Microtubule (MT) regulation is involved in both neuronal function and the maintenance of neuronal structure, and MT dysregulation appears to be a general downstream indicator and effector of age‐related neurodegeneration. But the role of MTs in natural aging is largely unknown. Here, we demonstrate a role of MT regulators in regulating longevity. We find that loss of EFA‐6, a modulator of MT dynamics, can delay both neuronal aging and extend the lifespan of C. elegans. Through the use of genetic mutants affecting other MT‐regulating genes in C. elegans, we find that loss of MT stabilizing genes (including ptrn‐1 and ptl‐1) shortens lifespan, while loss of MT destabilizing gene hdac‐6 extends lifespan. Via the use of tissue‐specific transgenes, we further show that these MT regulators can act in the nervous system to modulate lifespan. Through RNA‐seq analyses, we found that genes involved in lipid metabolism were differentially expressed in MT regulator mutants, and via the use of Nile Red and Oil Red O staining, we show that the MT regulator mutants have altered fat storage. We further find that the increased fat storage and extended lifespan of the long‐lived MT regulator mutants are dependent on the DAF‐16/FOXO transcription factor. Our results suggest that neuronal MT status might affect organismal aging through DAF‐16‐regulated changes in fat metabolism, and therefore, MT‐based therapies might represent a novel intervention to promote healthy aging.
Collapse
Affiliation(s)
- Aiping Xu
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
| | - Zhao Zhang
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Alfred L. Fisher
- Center for Healthy Aging; UTHSCSA; San Antonio Texas
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine; UTHSCSA; San Antonio Texas
- GRECC, South Texas VA Healthcare System; San Antonio Texas
| | - Zhijie Liu
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies; San Antonio Texas
- Department of Cell Systems and Anatomy; UTHSCSA; San Antonio Texas
- Department of Molecular Medicine; UTHSCSA; San Antonio Texas
| |
Collapse
|
25
|
Banerjee R, Rudloff Z, Naylor C, Yu MC, Gunawardena S. The presenilin loop region is essential for glycogen synthase kinase 3 β (GSK3β) mediated functions on motor proteins during axonal transport. Hum Mol Genet 2019; 27:2986-3001. [PMID: 29790963 DOI: 10.1093/hmg/ddy190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023] Open
Abstract
Neurons require intracellular transport of essential components for function and viability and defects in transport has been implicated in many neurodegenerative diseases including Alzheimer's disease (AD). One possible mechanism by which transport defects could occur is by improper regulation of molecular motors. Previous work showed that reduction of presenilin (PS) or glycogen synthase kinase 3 beta (GSK3β) stimulated amyloid precursor protein vesicle motility. Excess GSK3β caused transport defects and increased motor binding to membranes, while reduction of PS decreased active GSK3β and motor binding to membranes. Here, we report that functional PS and the catalytic loop region of PS is essential for the rescue of GSK3β-mediated axonal transport defects. Disruption of PS loop (PSΔE9) or expression of the non-functional PS variant, PSD447A, failed to rescue axonal blockages in vivo. Further, active GSK3β associated with and phosphorylated kinesin-1 in vitro. Our observations together with previous work that showed that the loop region of PS interacts with GSK3β propose a scaffolding mechanism for PS in which the loop region sequesters GSK3β away from motors for the proper regulation of motor function. These findings are important to uncouple the complex regulatory mechanisms that likely exist for motor activity during axonal transport in vivo.
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Zoe Rudloff
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Crystal Naylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Michael C Yu
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
26
|
Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 2019; 22:180-190. [PMID: 30643298 PMCID: PMC6348009 DOI: 10.1038/s41593-018-0293-z] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear TDP-43. Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-mRNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from sporadic ALS patients and familial ALS patients with expansion in C9orf72, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS/FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability.
Collapse
|
27
|
Yu H, Jiang X, Lin X, Zhang Z, Wu D, Zhou L, Liu J, Yang X. Hippocampal Subcellular Organelle Proteomic Alteration of Copper-Treated Mice. Toxicol Sci 2018; 164:250-263. [PMID: 29617964 DOI: 10.1093/toxsci/kfy082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Copper neurotoxicity has been implicated in multiple neurological diseases. However, there is a lack of deep understanding on copper neurotoxicity, especially for low-dose copper exposure. In this study, we investigated the effects of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on hippocampal mitochondrial and nuclear proteome in mice by 2-dimensional fluorescence difference gel electrophoresis coupled with MALDI-TOF-MS/MS. Behavioral tests revealed that low-dose copper caused spatial memory impairment, DNA oxidative damage as well as loss of synaptic proteins. Proteomic analysis revealed modulation of 31 hippocampal mitochondrial proteins (15 increased and 16 decreased), and 46 hippocampal nuclear proteins (18 increased and 28 decreased) in copper-treated versus untreated mice. Bioinformatic analysis indicated that these differentially expressed proteins are mainly involved energy metabolism (NDUV1, COX5B, IDH3A, and PGAM1), synapses (complexin-2, synapsin-2), DNA damage (PDIA3), apoptosis (GRP75), and oxidative stress (SODC, PRDX3). Among these differentially expressed proteins, synapsin-2, a synaptic-related protein, was found to be significantly decreased as confirmed by Western-blot analysis. In addition, we found that superoxide dismutase [Cu-Zn] (SODC), a copper ion target protein, was identified to be decreased in copper-treated mice versus untreated mice. We also found that stathmin (STMN1), a microtubule-destabilizing neuroprotein, was significantly decreased in hippocampal nuclei of copper-treated mice versus untreated mice. Taken together, we conclude that low-dose copper exposure causes spatial memory impairment and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome, particularly the proteins related to respiratory chain, synaptic vesicle fusion, axonal/neurtic integrity, and oxidative stress. The change of STMN1 and SODC may represent early novel biomarkers of copper neurotoxicity.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Guangdong, China
| | - Xuemei Lin
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
28
|
HGF/Met Signaling in Cancer Invasion: The Impact on Cytoskeleton Remodeling. Cancers (Basel) 2017; 9:cancers9050044. [PMID: 28475121 PMCID: PMC5447954 DOI: 10.3390/cancers9050044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion of cancer cells into surrounding tissue and the vasculature is essential for tumor metastasis. Increasing evidence indicates that hepatocyte growth factor (HGF) induces cancer cell migration and invasion. A broad spectrum of mechanisms underlies cancer cell migration and invasion. Cytoskeletal reorganization is of central importance in the development of the phenotype of cancer cells with invasive behavior. Through their roles in cell mechanics, intracellular trafficking, and signaling, cytoskeleton proteins participate in all essential events leading to cell migration. HGF has been involved in cytoskeleton assembly and reorganization, and its role in regulating cytoskeleton dynamics is still expanding. This review summarizes our current understanding of the role of HGF in regulating cytoskeleton remodeling, distribution, and interactions.
Collapse
|
29
|
Cartelli D, Cappelletti G. α-Synuclein regulates the partitioning between tubulin dimers and microtubules at neuronal growth cone. Commun Integr Biol 2017. [PMCID: PMC5333521 DOI: 10.1080/19420889.2016.1267076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The partitioning between tubulin dimers and microtubules is fundamental for the regulation of several neuronal activities, from neuronal polarization and processes extension to growth cone remodelling. This phenomenon is modulated by several proteins, including the well-known microtubule destabilizer Stathmin. We recently demonstrated that α-Synuclein, a presynaptic protein associated to Parkinson's disease, shares structural and functional properties with Stathmin, and we showed that α-Synuclein acts as a foldable dynamase. Here, we pinpoint the impact of wild type α-Synuclein on the partitioning between tubulin dimers and microtubules and show that Parkinson's disease-linked mutants lose this capability. Thus, our results indicate a new role for α-Synuclein in regulating microtubule system and support the concept that microtubules and α-Synuclein are partners in the modulation of neuronal health and degenerative processes. Furthermore, these data strengthen our hypothesis of the existence of a functional redundancy between α-Synuclein and Stathmin.
Collapse
Affiliation(s)
- Daniele Cartelli
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
30
|
Parker GC, Carruthers NJ, Gratsch T, Caruso JA, Stemmer PM. Proteomic profile of embryonic stem cells with low survival motor neuron protein is consistent with developmental dysfunction. J Neural Transm (Vienna) 2017; 124:13-23. [PMID: 27145767 PMCID: PMC5097705 DOI: 10.1007/s00702-016-1520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy is an autosomal recessive motor neuron disease caused by a genetic defect carried by as many as one in 75 people. Unlike most neurological disorders, we know exactly what the genetic basis is of the disorder, but in spite of this, have little understanding of why the low levels of one protein, survival motor neuron protein, results in the specific progressive die back of only one cell type in the body, the motor neuron. Given the fact that all cells in the body of a patient with spinal muscular atrophy share the same low abundance of the protein throughout development, an appropriate approach is to ask how lower levels of survival motor neuron protein affects the proteome of embryonic stem cells prior to development. Convergent biostatistical analyses of a discovery proteomic analysis of these cells provide results that are consistent with the pathomechanistic fate of the developed motor neuron.
Collapse
Affiliation(s)
- Graham C Parker
- Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, USA.
- iBio, 6135 Woodward Ave., Suite 2128 CURES H208, Detroit, MI, 48202, USA.
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Theresa Gratsch
- Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, USA
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Lacroix B, Ryan J, Dumont J, Maddox PS, Maddox AS. Identification of microtubule growth deceleration and its regulation by conserved and novel proteins. Mol Biol Cell 2016; 27:1479-87. [PMID: 26985017 PMCID: PMC4850035 DOI: 10.1091/mbc.e16-01-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022] Open
Abstract
Live imaging of microtubule dynamics in Caenorhabditis elegans muscle cells reveals a novel microtubule behavior characterized by an abrupt change in growth rate, named “microtubule growth deceleration.” The conserved protein ZYG-9TOGp and two novel ORFs, cylc-1 and cylc-2, are involved in the regulation of this novel microtubule behavior. Microtubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type. We recently reported that all MT dynamic parameters vary throughout differentiation of a smooth muscle cell type in intact Caenorhabditis elegans. Here we describe local differences in MT dynamics and a novel MT behavior: an abrupt change in growth rate (deceleration) of single MTs occurring in the cell periphery of these cells. MT deceleration occurs where there is a decrease in local soluble tubulin concentration at the cell periphery. This local regulation of tubulin concentration and MT deceleration are dependent on two novel homologues of human cylicin. These novel ORFs, which we name cylc-1 and -2, share sequence homology with stathmins and encode small, very basic proteins containing several KKD/E repeats. The TOG domain–containing protein ZYG-9TOGp is responsible for the faster polymerization rate within the cell body. Thus we have defined two contributors to the molecular regulation for this novel MT behavior.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Joël Ryan
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Paul S Maddox
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Amy S Maddox
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
32
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
33
|
Fuller HR, Slade R, Jovanov-Milošević N, Babić M, Sedmak G, Šimić G, Fuszard MA, Shirran SL, Botting CH, Gates MA. Stathmin is enriched in the developing corticospinal tract. Mol Cell Neurosci 2015; 69:12-21. [PMID: 26370173 DOI: 10.1016/j.mcn.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK; Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Robert Slade
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK; Postgraduate Medicine, Keele University, Staffordshire ST5 5BG, UK
| | | | - Mirjana Babić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, Zagreb 10000, Croatia
| | - Matthew A Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Monte A Gates
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
34
|
Methods to identify and analyze gene products involved in neuronal intracellular transport using Drosophila. Methods Cell Biol 2015. [PMID: 26794520 DOI: 10.1016/bs.mcb.2015.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila.
Collapse
|
35
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
36
|
Zenger B, Wetzel S, Duncan J. Acquisition of high-quality digital video of Drosophila larval and adult behaviors from a lateral perspective. J Vis Exp 2014:e51981. [PMID: 25350294 DOI: 10.3791/51981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming.
Collapse
|
37
|
Boekhoorn K, van Dis V, Goedknegt E, Sobel A, Lucassen PJ, Hoogenraad CC. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Dev Neurobiol 2014; 74:1226-42. [PMID: 24909416 DOI: 10.1002/dneu.22200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.
Collapse
Affiliation(s)
- Karin Boekhoorn
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Cell Biology, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
39
|
Prokop A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev 2013; 8:17. [PMID: 24010872 PMCID: PMC3846809 DOI: 10.1186/1749-8104-8-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
The hallmarks of neurons are their slender axons which represent the longest cellular processes of animals and which act as the cables that electrically wire the brain, and the brain to the body. Axons extend along reproducible paths during development and regeneration, and they have to be maintained for the lifetime of an organism. Both axon extension and maintenance essentially depend on the microtubule (MT) cytoskeleton. For this, MTs organize into parallel bundles that are established through extension at the leading axon tips within growth cones, and these bundles then form the architectural backbones, as well as the highways for axonal transport essential for supply and intracellular communication. Axon transport over these enormous distances takes days or even weeks and is a substantial logistical challenge. It is performed by kinesins and dynein/dynactin, which are molecular motors that form close functional links to the MTs they walk along. The intricate machinery which regulates MT dynamics, axonal transport and the motors is essential for nervous system development and function, and its investigation has huge potential to bring urgently required progress in understanding the causes of many developmental and degenerative brain disorders. During the last years new explanations for the highly specific properties of axonal MTs and for their close functional links to motor proteins have emerged, and it has become increasingly clear that motors play active roles also in regulating axonal MT networks. Here, I will provide an overview of these new developments.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|