1
|
Hu X, Zhou P, Peng X, Ouyang Y, Li D, Wu X, Yang L. PXD101 inhibits malignant progression and radioresistance of glioblastoma by upregulating GADD45A. J Transl Med 2024; 22:1047. [PMID: 39568000 PMCID: PMC11577825 DOI: 10.1186/s12967-024-05874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) have shown a significant antitumor effect in clinical studies, and PXD101 is a novel HDACi which can cross the blood-brain barrier. In this study, we showed that PXD101 could significantly inhibit the proliferation and invasion of glioblastoma (GBM) cells, while promoting their apoptosis and radiosensitivity. Furthermore, it was found that PXD101 exerted its antitumor function by upregulating the expression of the growth arrest and DNA damage inducible protein α (GADD45A). Mechanistically, PXD101 promoted the transcription of GADD45A by directly acetylating the histones H3 and H4, and GADD45A enhanced apoptosis and radiosensitivity through the activation of P38 in the GBM cells. In vivo experiments also showed that PXD101 combined with radiotherapy could significantly inhibit the growth of GBM. This study provides experimental evidence for application of the novel HDACi PXD101 in the treatment of GBM, as well as new molecular markers and potential intervention targets that may be used in preventing GBM malignant progression and radioresistance.
Collapse
Affiliation(s)
- Xiaohong Hu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, 410012, China
| | - Peijun Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Xingzhi Peng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Yiting Ouyang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Dan Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, 410012, China
| | - Xia Wu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China.
- Department of Pathology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 174, Changsha, 410011, China.
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha, 410078, China.
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Makgoba TB, Kapp E, Egieyeh S, Joubert J. HDAC3 inhibitors: a patent review of their broad-spectrum applications as therapeutic agents. Expert Opin Ther Pat 2024; 34:273-295. [PMID: 38873766 DOI: 10.1080/13543776.2024.2363890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors. AREA COVERED This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme. EXPERT OPINION HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.
Collapse
Affiliation(s)
- Thabo Brighton Makgoba
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Erika Kapp
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Samuel Egieyeh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | | |
Collapse
|
5
|
Clayton BLL, Kristell JD, Allan KC, Cohn EF, Karl M, Jerome AD, Garrison E, Maeno-Hikichi Y, Sturno AM, Kerr A, Shick HE, Sepeda JA, Freundt EC, Sas AR, Segal BM, Miller RH, Tesar PJ. A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Nat Neurosci 2024; 27:656-665. [PMID: 38378993 PMCID: PMC11034956 DOI: 10.1038/s41593-024-01580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - James D Kristell
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erin F Cohn
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Molly Karl
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Andrew D Jerome
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric Garrison
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Yuka Maeno-Hikichi
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Annalise M Sturno
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alexis Kerr
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Elizabeth Shick
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jesse A Sepeda
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | - Andrew R Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin M Segal
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
6
|
Shao R, Suzuki T, Suyama M, Tsukada Y. The impact of selective HDAC inhibitors on the transcriptome of early mouse embryos. BMC Genomics 2024; 25:143. [PMID: 38317092 PMCID: PMC10840191 DOI: 10.1186/s12864-024-10029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), plays a crucial role in the control of gene expression. HDAC inhibitors (HDACi) have shown potential in cancer therapy; however, the specific roles of HDACs in early embryos remain unclear. Moreover, although some pan-HDACi have been used to maintain cellular undifferentiated states in early embryos, the specific mechanisms underlying their effects remain unknown. Thus, there remains a significant knowledge gap regarding the application of selective HDACi in early embryos. RESULTS To address this gap, we treated early embryos with two selective HDACi (MGCD0103 and T247). Subsequently, we collected and analyzed their transcriptome data at different developmental stages. Our findings unveiled a significant effect of HDACi treatment during the crucial 2-cell stage of zygotes, leading to a delay in embryonic development after T247 and an arrest at 2-cell stage after MGCD0103 administration. Furthermore, we elucidated the regulatory targets underlying this arrested embryonic development, which pinpointed the G2/M phase as the potential period of embryonic development arrest caused by MGCD0103. Moreover, our investigation provided a comprehensive profile of the biological processes that are affected by HDACi, with their main effects being predominantly localized in four aspects of zygotic gene activation (ZGA): RNA splicing, cell cycle regulation, autophagy, and transcription factor regulation. By exploring the transcriptional regulation and epigenetic features of the genes affected by HDACi, we made inferences regarding the potential main pathways via which HDACs affect gene expression in early embryos. Notably, Hdac7 exhibited a distinct response, highlighting its potential as a key player in early embryonic development. CONCLUSIONS Our study conducted a comprehensive analysis of the effects of HDACi on early embryonic development at the transcriptional level. The results demonstrated that HDACi significantly affected ZGA in embryos, elucidated the distinct actions of various selective HDACi, and identified specific biological pathways and mechanisms via which these inhibitors modulated early embryonic development.
Collapse
Affiliation(s)
- Ruiqi Shao
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, 567-0047, Ibaraki, Osaka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan.
| | - Yuichi Tsukada
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan.
| |
Collapse
|
7
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
8
|
Uba AI, Zengin G. In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods. Amino Acids 2023; 55:1709-1726. [PMID: 37367966 DOI: 10.1007/s00726-023-03297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
9
|
Itoh Y, Zhan P, Tojo T, Jaikhan P, Ota Y, Suzuki M, Li Y, Hui Z, Moriyama Y, Takada Y, Yamashita Y, Oba M, Uchida S, Masuda M, Ito S, Sowa Y, Sakai T, Suzuki T. Discovery of Selective Histone Deacetylase 1 and 2 Inhibitors: Screening of a Focused Library Constructed by Click Chemistry, Kinetic Binding Analysis, and Biological Evaluation. J Med Chem 2023; 66:15171-15188. [PMID: 37847303 DOI: 10.1021/acs.jmedchem.3c01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone deacetylase 1 and 2 (HDAC1/2) inhibitors are potentially useful as tools for probing the biological functions of the isoforms and as therapeutic agents for cancer and neurodegenerative disorders. To discover potent and selective inhibitors, we screened a focused library synthesized by using click chemistry and obtained KPZ560 as an HDAC1/2-selective inhibitor. Kinetic binding analysis revealed that KPZ560 inhibits HDAC2 through a two-step slow-binding mechanism. In cellular assays, KPZ560 induced a dose- and time-dependent increase of histone acetylation and showed potent breast cancer cell growth-inhibitory activity. In addition, gene expression analyses suggested that the two-step slow-binding inhibition by KPZ560 regulated the expression of genes associated with cell proliferation and DNA damage. KPZ560 also induced neurite outgrowth of Neuro-2a cells and an increase in the spine density of granule neuron dendrites of mice. The unique two-step slow-binding character of o-aminoanilides such as KPZ560 makes them interesting candidates as therapeutic agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Peng Zhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Toshifumi Tojo
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Pattaporn Jaikhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Miki Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Ying Li
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Zi Hui
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukiko Moriyama
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Makoto Oba
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuharu Masuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
10
|
Abdallah DI, de Araujo ED, Patel NH, Hasan LS, Moriggl R, Krämer OH, Gunning PT. Medicinal chemistry advances in targeting class I histone deacetylases. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:757-779. [PMID: 37711592 PMCID: PMC10497394 DOI: 10.37349/etat.2023.00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 09/16/2023] Open
Abstract
Histone deacetylases (HDACs) are a class of zinc (Zn)-dependent metalloenzymes that are responsible for epigenetic modifications. HDACs are largely associated with histone proteins that regulate gene expression at the DNA level. This tight regulation is controlled by acetylation [via histone acetyl transferases (HATs)] and deacetylation (via HDACs) of histone and non-histone proteins that alter the coiling state of DNA, thus impacting gene expression as a downstream effect. For the last two decades, HDACs have been studied extensively and indicated in a range of diseases where HDAC dysregulation has been strongly correlated with disease emergence and progression-most prominently, cancer, neurodegenerative diseases, HIV, and inflammatory diseases. The involvement of HDACs as regulators in these biochemical pathways established them as an attractive therapeutic target. This review summarizes the drug development efforts exerted to create HDAC inhibitors (HDACis), specifically class I HDACs, with a focus on the medicinal chemistry, structural design, and pharmacology aspects of these inhibitors.
Collapse
Affiliation(s)
- Diaaeldin I. Abdallah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2E8, Canada
| | - Elvin D. de Araujo
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Naman H. Patel
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Lina S. Hasan
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2E8, Canada
| |
Collapse
|
11
|
Frühauf A, Behringer M, Meyer-Almes FJ. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023; 28:5686. [PMID: 37570656 PMCID: PMC10419652 DOI: 10.3390/molecules28155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. Hence, the exploration of five-ring heterocycles remains an important research area in medicinal chemistry, with the aim of discovering new therapeutic agents for various diseases. This review addresses the incorporation of heteroatoms such as nitrogen, oxygen and sulfur into the aromatic ring of these heterocyclic compounds, enhancing their polarity and facilitating both aromatic stacking interactions and the formation of hydrogen bonds. Histone deacetylases are present in numerous multiprotein complexes within the epigenetic machinery and play a central role in various cellular processes. They have emerged as important targets for cancer, neurodegenerative diseases and other therapeutic indications. In histone deacetylase inhibitors (HDACi's), five-ring heterocycles perform various functions as a zinc-binding group, a linker or head group, contributing to binding activity and selective recognition. This review focuses on providing an up-to-date overview of the different five-membered heterocycles utilized in HDACi motifs, highlighting their biological properties. It summarizes relevant publications from the past decade, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Anton Frühauf
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Martin Behringer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| |
Collapse
|
12
|
Maksimova V, Makus J, Popova V, Prus A, Usalka O, Trapeznikova E, Zhidkova E, Belitsky G, Yakubovskaya M, Kirsanov K. Histone Methyltransferases as a New Target for Epigenetic Action of Vorinostat. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:968-978. [PMID: 37751867 DOI: 10.1134/s000629792307009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 09/28/2023]
Abstract
Epigenetic genome regulation during malignant cell transformation is characterized by the aberrant methylation and acetylation of histones. Vorinostat (SAHA) is an epigenetic modulator actively used in clinical oncology. The antitumor activity of vorinostat is commonly believed to be associated with the inhibition of histone deacetylases, while the impact of this drug on histone methylation has been poorly studied. Using HeLa TI cells as a test system allowing evaluation of the effect of epigenetically active compounds from the expression of the GFP reporter gene and gene knockdown by small interfering RNAs, we showed that vorinostat not only suppressed HDAC1, but also reduced the activity of EZH2, SUV39H1, SUV39H2, and SUV420H1. The ability of vorinostat to suppress expression of EZH2, SUV39H1/2, SUV420H1 was confirmed by Western blotting. Vorinostat also downregulated expression of SUV420H2 and DOT1L enzymes. The data obtained expand our understanding of the epigenetic effects of vorinostat and demonstrate the need for a large-scale analysis of its activity toward other enzymes involved in the epigenetic genome regulation. Elucidation of the mechanism underlying the epigenetic action of vorinostat will contribute to its more proper use in the treatment of tumors with an aberrant epigenetic profile.
Collapse
Affiliation(s)
- Varvara Maksimova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Julia Makus
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - Valeriia Popova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Anzhelika Prus
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- MIREA, Russian Technological University, Moscow, 119571, Russia
| | - Olga Usalka
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Ekaterina Trapeznikova
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Ekaterina Zhidkova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Gennady Belitsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | | | - Kirill Kirsanov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
- Peoples' Friendship University of Russia, Moscow, 117198, Russia
| |
Collapse
|
13
|
Zhan F, Zhu J, Xie S, Xu J, Xu S. Advances of bioorthogonal coupling reactions in drug development. Eur J Med Chem 2023; 253:115338. [PMID: 37037138 DOI: 10.1016/j.ejmech.2023.115338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Currently, bioorthogonal coupling reactions have garnered considerable interest due to their high substrate selectivity and less restrictive reaction conditions. During recent decades, bioorthogonal coupling reactions have emerged as powerful tools in drug development. This review describes the current applications of bioorthogonal coupling reactions in compound library building mediated by the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and in situ click chemistry or conjunction with other techniques; druggability optimization with 1,2,3-triazole groups; and intracellular self-assembly platforms with ring tension reactions, which are presented from the viewpoint of drug development. There is a reasonable prospect that bioorthogonal coupling reactions will accelerate the screening of lead compounds, the designing strategies of small molecules and expand the variety of designed compounds, which will be a new trend in drug development in the future.
Collapse
|
14
|
Jing L, Wei W, Meng B, Chantegreil F, Nachon F, Martínez A, Wu G, Zhao H, Song Y, Kang D, Brazzolotto X, Zhan P, Liu X. Rapid discovery and crystallography study of highly potent and selective butylcholinesterase inhibitors based on oxime-containing libraries and conformational restriction strategies. Bioorg Chem 2023; 134:106465. [PMID: 36933339 DOI: 10.1016/j.bioorg.2023.106465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Butyrylcholinesterase is regarded as a promising drug target in advanced Alzheimer's disease. In order to identify highly selective and potent BuChE inhibitors, a 53-membered compound library was constructed via the oxime-based tethering approach based on microscale synthesis. Although A2Q17 and A3Q12 exhibited higher BuChE selectivity versus acetylcholinesterase, the inhibitory activities were unsatisfactory and A3Q12 did not inhibit Aβ1-42 peptide self-induced aggregation. With A2Q17 and A3Q12 as leads, a novel series of tacrine derivatives with nitrogen-containing heterocycles were designed based on conformation restriction strategy. The results demonstrated that 39 (IC50 = 3.49 nM) and 43 (IC50 = 7.44 nM) yielded much improved hBuChE inhibitory activity compared to the lead A3Q12 (IC50 = 63 nM). Besides, the selectivity indexes (SI = AChE IC50 / BChE IC50) of 39 (SI = 33) and 43 (SI = 20) were also higher than A3Q12 (SI = 14). The results of the kinetic study showed that 39 and 43 exhibited a mixed-type inhibition against eqBuChE with respective Ki values of 1.715 nM and 0.781 nM. And 39 and 43 could inhibit Aβ1-42 peptide self-induced aggregation into fibril. X-ray crystallography structures of 39 or 43 complexes with BuChE revealed the molecular basis for their high potency. Thus, 39 and 43 are deserve for further study to develop potential drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Ji'nan, Shandong, PR China.
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
15
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
17
|
Tashima T. Delivery of Intravenously Administered Antibodies Targeting Alzheimer's Disease-Relevant Tau Species into the Brain Based on Receptor-Mediated Transcytosis. Pharmaceutics 2022; 14:411. [PMID: 35214143 PMCID: PMC8876001 DOI: 10.3390/pharmaceutics14020411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss, cognitive decline, and eventually dementia. The etiology of AD and its pathological mechanisms remain unclear due to its complex pathobiology. At the same time, the number of patients with AD is increasing worldwide. However, no therapeutic agents for AD are currently available for definitive care. Several phase 3 clinical trials using agents targeting amyloid β (Aβ) and its related molecules have failed, with the exception of aducanumab, an anti-Aβ monoclonal antibody (mAb), clinically approved by the US Food and Drug Administration in 2021, which could be modified for AD drug development due to controversial approval. Neurofibrillary tangles (NFTs) composed of tau rather than senile plaques composed of Aβ are correlated with AD pathogenesis. Moreover, Aβ and tau pathologies initially proceed independently. At a certain point in the progression of AD symptoms, the Aβ pathology is involved in the alteration and spreading of the tau pathology. Therefore, tau-targeting therapies have attracted the attention of pharmaceutical scientists, as well as Aβ-targeting therapies. In this review, I introduce the implementations and potential of AD immunotherapy using intravenously administered anti-tau and anti-receptor bispecific mAbs. These cross the blood-brain barrier (BBB) based on receptor-mediated transcytosis and are subsequently cleared by microglia based on Fc-mediated endocytosis after binding to tau and lysosomal degradation.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
18
|
Kaur J, Saxena M, Rishi N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug Chem 2021; 32:1455-1471. [PMID: 34319077 DOI: 10.1021/acs.bioconjchem.1c00247] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is a modular and bio-orthogonal approach that is being adopted for the efficient synthesis of organic and bioorganic compounds. It leads to the selective formation of 1,4-disubstituted 1,2,3-triazole units connecting readily accessible building blocks via a stable and biocompatible linkage. The vast array of the bioconjugation applications of click chemistry has been attributed to its fast reaction kinetics, quantitative yields, minimal byproducts, and high chemospecificity and regioselectivity. These combined advantages make click reactions quite suitable for the lead identification and the development of pharmaceutical agents in the fields of medicinal chemistry and drug discovery. In this review, we have outlined the key aspects, the mechanistic details and merits and demerits of the click reaction. In addition, we have also discussed the recent pharmaceutical applications of click chemistry, ranging from the development of anticancer, antibacterial, and antiviral agents to that of biomedical imaging agents and clinical therapeutics.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Mokshika Saxena
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
19
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
20
|
Routholla G, Pulya S, Patel T, Abdul Amin S, Adhikari N, Biswas S, Jha T, Ghosh B. Synthesis, biological evaluation, and molecular docking analysis of novel linker-less benzamide based potent and selective HDAC3 inhibitors. Bioorg Chem 2021; 114:105050. [PMID: 34120025 DOI: 10.1016/j.bioorg.2021.105050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022]
Abstract
A series of novel linker-less benzamides with different aryl and heteroaryl cap groups have been designed, synthesized, and screened as potent histone deacetylase (HDAC) inhibitors with promising anticancer activity. Two lead compounds 5e and 5f were found as potent and highly selective HDAC3 inhibitors over other Class-I HDACs and HDAC6. Compound 5e bearing a 6-quinolinyl moiety as the cap group was found to be a highly potent HDAC3 inhibitor (IC50 = 560 nM) and displayed 46-fold selectivity for HDAC3 over HDAC2, and 33-fold selectivity for HDAC3 over HDAC1. The synthesized compounds possess antiproliferative activities against different cancer cell lines and significantly less cytotoxic to normal cells. Molecular Docking studies of compounds 5e and 5f reveal a similar binding mode of interactions as CI994 at the HDAC3 active site. These observations agreed with the in vitro HDAC3 inhibitory activities. Significant enhancement of the endogenous acetylation level on H3K9 and H4K12 was found when B16F10 cells were treated with compounds 5e and 5f in a dose-dependent manner. The compounds induced apoptotic cell death in Annexin-V/FITC-PI assay and caused cell cycle arrest at G2/M phase of cell cycle in B16F10 cells. These compounds may serve as potential HDAC3 inhibitory anticancer therapeutics.
Collapse
Affiliation(s)
- Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
21
|
Feng S, De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy. FEBS J 2021; 289:1214-1239. [PMID: 33545740 DOI: 10.1111/febs.15750] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Shengrui Feng
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
- Department of Medical Biophysics University of Toronto ON Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
- Department of Medical Biophysics University of Toronto ON Canada
| |
Collapse
|
22
|
Luo Y, Li H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). Int J Mol Sci 2020; 21:E8828. [PMID: 33266366 PMCID: PMC7700698 DOI: 10.3390/ijms21228828] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Class I histone deacetylases (HDACs) are promising targets for epigenetic therapies for a range of diseases such as cancers, inflammations, infections and neurological diseases. Although six HDAC inhibitors are now licensed for clinical treatments, they are all pan-inhibitors with little or no HDAC isoform selectivity, exhibiting undesirable side effects. A major issue with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Except for HDAC8, Class I HDACs (1, 2 and 3) are recruited to large multiprotein complexes to function. Therefore, there are rising needs to develop new, hopefully, therapeutically efficacious HDAC inhibitors with isoform or complex selectivity. Here, upon the introduction of the structures of Class I HDACs and their complexes, we provide an up-to-date overview of the structure-based discovery of Class I HDAC inhibitors, including pan-, isoform-selective and complex-specific inhibitors, aiming to provide an insight into the discovery of additional HDAC inhibitors with greater selectivity, specificity and therapeutic utility.
Collapse
Affiliation(s)
- Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
23
|
Tashima T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020; 25:E5188. [PMID: 33171799 PMCID: PMC7664636 DOI: 10.3390/molecules25215188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The direct delivery of central nervous system (CNS) drugs into the brain after administration is an ideal concept due to its effectiveness and non-toxicity. However, the blood-brain barrier (BBB) prevents drugs from penetrating the capillary endothelial cells, blocking their entry into the brain. Thus, alternative approaches must be developed. The nasal cavity directly leads from the olfactory epithelium to the brain through the cribriform plate of the skull bone. Nose-to-brain drug delivery could solve the BBB-related repulsion problem. Recently, it has been revealed that insulin improved Alzheimer's disease (AD)-related dementia. Several ongoing AD clinical trials investigate the use of intranasal insulin delivery. Related to the real trajectory, intranasal labeled-insulins demonstrated distribution into the brain not only along the olfactory nerve but also the trigeminal nerve. Nonetheless, intranasally administered insulin was delivered into the brain. Therefore, insulin conjugates with covalent or non-covalent cargos, such as AD or other CNS drugs, could potentially contribute to a promising strategy to cure CNS-related diseases. In this review, I will introduce the CNS drug delivery approach into the brain using nanodelivery strategies for insulin through transcellular routes based on receptor-mediated transcytosis or through paracellular routes based on escaping the tight junction at the olfactory epithelium.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan
| |
Collapse
|
24
|
Chu YH, Cheng MF, Chiang YH. Combinatorial discovery of small-molecule 1,2,3-triazolium ionic liquids exhibiting lower critical solution temperature phase transition. Sci Rep 2020; 10:18247. [PMID: 33106575 PMCID: PMC7589527 DOI: 10.1038/s41598-020-75392-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Both lower and upper critical solution temperature (LCST and UCST) systems are two typical phase behaviors of thermoresponsive materials with solvents, in which LCST is far less common than UCST. Recent studies on ionic liquids carrying LCST phase transitions have predominantly focused on quaternary ammonium- and phosphonium-based ionic salts. Based on the 1,2,3-triazole core structure assemblable by azide-alkyne cycloaddition click reaction, this work reports the combinatorial synthesis of 1,3,4-trialkylated 1,2,3-triazolium ionic liquids in three libraries with a total of 160 ionic liquids and demonstrates, for the first time, their values in temperature-switchable phase transition with water. In this work, the successful discovery of a new thermoresponsive ionic liquid b26, based on the structure-and-phase separation study of b8 and b9, perfectly exemplified the true value of the tunability of ionic liquid fine structures. For all 160 ionic liquids synthesized, 155 are liquid at room temperature and 22 room-temperature ionic liquids were found to exhibit thermoresponsive phase transitions having low Tc values in water. To the best of our knowledge, this comprehensive study is the first report of small-molecule 1,2,3-triazolium ionic liquids that exhibit LCST property in water.
Collapse
Affiliation(s)
- Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan, ROC.
| | - Mou-Fu Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan, ROC
| | - Yung-Hsin Chiang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 62102, Taiwan, ROC
| |
Collapse
|
25
|
Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim) 2020; 354:e2000163. [PMID: 32960467 DOI: 10.1002/ardp.202000163] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the major etiological agent responsible for the acquired immunodeficiency syndrome (AIDS), which is a serious infectious disease and remains one of the most prevalent problems at present. Currently, combined antiretroviral therapy is the primary modality for the treatment and management of HIV/AIDS, but the long-term use can result in major drawbacks such as the development of multidrug-resistant viruses and multiple side effects. 1,2,3-Triazole is the common framework in the development of new drugs, and its derivatives have the potential to inhibit various HIV-1 enzymes such as reverse transcriptase, integrase, and protease, consequently possessing a potential anti-HIV-1 activity. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential anti-HIV-1 activity; it focuses on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
| | | | | | - Duan Liu
- WuXi AppTec Co., Ltd., Wuhan, China
| |
Collapse
|
26
|
Kavianpour P, Gemmell MCM, Kahlert JU, Rendina LM. Histone Deacetylase 2 (HDAC2) Inhibitors Containing Boron. Chembiochem 2020; 21:2786-2791. [DOI: 10.1002/cbic.202000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Poya Kavianpour
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Madeleine C. M. Gemmell
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Jan U. Kahlert
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Louis M. Rendina
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2050 Sydney NSW 2006 Australia
| |
Collapse
|
27
|
Miyake Y, Itoh Y, Suzuma Y, Kodama H, Kurohara T, Yamashita Y, Narozny R, Hanatani Y, Uchida S, Suzuki T. Metalloprotein-Catalyzed Click Reaction for In Situ Generation of a Potent Inhibitor. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuka Miyake
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukihiro Itoh
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yoshinori Suzuma
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hidehiko Kodama
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Takashi Kurohara
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Yasunobu Yamashita
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Remy Narozny
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Yutaro Hanatani
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shusaku Uchida
- Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur J Med Chem 2020; 192:112171. [DOI: 10.1016/j.ejmech.2020.112171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/18/2023]
|
29
|
Itoh Y. Drug Discovery Researches on Modulators of Lysine-Modifying Enzymes Based on Strategic Chemistry Approaches. Chem Pharm Bull (Tokyo) 2020; 68:34-45. [DOI: 10.1248/cpb.c19-00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
30
|
Herbst-Gervasoni CJ, Christianson DW. Binding of N8-Acetylspermidine Analogues to Histone Deacetylase 10 Reveals Molecular Strategies for Blocking Polyamine Deacetylation. Biochemistry 2019; 58:4957-4969. [PMID: 31746596 DOI: 10.1021/acs.biochem.9b00906] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eukaryotic histone deacetylase 10 (HDAC10) is a Zn2+-dependent hydrolase that exhibits catalytic specificity for the hydrolysis of the polyamine N8-acetylspermidine. The recently determined crystal structure of HDAC10 from Danio rerio (zebrafish) reveals a narrow active site cleft and a negatively charged "gatekeeper" (E274) that favors the binding of the slender cationic substrate. Because HDAC10 expression is upregulated in advanced-stage neuroblastoma and induces autophagy, the selective inhibition of HDAC10 suppresses the autophagic response and renders cancer cells more susceptible to cytotoxic chemotherapeutic drugs. Here, we describe X-ray crystal structures of zebrafish HDAC10 complexed with eight different analogues of N8-acetylspermidine. These analogues contain different Zn2+-binding groups, such as hydroxamate, thiolate, and the tetrahedral gem-diolate resulting from the addition of a Zn2+-bound water molecule to a ketone carbonyl group. Notably, the chemistry that accompanies the binding of ketonic substrate analogues is identical to the chemistry involved in the first step of catalysis, i.e., nucleophilic attack of a Zn2+-bound water molecule at the scissile carbonyl group of N8-acetylspermidine. The most potent inhibitor studied contains a thiolate Zn2+-binding group. These structures reveal interesting geometric changes in the metal coordination polyhedron that accommodate inhibitor binding. Additional interactions in the active site highlight features contributing to substrate specificity. These interactions are likely to contribute to inhibitor binding selectivity and will inform the future design of compounds selective for HDAC10 inhibition.
Collapse
Affiliation(s)
- Corey J Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
31
|
Development of classification models for identification of important structural features of isoform-selective histone deacetylase inhibitors (class I). Mol Divers 2019; 24:1077-1094. [DOI: 10.1007/s11030-019-10013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
|
32
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
33
|
Jiang X, Hao X, Jing L, Wu G, Kang D, Liu X, Zhan P. Recent applications of click chemistry in drug discovery. Expert Opin Drug Discov 2019; 14:779-789. [PMID: 31094231 DOI: 10.1080/17460441.2019.1614910] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Click chemistry has been exploited widely in the past to expedite lead discovery and optimization. Indeed, Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry is a bioorthogonal reaction of widespread utility throughout medicinal chemistry and chemical biology. Areas covered: The authors review recent applications of CuAAC click chemistry to drug discovery based on the literature published since 2013. Furthermore, the authors provide the reader with their expert perspectives on the area including their outlook on future developments. Expert opinion: Click chemistry reactions are an important part of the medicinal chemistry toolbox and offer substantial advantages to medicinal chemists in terms of overcoming the limitations of useful chemical synthesis, increasing throughput, and improving the quality of compound libraries. To explore new chemical spaces for drug-like molecules containing a high degree of structural diversity, it may be useful to merge the diversity-oriented synthesis and 'privileged' substructure-based strategy with bioorthogonal reactions using sophisticated automation and flow systems to improve productivity. Large compound libraries obtained in this way should be of great value for the discovery of bioactive compounds and therapeutic agents.
Collapse
Affiliation(s)
- Xiangyi Jiang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xia Hao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Lanlan Jing
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|
34
|
Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur J Med Chem 2019; 166:369-380. [DOI: 10.1016/j.ejmech.2019.01.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|
35
|
Yang F, Zhao N, Ge D, Chen Y. Next-generation of selective histone deacetylase inhibitors. RSC Adv 2019; 9:19571-19583. [PMID: 35519364 PMCID: PMC9065321 DOI: 10.1039/c9ra02985k] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are clinically validated epigenetic drug targets for cancer treatment. HDACs inhibitors (HDACis) have been successfully applied against a series of cancers. First-generation inhibitors are mainly pan-HDACis that target multiple isoforms which might lead to serious side effects. At present, the next-generation HDACis are mainly focused on being class- or isoform-selective which can provide improved risk–benefit profiles compared to non-selective inhibitors. Because of the rapid development in next-generation HDACis, it is necessary to have an updated and state-of-the-art overview. Here, we summarize the strategies and achievements of the selective HDACis. Histone deacetylases (HDACs) are clinically validated epigenetic drug targets for cancer treatment.![]()
Collapse
Affiliation(s)
- Feifei Yang
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
- Shanghai Key Laboratory of Regulatory Biology
| | - Na Zhao
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
| | - Di Ge
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences and School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
36
|
Amin SA, Adhikari N, Jha T, Ghosh B. Designing potential HDAC3 inhibitors to improve memory and learning. J Biomol Struct Dyn 2018; 37:2133-2142. [PMID: 30044204 DOI: 10.1080/07391102.2018.1477625] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sk. Abdul Amin
- Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Natural Science Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Natural Science Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Natural Science Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India
| |
Collapse
|
37
|
Matsui M, Terasawa K, Kajikuri J, Kito H, Endo K, Jaikhan P, Suzuki T, Ohya S. Histone Deacetylases Enhance Ca 2+-Activated K⁺ Channel K Ca3.1 Expression in Murine Inflammatory CD4⁺ T Cells. Int J Mol Sci 2018; 19:ijms19102942. [PMID: 30262728 PMCID: PMC6213394 DOI: 10.3390/ijms19102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The up-regulated expression of the Ca2+-activated K+ channel KCa3.1 in inflammatory CD4+ T cells has been implicated in the pathogenesis of inflammatory bowel disease (IBD) through the enhanced production of inflammatory cytokines, such as interferon-γ (IFN-γ). However, the underlying mechanisms have not yet been elucidated. The objective of the present study is to clarify the involvement of histone deacetylases (HDACs) in the up-regulation of KCa3.1 in the CD4+ T cells of IBD model mice. The expression levels of KCa3.1 and its regulators, such as function-modifying molecules and transcription factors, were quantitated using a real-time polymerase chain reaction (PCR) assay, Western blotting, and depolarization responses, which were induced by the selective KCa3.1 blocker TRAM-34 (1 μM) and were measured using a voltage-sensitive fluorescent dye imaging system. The treatment with 1 μM vorinostat, a pan-HDAC inhibitor, for 24 h repressed the transcriptional expression of KCa3.1 in the splenic CD4+ T cells of IBD model mice. Accordingly, TRAM-34-induced depolarization responses were significantly reduced. HDAC2 and HDAC3 were significantly up-regulated in the CD4+ T cells of IBD model mice. The down-regulated expression of KCa3.1 was observed following treatments with the selective inhibitors of HDAC2 and HDAC3. The KCa3.1 K+ channel regulates inflammatory cytokine production in CD4+ T cells, mediating epigenetic modifications by HDAC2 and HDAC3.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Terasawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Pattaporn Jaikhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 403-8334, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| |
Collapse
|
38
|
Adhikari N, Amin SA, Trivedi P, Jha T, Ghosh B. HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur J Med Chem 2018; 157:1127-1142. [DOI: 10.1016/j.ejmech.2018.08.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
|
39
|
Elías-Rodríguez P, Pingitore V, Carmona AT, Moreno-Vargas AJ, Ide D, Miyawaki S, Kato A, Álvarez E, Robina I. Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidine–(Thio)urea Hybrid Molecules Generated via Click Chemistry. J Org Chem 2018; 83:8863-8873. [DOI: 10.1021/acs.joc.8b01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pilar Elías-Rodríguez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Valeria Pingitore
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Ana T. Carmona
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio J. Moreno-Vargas
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| | - Daisuke Ide
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012 Seville, Spain
| |
Collapse
|
40
|
Liao J, Jiang J, Jun H, Qiao X, Emont MP, Kim DI, Wu J. HDAC3-Selective Inhibition Activates Brown and Beige Fat Through PRDM16. Endocrinology 2018; 159:2520-2527. [PMID: 29757434 PMCID: PMC6456926 DOI: 10.1210/en.2018-00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
Abstract
It has been reported that class I histone deacetylase (HDAC) inhibition increases thermogenesis in fat, but adipocyte-specific Hdac3 deletions have presented inconsistent results. In this study, we observed that HDAC3 protein levels were lower in brown fat compared with inguinal subcutaneous adipose tissue, and they decreased in both fat depots upon cold exposure. PR domain-containing 16 (PRDM16) physically interacted with HDAC3, and treatment with HDAC3-selective inhibitor RGFP966 induced thermogenic gene expression in murine and human fat cultures. This induction was blunted in the absence of PRDM16. Our results provide evidence that HDAC3 is involved in thermogenesis, suggesting selective inhibition of HDAC3 in brown and beige fat might hold therapeutic potential for counteracting human obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jiling Liao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Juan Jiang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Respiratory Medicine, Key Site of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Xiaona Qiao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Margo P Emont
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Dong-il Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Jun Wu, PhD, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 5115A, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
41
|
Tsukamoto S, Sakae Y, Itoh Y, Suzuki T, Okamoto Y. Computational analysis for selectivity of histone deacetylase inhibitor by replica-exchange umbrella sampling molecular dynamics simulations. J Chem Phys 2018; 148:125102. [DOI: 10.1063/1.5019209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shuichiro Tsukamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yukihiro Itoh
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 606-0823, Japan
| | - Takayoshi Suzuki
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 606-0823, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
- Information Technology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
42
|
Huang L, Lai WH, Zhu L, Li W, Wei L, Lee KH, Xie L, Chen CH. Elimination of HIV-1 Latently Infected Cells by Gnidimacrin and a Selective HDAC Inhibitor. ACS Med Chem Lett 2018. [PMID: 29541372 DOI: 10.1021/acsmedchemlett.8b00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have previously reported gnidimacrin (GM), a protein kinase C (PKC) agonist, significantly reduces the frequency of HIV-1 latently infected cells in peripheral blood mononuclear cells (PBMCs) from patients undergoing successful antiretroviral therapy at low picomolar concentrations ex vivo, which is distinct from other latency reversing agents. In this study, we demonstrate that strong viral reactivation by GM is a mechanism for elimination of latently infected cells, and a histone deacetylase inhibitor (HDACI), a thiophenyl benzamide (TPB), further potentiated the efficacy of GM against latent HIV-1. The effect of GM on latent HIV-1 activation was potentiated by TPB in cell models by 2-3-fold. The GM/TPB combination further decreased the frequency of HIV-infected cells in latently infected patient PBMCs over 3-fold when compared with GM alone, which caused a 5-fold reduction compared with the solvent control. Thus, GM/TPB is a unique combination that may reduce latent HIV-1 reservoirs at nontoxic concentrations.
Collapse
Affiliation(s)
- Li Huang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Wei-Hong Lai
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Lei Zhu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Lei Wei
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Lan Xie
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Chin-Ho Chen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
43
|
The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors. Molecules 2018; 23:molecules23030551. [PMID: 29498635 PMCID: PMC6017514 DOI: 10.3390/molecules23030551] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Several studies have shown that HDAC3, in particular, plays an important role in inflammation and degenerative neurological diseases, but the development of selective HDAC3 inhibitors has been challenging. This review provides an up-to-date overview of selective HDAC3 inhibitors, and aims to support the development of novel HDAC3 inhibitors in the future.
Collapse
|
44
|
Uchida S, Shumyatsky GP. Epigenetic regulation of Fgf1 transcription by CRTC1 and memory enhancement. Brain Res Bull 2018; 141:3-12. [PMID: 29477835 PMCID: PMC6128695 DOI: 10.1016/j.brainresbull.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 01/06/2023]
Abstract
Recent evidence demonstrates that epigenetic regulation of gene transcription is critically involved in learning and memory. Here, we discuss the role of histone acetylation and DNA methylation, which are two best understood epigenetic processes in memory processes. More specifically, we focus on learning-strength-dependent changes in chromatin on the fibroblast growth factor 1 (Fgf1) gene and on the molecular events that modulate regulation of Fgf1 transcription, required for memory enhancement, with the specific focus on CREB-regulated transcription coactivator 1 (CRTC1).
Collapse
Affiliation(s)
- Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Gleb P Shumyatsky
- Department of Genetics, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Uchida S, Teubner BJW, Hevi C, Hara K, Kobayashi A, Dave RM, Shintaku T, Jaikhan P, Yamagata H, Suzuki T, Watanabe Y, Zakharenko SS, Shumyatsky GP. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene. Cell Rep 2017; 18:352-366. [PMID: 28076781 DOI: 10.1016/j.celrep.2016.12.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022] Open
Abstract
Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets.
Collapse
Affiliation(s)
- Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Charles Hevi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kumiko Hara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Rutu M Dave
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Tatsushi Shintaku
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Pattaporn Jaikhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Suzuki
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gleb P Shumyatsky
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
46
|
Bourguet E, Ozdarska K, Moroy G, Jeanblanc J, Naassila M. Class I HDAC Inhibitors: Potential New Epigenetic Therapeutics for Alcohol Use Disorder (AUD). J Med Chem 2017; 61:1745-1766. [PMID: 28771357 DOI: 10.1021/acs.jmedchem.7b00115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) represents a serious public health issue, and discovery of new therapies is a pressing necessity. Alcohol exposure has been widely demonstrated to modulate epigenetic mechanisms, such as histone acetylation/deacetylation balance, in part via histone deacetylase (HDAC) inhibition. Epigenetic factors have been suggested to play a key role in AUD. To date, 18 different mammalian HDAC isoforms have been identified, and these have been divided into four classes. Since recent studies have suggested that both epigenetic mechanisms underlying AUD and the efficacy of HDAC inhibitors (HDACIs) in different animal models of AUD may involve class I HDACs, we herein report the development of class I HDACIs, including information regarding their structure, potency, and selectivity. More effort is required to improve the selectivity, pharmacokinetics, and toxicity profiles of HDACIs to achieve a better understanding of their efficacy in reducing addictive behavior.
Collapse
Affiliation(s)
- Erika Bourguet
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, UFR Pharmacie , Université de Reims Champagne-Ardenne , 51 rue Cognacq-Jay , 51096 Reims Cedex , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| | - Katarzyna Ozdarska
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, UFR Pharmacie , Université de Reims Champagne-Ardenne , 51 rue Cognacq-Jay , 51096 Reims Cedex , France.,Department of Bioanalysis and Drugs Analysis , Medical University of Warsaw , S. Banacha 1 , 02-097 Warsaw , Poland
| | - Gautier Moroy
- Sorbonne Paris Cité, Molécules Thérapeutiques In Silico (MTi), INSERM UMR-S 973 , Université Paris Diderot , 35 rue Hélène Brion , 75013 Paris , France
| | - Jérôme Jeanblanc
- INSERM ERi 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP) , Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé) , Chemin du Thil , 80000 Amiens , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| | - Mickaël Naassila
- INSERM ERi 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP) , Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé) , Chemin du Thil , 80000 Amiens , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| |
Collapse
|
47
|
McClure JJ, Inks ES, Zhang C, Peterson YK, Li J, Chundru K, Lee B, Buchanan A, Miao S, Chou CJ. Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs. ACS Chem Biol 2017; 12:1644-1655. [PMID: 28459537 DOI: 10.1021/acschembio.7b00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acetylation status of lysine residues on histone proteins has long been attributed to a balance struck between the catalytic activity of histone acetyl transferases and histone deacetylases (HDAC). HDACs were identified as the sole removers of acetyl post-translational modifications (PTM) of histone lysine residues. Studies into the biological role of HDACs have also elucidated their role as removers of acetyl PTMs from lysine residues of nonhistone proteins. These findings, coupled with high-resolution mass spectrometry studies that revealed the presence of acyl-group PTMs on lysine residues of nonhistone proteins, brought forth the possibility of HDACs acting as removers of both acyl- and acetyl-based PTMs. We posited that HDACs fulfill this dual role and sought to investigate their specificity. Utilizing a fluorescence-based assay and biologically relevant acyl-substrates, the selectivities of zinc-dependent HDACs toward these acyl-based PTMs were identified. These findings were further validated using cellular models and molecular biology techniques. As a proof of principal, an HDAC3 selective inhibitor was designed using HDAC3's substrate preference. This resulting inhibitor demonstrates nanomolar activity and >30 fold selectivity toward HDAC3 compared to the other class I HDACs. This inhibitor is capable of increasing p65 acetylation, attenuating NF-κB activation, and thereby preventing downstream nitric oxide signaling. Additionally, this selective HDAC3 inhibition allows for control of HMGB-1 secretion from activated macrophages without altering the acetylation status of histones or tubulin.
Collapse
Affiliation(s)
- Jesse J. McClure
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Elizabeth S. Inks
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Cheng Zhang
- China Agricultural University, Department of Applied
Chemistry, Beijing, China
| | - Yuri K. Peterson
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Jiaying Li
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Kalyan Chundru
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Bradley Lee
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
- College of Charleston, Charleston, South Carolina, United States
| | - Ashley Buchanan
- College of Charleston, Charleston, South Carolina, United States
| | - Shiqin Miao
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - C. James Chou
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| |
Collapse
|
48
|
Structural insights of SmKDAC8 inhibitors: Targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 2017; 25:2105-2132. [DOI: 10.1016/j.bmc.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|
49
|
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
50
|
Reddy DR, Ballante F, Zhou NJ, Marshall GR. Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors. Eur J Med Chem 2016; 127:531-553. [PMID: 28109947 DOI: 10.1016/j.ejmech.2016.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022]
Abstract
A comprehensive investigation was performed to identify new benzodiazepine (BZD) derivatives as potent and selective human lysine deacetylase inhibitors (hKDACis). A total of 108 BZD compounds were designed, synthesized and from that 104 compounds were biologically evaluated against human lysine deacetylases (hKDACs) 1, 3 and 8 (class I) and 6 (class IIb). The most active compounds showed mid-nanomolar potencies against hKDACs 1, 3 and 6 and micromolar activity against hKDAC8, while a promising compound (6q) showed selectivity towards hKDAC3 among the different enzyme isoforms. An hKDAC6 homology model, refined by molecular dynamics simulation was generated, and molecular docking studies performed to rationalize the dominant ligand-residue interactions as well as to define structure-activity-relationships. Experimental results confirmed the usefulness of the benzodiazepine moiety as capping group when pursuing hKDAC isoform-selectivity inhibition, suggesting its continued use when designing new hKDACis.
Collapse
Affiliation(s)
- D Rajasekhar Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nancy J Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|