1
|
Heydemann L, Ciurkiewicz M, Störk T, Zdora I, Hülskötter K, Gregor KM, Michaely LM, Reineking W, Schreiner T, Beythien G, Volz A, Tuchel T, Meyer Zu Natrup C, Schünemann LM, Clever S, Henneck T, von Köckritz-Blickwede M, Schaudien D, Rohn K, Schughart K, Geffers R, Kaneko MK, Kato Y, Gross C, Amanakis G, Pavlou A, Baumgärtner W, Armando F. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. Nat Commun 2025; 16:2080. [PMID: 40021627 PMCID: PMC11871369 DOI: 10.1038/s41467-025-57267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Long-term consequences of SARS-CoV-2 infection affect millions of people and strain public health systems. The underlying pathomechanisms remain unclear, necessitating further research in appropriate animal models. This study aimed to characterize the trajectory of lung regeneration over 112 days in the male hamster model by combining morphological, transcriptomic and functional readouts. We demonstrate that in the acute phase, SARS-CoV-2 Delta-infected, male, aged hamsters show a severe impairment of lung function at rest. In the chronic phase, similar impairments persisted up to 7 weeks post-infection but were only evident after exercise on a rodent treadmill. The male hamster model recapitulates chronic pulmonary fibrotic changes observed in many patients with respiratory long COVID, but lacks extra-pulmonary long-term lesions. We show that sub-pleural and interstitial pulmonary fibrosis as well as alveolar bronchiolization persist until 112 dpi. Interestingly, CK8+ alveolar differentiation intermediate (ADI) cells are becoming less prominent in the alveolar proliferation areas from 28 dpi on. Instead, CK14+ airway basal cells and SCGB1A1+ club cells, expressing cell proliferation markers, mainly populate alveolar bronchiolization areas at later time-points. We postulate that pulmonary fibrosis and SCGB1A1+ club cell-rich areas of alveolar bronchiolization represent potential risk factors for other diseases in long-COVID survivors.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | | | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Asisa Volz
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tamara Tuchel
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Christian Meyer Zu Natrup
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Sabrina Clever
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data Management, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research (HZI), Brunswick, Germany
| | - Mika K Kaneko
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Carina Gross
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Georgios Amanakis
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany.
| | - Federico Armando
- Pathology Unit, Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Naia Fioretto M, Maciel FA, Barata LA, Ribeiro IT, Basso CBP, Ferreira MR, Dos Santos SAA, Mattos R, Baptista HS, Portela LMF, Padilha PM, Felisbino SL, Scarano WR, Zambrano E, Justulin LA. Impact of maternal protein restriction on the proteomic landscape of male rat lungs across the lifespan. Mol Cell Endocrinol 2024; 592:112348. [PMID: 39218056 DOI: 10.1016/j.mce.2024.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The developmental origins of healthy and disease (DOHaD) concept has demonstrated a higher rate of chronic diseases in the adult population of individuals whose mothers experienced severe maternal protein restriction (MPR). Using proteomic and in silico analyses, we investigated the lung proteomic profile of young and aged rats exposed to MPR during pregnancy and lactation. Our results demonstrated that MPR lead to structural and immune system pathways changes, and this outcome is coupled with a rise in the PI3k-AKT-mTOR signaling pathway, with increased MMP-2 activity, and CD8 expression in the early life, with long-term effects with aging. This led to the identification of commonly or inversely differentially expressed targets in early life and aging, revealing dysregulated pathways related to the immune system, stress, muscle contraction, tight junctions, and hemostasis. We identified three miRNAs (miR-378a-3p, miR-378a-5p, let-7a-5p) that regulate four proteins (ACTN4, PPIA, HSPA5, CALM1) as probable epigenetic lung marks generated by MPR. In conclusion, MPR impacts the lungs early in life, increasing the possibility of long-lasting negative outcomes for respiratory disorders in the offspring.
Collapse
Affiliation(s)
- Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flávia Alessandra Maciel
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luísa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Carolina Beatriz Pinheiro Basso
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Alexandre Alcantara Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, 19111, USA
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Hecttor Sebastian Baptista
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luiz Marcos Frediane Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Pedro Magalhães Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Department Reproductive Biology, Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
3
|
Yuliana ME, Chou HC, Su ECY, Chuang HC, Huang LT, Chen CM. Uteroplacental insufficiency decreases leptin expression and impairs lung development in growth-restricted newborn rats. Pediatr Res 2024; 95:1503-1509. [PMID: 38049649 DOI: 10.1038/s41390-023-02946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The study aimed to analyze the effect of uteroplacental insufficiency (UPI) on leptin expression and lung development of intrauterine growth restriction (IUGR) rats. METHODS On day 17 of pregnancy, time-dated Sprague-Dawley rats were randomly divided into either an IUGR group or a control group. Uteroplacental insufficiency surgery (IUGR) and sham surgery (control) were conducted. Offspring rats were spontaneously delivered on day 22 of pregnancy. On postnatal days 0 and 7, rats' pups were selected at random from the control and IUGR groups. Blood was withdrawn from the heart to determine leptin levels. The right lung was obtained for leptin and leptin receptor levels, immunohistochemistry, proliferating cell nuclear antigen (PCNA), western blot, and metabolomic analyses. RESULTS UPI-induced IUGR decreased leptin expression and impaired lung development, causing decreased surface area and volume in offspring. This results in lower body weight, decreased serum leptin levels, lung leptin and leptin receptor levels, alveolar space, PCNA, and increased alveolar wall volume fraction in IUGR offspring rats. The IUGR group found significant relationships between serum leptin, radial alveolar count, von Willebrand Factor, and metabolites. CONCLUSION Leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation as a potential treatment. IMPACT The neonatal rats with intrauterine growth restriction (IUGR) caused by uteroplacental insufficiency (UPI) showed decreased leptin expression and impaired lung development. UPI-induced IUGR significantly decreased surface area and volume in lung offspring. This is a novel study that investigates leptin expression and lung development in neonatal rats with IUGR caused by UPI. If our findings translate to IUGR infants, leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation as a potential treatment.
Collapse
Affiliation(s)
- Merryl Esther Yuliana
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Gopal SH, Donepudi R, Pammi M. Leptin deficiency, a potential mechanism for impaired fetal lung development in uteroplacental insufficiency? Pediatr Res 2024; 95:1410-1411. [PMID: 38263448 DOI: 10.1038/s41390-024-03038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Uteroplacental insufficiency (UPI) is a major cause of fetal growth restriction (FGR). Leptin, an adipokine, has been shown to play a vital role in fetal organogenesis. There is evidence reporting leptin deficiency in preterm and growth-restricted fetuses. In this issue of Pediatric Research, Yuliana et al. report leptin expression and lung development in UPI-induced FGR rats. UPI-induced FGR rats expressed decreased lung leptin and had impaired lung development, as shown by decreased surface area and lung volume. They also found a significant association between lung radial alveolar count, serum leptin, von Willebrand factor, and specific metabolites on metabolomic analyses. Previous studies on leptin supplementation in vivo have been associated with improvement in lung maturation; supporting the evidence, that leptin improves lung growth and development in FGR and may have future therapeutic potential in the improvement of respiratory outcomes in these infants. Future studies to support evidence of this association in humans are warranted.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Roopali Donepudi
- Dept. of Obstetrics & Gynecology, Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Diaz-Castro J, Toledano JM, Sanchez-Romero J, Aguilar AC, Martín-Alvarez E, Puche-Juarez M, Moreno-Fernandez J, Pinar-Gonzalez M, Prados S, Carrillo MP, Ruiz-Duran S, De Paco Matallana C, Ochoa JJ. COVID-19 and Pregnancy: A Dangerous Mix for Bone Turnover and Metabolism Biomarkers in Placenta and Colostrum. J Clin Med 2024; 13:2124. [PMID: 38610889 PMCID: PMC11012405 DOI: 10.3390/jcm13072124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Background: In pregnant women, COVID-19 can alter the metabolic environment, cell metabolism, and oxygen supply of trophoblastic cells and, therefore, have a negative influence on essential mechanisms of fetal development. The purpose of this study was to investigate, for the first time, the effects of COVID-19 infection during pregnancy with regard to the bone turnover and endocrine function of several metabolic biomarkers in colostrum and placenta. Methods: One hundred and twenty-four pregnant mothers were recruited from three hospitals between June 2020 and August 2021 and assigned to two groups: Control group and COVID-19 group. Metabolism biomarkers were addressed in placental tissue and colostrum. Results: Lipocalin-2 and resistin levels were higher in the placenta, revealing an underlying pro-inflammatory status in the gestation period for mothers suffering from COVID-19; a decrease in GLP-1 and leptin was also observed in this group. As for adiponectin, resistin, and insulin, their concentrations showed an increase; a decrease in GLP-1, leptin, and PYY was also reported in the colostrum of mothers suffering from COVID-19 compared with the control group. Conclusions: As for bone turnover, placental samples from mothers with COVID-19 showed lower levels of OPG, while DKK-1 increased compared with the control group. Colostrum samples showed higher levels of OPG, SOST, and PTH in the COVID-19 group, a fact that could have noteworthy implications for energy metabolism, fetal skeletal development, and postnatal bone density and mineralization. Further research is needed to explain the pathogenic mechanism of COVID-19 that may affect pregnancy, so as to assess the short-term and long-term outcomes in infants' health.
Collapse
Affiliation(s)
- Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Javier Sanchez-Romero
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (C.D.P.M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Africa Caño Aguilar
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain
| | - Estefanía Martín-Alvarez
- Unit of Neonatology, Pediatric Service, Hospital Universitario Materno-Infantil Virgen de las Nieves, 18014 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| | - Maria Pinar-Gonzalez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Sonia Prados
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain
| | - María Paz Carrillo
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.P.C.)
| | - Susana Ruiz-Duran
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.P.C.)
| | - Catalina De Paco Matallana
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (C.D.P.M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, Biomedical Research Centre, Health Sciences Technological Park, Avenida del Conocimiento s/n, Armilla, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| |
Collapse
|
6
|
Gao Y, Zhao S, Zhang W, Tang H, Yan M, Yong F, Bai X, Wu X, Zhang Y, Zhang Q. Localization of FGF21 Protein and Lipid Metabolism-Related Genes in Camels. Life (Basel) 2023; 13:life13020432. [PMID: 36836789 PMCID: PMC9959858 DOI: 10.3390/life13020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
With the ability to survive under drought and chronic hunger, camels display a unique regulation characteristic of lipid metabolism. Fibroblast growth factor (FGF) 21 is a peptide hormone that regulates metabolic pathways, especially lipid metabolism, which was considered as a promising therapeutic target for metabolic diseases. To understand the FGF21 expression pattern and its potential relationship with lipid metabolism in camels, this study investigated the distribution and expression of FGF21, receptor FGFR1, and two lipid metabolism markers, leptin and hormone-sensitive lipase (HSL), using an immunohistochemistry (IHC) assay. The results showed that FGF21 was widely expressed in camel central nerve tissue and peripheral organs but absent in lung and gametogenic tissue, including the testis, epididymis, and ovary. In striated muscle, FGF21 is only present at the fiber junction. FGFR1 is expressed in almost all tissues and cells, indicating that all tissues are responsive to FGF21 and other FGF-mediated signals. Leptin and HSL are mainly located in metabolic and energy-consuming organs. In the CNS, leptin and HSL showed a similar expression pattern with FGFR1. In addition, leptin expression is extremely high in the bronchial epithelium, which may be due to its role in the immune responses of respiratory mucosa, in addition to fat stores and energy balance. This study found that FGF21 showed active expression in the nervous system of camels, which may be related to the adaptability of camels to arid environments and the specific regulation of lipid metabolism. This study showed a special FGF21-mediated fat conversion pattern in camels and provides a reference for developing a potential therapeutic method for fat metabolism disease.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wangdong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaochun Wu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| |
Collapse
|
7
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
8
|
Castro TDF, de Matos NA, de Souza ABF, Costa GDP, Perucci LO, Talvani A, Cangussú SD, Chianca-Jr DA, de Menezes RCA, Bezerra FS. Protein restriction during pregnancy affects lung development and promotes oxidative stress and inflammation in C57BL/6 mice offspring. Nutrition 2022; 101:111682. [DOI: 10.1016/j.nut.2022.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
|
9
|
Ren J, Lock MC, Darby JRT, Orgeig S, Holman SL, Quinn M, Seed M, Muhlhausler BS, McMillen IC, Morrison JL. PPARγ activation in late gestation does not promote surfactant maturation in the fetal sheep lung. J Dev Orig Health Dis 2021; 12:963-974. [PMID: 33407953 DOI: 10.1017/s204017442000135x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Respiratory distress syndrome results from inadequate functional pulmonary surfactant and is a significant cause of mortality in preterm infants. Surfactant is essential for regulating alveolar interfacial surface tension, and its synthesis by Type II alveolar epithelial cells is stimulated by leptin produced by pulmonary lipofibroblasts upon activation by peroxisome proliferator-activated receptor γ (PPARγ). As it is unknown whether PPARγ stimulation or direct leptin administration can stimulate surfactant synthesis before birth, we examined the effect of continuous fetal administration of either the PPARγ agonist, rosiglitazone (RGZ; Study 1) or leptin (Study 2) on surfactant protein maturation in the late gestation fetal sheep lung. We measured mRNA expression of genes involved in surfactant maturation and showed that RGZ treatment reduced mRNA expression of LPCAT1 (surfactant phospholipid synthesis) and LAMP3 (marker for lamellar bodies), but did not alter mRNA expression of PPARγ, surfactant proteins (SFTP-A, -B, -C, and -D), PCYT1A (surfactant phospholipid synthesis), ABCA3 (phospholipid transportation), or the PPARγ target genes SPHK-1 and PAI-1. Leptin infusion significantly increased the expression of PPARγ and IGF2 and decreased the expression of SFTP-B. However, mRNA expression of the majority of genes involved in surfactant synthesis was not affected. These results suggest a potential decreased capacity for surfactant phospholipid and protein production in the fetal lung after RGZ and leptin administration, respectively. Therefore, targeting PPARγ may not be a feasible mechanistic approach to promote lung maturation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Hospital for Sick Children, Toronto, ON, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Cancer Research Institute, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | | | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
10
|
Bai S, Peng X, Wu C, Cai T, Liu J, Shu G. Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia. J Anim Sci 2021; 99:skab313. [PMID: 34718609 PMCID: PMC8599180 DOI: 10.1093/jas/skab313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
To explore whether Radix Bupleuri extract (RBE) could protect lung injury of broilers under ammonia (NH3) exposure, 360 one-d-old male broilers were randomly allocated to four groups of six replicates each in a 2 × 2 factorial design with two diets (the basal diet [control; CON] and the basal diet supplemented with RBE [RB]) and two air conditions (normal condition [<2 ppm of NH3; NOR] and NH3 exposure [70 ppm of NH3; NH70]). The RB diet contained 80 mg saikosaponins/kg diet. On day 7, the lung tissues were collected and the lung epithelial cells (LEC) were isolated. Our experimental results showed that the NH3 exposure decreased body weight gain and feed intake irrespective of dietary treatments during days 1 to 7. However, the RBE addition decreased feed consumption to body weight gain ratio in broilers under NH70 conditions. In the LEC of CON-fed broilers under NH70 conditions, Golgi stacks showed the dilation of cisternaes and reduced secretory vesicles, mitochondria enlarged, the inner membrane of mitochondria became obscure, and the cristae of mitochondria ruptured, whereas only a mild enlargement of Golgi cisternaes and the part rupture of mitochondrial cristaes occurred in the LEC of RB-fed broilers under NH70 conditions. The NH3 exposure increased malondialdehyde (MDA) level, but decreased total antioxidant capacity (T-AOC) in the lungs of CON-fed broilers. However, the RBE addition decreased MDA level and increased T-AOC in the lungs of broilers under NH70 conditions. Simultaneously, the NH3 exposure increased apoptotic rate (AR), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) level in the isolated LEC of CON-fed broilers. The RBE addition decreased AR, MMP, and ROS in the isolated LEC of broilers under NH70 condition. Besides, the NH3 exposure increased mRNA expression of B-cell lymphoma-2 associated X protein (BAX), caspase-3, and tumor necrosis factor α (TNF-α), but increased interferon γ (IFN-γ) mRNA abundance in the lungs of CON-fed broilers. The RBE supplement decreased mRNA levels of BAX, caspase-3, and TNF-α, but increased IFN-γ, interleukin (IL)-4, and IL-17 mRNA levels in the lungs of broilers under NH70 conditions. These results indicated that dietary RBE addition alleviated NH3 exposure-induced intercellular ultrastructural damage via mitochondrial apoptotic pathway, possibly due to RBE-induced increase of antioxidant capacity and immunomodulatory function in the lungs of broilers under NH3 exposure.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Caimei Wu
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Cai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jiangfeng Liu
- School of Intelligence Technology, Geely University of China, Chengdu 641423, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA. Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases. Front Med (Lausanne) 2021; 8:667315. [PMID: 34211985 PMCID: PMC8239134 DOI: 10.3389/fmed.2021.667315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lung development is not completed at birth, but expands beyond infancy, rendering the lung highly susceptible to injury. Exposure to various influences during a critical window of organ growth can interfere with the finely-tuned process of development and induce pathological processes with aberrant alveolarization and long-term structural and functional sequelae. This concept of developmental origins of chronic disease has been coined as perinatal programming. Some adverse perinatal factors, including prematurity along with respiratory support, are well-recognized to induce bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar and microvascular formation as well as lung matrix remodeling. While the pathogenesis of various experimental models focus on oxygen toxicity, mechanical ventilation and inflammation, the role of nutrition before and after birth remain poorly investigated. There is accumulating clinical and experimental evidence that intrauterine growth restriction (IUGR) as a consequence of limited nutritive supply due to placental insufficiency or maternal malnutrition is a major risk factor for BPD and impaired lung function later in life. In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal weight gain and early childhood obesity is associated with wheezing and adverse clinical course of chronic lung diseases, such as asthma. While the link between perinatal nutrition and lung health has been described, the underlying mechanisms remain poorly understood. There are initial data showing that inflammatory and nutrient sensing processes are involved in programming of alveolarization, pulmonary angiogenesis, and composition of extracellular matrix. Here, we provide a comprehensive overview of the current knowledge regarding the impact of perinatal metabolism and nutrition on the lung and beyond the cardiopulmonary system as well as possible mechanisms determining the individual susceptibility to CLD early in life. We aim to emphasize the importance of unraveling the mechanisms of perinatal metabolic programming to develop novel preventive and therapeutic avenues.
Collapse
Affiliation(s)
- Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Member of the German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Gießen, Germany
| |
Collapse
|
12
|
Jutant EM, Tu L, Humbert M, Guignabert C, Huertas A. The Thousand Faces of Leptin in the Lung. Chest 2020; 159:239-248. [PMID: 32795478 DOI: 10.1016/j.chest.2020.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Leptin is a pleotropic hormone known to regulate a wide range of systemic functions, from satiety to inflammation. Increasing evidence has shown that leptin and its receptor (ObR) are not only expressed in adipose tissue but also in several organs, including the lungs. Leptin levels were first believed to be elevated only in the lungs of obese patients, and leptin was suspected to be responsible for obesity-related lung complications. Aside from obesity, leptin displays many faces in the respiratory system, independently of body weight, as this cytokine-like hormone plays important physiological roles, from the embryogenic state to maturation of the lungs and the control of ventilation. The leptin-signaling pathway is also involved in immune modulation and cell proliferation, and its dysregulation can lead to the onset of lung diseases. This review article addresses the thousand faces of leptin and its signaling in the lungs under physiological conditions and in disease.
Collapse
Affiliation(s)
- Etienne-Marie Jutant
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
13
|
Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. Perinatal Undernutrition, Metabolic Hormones, and Lung Development. Nutrients 2019; 11:nu11122870. [PMID: 31771174 PMCID: PMC6950278 DOI: 10.3390/nu11122870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal and perinatal undernutrition affects the lung development of litters and it may produce long-lasting alterations in respiratory health. This can be demonstrated using animal models and epidemiological studies. During pregnancy, maternal diet controls lung development by direct and indirect mechanisms. For sure, food intake and caloric restriction directly influence the whole body maturation and the lung. In addition, the maternal food intake during pregnancy controls mother, placenta, and fetal endocrine systems that regulate nutrient uptake and distribution to the fetus and pulmonary tissue development. There are several hormones involved in metabolic regulations, which may play an essential role in lung development during pregnancy. This review focuses on the effect of metabolic hormones in lung development and in how undernutrition alters the hormonal environment during pregnancy to disrupt normal lung maturation. We explore the role of GLP-1, ghrelin, and leptin, and also retinoids and cholecalciferol as hormones synthetized from diet precursors. Finally, we also address how metabolic hormones altered during pregnancy may affect lung pathophysiology in the adulthood.
Collapse
|
14
|
GLP-1 Analogue Liraglutide Enhances SP-A Expression in LPS-Induced Acute Lung Injury through the TTF-1 Signaling Pathway. Mediators Inflamm 2018; 2018:3601454. [PMID: 29950925 PMCID: PMC5987313 DOI: 10.1155/2018/3601454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/28/2018] [Indexed: 02/05/2023] Open
Abstract
The reduction of pulmonary surfactant (PS) is essential for decreased pulmonary compliance and edema in acute lung injury (ALI). Thyroid transcription factor-1 (TTF-1) plays a major role in the regulation of surfactant protein-A (SP-A), the most abundant protein component of PS. Simultaneously, the glucagon-like peptide-1 (GLP-1) analogue can enhance SP-A expression in the lung. However, the underlying mechanism is still unknown. The purpose of this study was to explore whether liraglutide, a GLP-1 analogue, upregulates SP-A expression through the TTF-1 signaling pathway in ALI. In vivo, a murine model of ALI was induced by lipopolysaccharide (LPS). Pulmonary inflammation, edema, insulin level, ultrastructural changes in type II alveolar epithelial (ATII) cells, and SP-A and TTF-1 expression were analyzed. In vitro, rat ATII cells were obtained. SP-A and TTF-1 expression in cells was measured. ShRNA-TTF-1 transfection was performed to knock down TTF-1 expression. Our data showed that LPS-induced lung injury and increase in insulin level, and LPS-induced reduction of SP-A and TTF-1 expression in both the lung and cells, were significantly compromised by liraglutide. Furthermore, we also found that these effects of liraglutide were markedly blunted by shRNA-TTF-1. Taken together, our findings suggest that liraglutide enhances SP-A expression in ATII cells and attenuates pulmonary inflammation in LPS-induced ALI, most likely through the TTF-1 signaling pathway.
Collapse
|
15
|
Shaikat AH, Namekawa S, Ahmadi S, Takeda M, Ohkubo T. Gene expression profiling in embryonic chicken ovary during asymmetric development. Anim Sci J 2017; 89:688-694. [PMID: 29282806 DOI: 10.1111/asj.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/12/2017] [Indexed: 01/19/2023]
Abstract
The reproductive system in female birds arises as bilateral asymmetrical anlagen, excluding the birds of prey. Earlier, histological and messenger RNA (mRNA) expression profile studies of several genes related to gonadal sex differentiation in chicken embryos tried to elucidate the query of this asymmetry in a scattered manner. To understand the matter precisely, we have focused on mRNA expression of a cohort of genes (FSHR, CYP19A1, caspase 3, caspase 8) in second half of the embryonic days (E10-E18). The established role of leptin in development of the embryo and its expression in the embryonic ovary also drove us to check leptin receptor (LEPR) expression in the ovary. Increased expression of FSHR and CYP19A1 in the left ovary compared with that in the right ovary was identified (P < 0.05), promoting preferential left ovarian development and functionality. Significant high expression (P < 0.05) of the apoptotic genes in the right ovary were also involved here. Leptin probably has no direct influence on ovarian asymmetry as no significant variation in gonadal mRNA expression of LEPR was observed within the same experimental days. We propose that asymmetric expression of this cohort of genes (FSHR, CYP19A1, caspase 3, caspase 8) leads to the development of dimorphic gonads during embryogenesis.
Collapse
Affiliation(s)
- Amir Hossan Shaikat
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shoko Namekawa
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | | | - Misa Takeda
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
16
|
Peters U, Suratt BT, Bates JHT, Dixon AE. Beyond BMI: Obesity and Lung Disease. Chest 2017; 153:702-709. [PMID: 28728934 DOI: 10.1016/j.chest.2017.07.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022] Open
Abstract
The worldwide prevalence of obesity has increased rapidly in the last 3 decades, and this increase has led to important changes in the pathogenesis and clinical presentation of many common diseases. This review article examines the relationship between obesity and lung disease, highlighting some of the major findings that have advanced our understanding of the mechanisms contributing to this relationship. Changes in pulmonary function related to fat mass are important, but obesity is much more than simply a state of mass loading, and BMI is only a very indirect measure of metabolic health. The obese state is associated with changes in the gut microbiome, cellular metabolism, lipid handling, immune function, insulin resistance, and circulating factors produced by adipose tissue. Together, these factors can fundamentally alter the pathogenesis and pathophysiology of lung health and disease.
Collapse
|
17
|
Maternal obesity mediated predisposition to respiratory complications at birth and in later life: understanding the implications of the obesogenic intrauterine environment. Paediatr Respir Rev 2017; 21:11-18. [PMID: 27818069 DOI: 10.1016/j.prrv.2016.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
More women than not are entering pregnancy either overweight or obese. This presents a significant health care burden with respect to maternal morbidities and offspring complications at birth and in later life. In recent years it has also become clear that maternal obesity is an even greater global health problem than anticipated, because the effects are not limited to the mother but are also programmed in the fetus, known as the 'intergenerational cycle of obestiy'. Despite a large body of epidemiological evidence reporting outcomes of obese pregnancies, including offspring respiratory complications, much less is known about the molecular effects of maternal obesity on fetal lung development. This review focuses on the influence of altered substrate supply associated with the obesogenic intrauterine environment on fetal lung development. Understanding the molecular mechanisms contributing to altered fetal lung development will lead to improved respiratory outcomes for offspring at birth and in later life.
Collapse
|
18
|
King G, Smith ME, Cake MH, Nielsen HC. What is the identity of fibroblast-pneumocyte factor? Pediatr Res 2016; 80:768-776. [PMID: 27500537 PMCID: PMC5112109 DOI: 10.1038/pr.2016.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoid induction of pulmonary surfactant involves a mesenchyme-derived protein first characterized in 1978 by Smith and termed fibroblast-pneumocyte factor (FPF). Despite a number of agents having been postulated as being FPF, its identity has remained obscure. In the past decade, three strong candidates for FPF have arisen. This review examines the evidence that keratinocyte growth factor (KGF), leptin or neuregulin-1β (NRG-1β) act as FPF or components of it. As with FPF production, glucocorticoids enhance the concentration of each of these agents in fibroblast-conditioned media. Moreover, each stimulates the synthesis of surfactant-associated phospholipids and proteins in type II pneumocytes. Further, some have unique activities, for example, KGF also minimizes lung injury through enhanced epithelial cell proliferation and NRG-1β enhances surfactant phospholipid secretion and β-adrenergic receptor activity in type II cells. However, even though these agents have attributes in common with FPF, it is inappropriate to specify any one of these agents as FPF. Rather, it appears that each contributes to separate mesenchymal-epithelial signaling mechanisms involved in different aspects of lung development. Given that the production of pulmonary surfactant is essential for postnatal survival, it is reasonable to suggest that several mechanisms independently regulate surfactant synthesis.
Collapse
Affiliation(s)
- George King
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Megan E. Smith
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | - Max H. Cake
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Heber C. Nielsen
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| |
Collapse
|
19
|
De Blasio MJ, Boije M, Kempster SL, Smith GCS, Charnock-Jones DS, Denyer A, Hughes A, Wooding FBP, Blache D, Fowden AL, Forhead AJ. Leptin Matures Aspects of Lung Structure and Function in the Ovine Fetus. Endocrinology 2016; 157:395-404. [PMID: 26479186 PMCID: PMC4701894 DOI: 10.1210/en.2015-1729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In human and ovine fetuses, glucocorticoids stimulate leptin secretion, although the extent to which leptin mediates the maturational effects of glucocorticoids on pulmonary development is unclear. This study investigated the effects of leptin administration on indices of lung structure and function before birth. Chronically catheterized singleton sheep fetuses were infused iv for 5 days with either saline or recombinant ovine leptin (0.5 mg/kg · d leptin (LEP), 0.5 LEP or 1.0 mg/kg · d, 1.0 LEP) from 125 days of gestation (term ∼145 d). Over the infusion, leptin administration increased plasma leptin, but not cortisol, concentrations. On the fifth day of infusion, 0.5 LEP reduced alveolar wall thickness and increased the volume at closing pressure of the pressure-volume deflation curve, interalveolar septal elastin content, secondary septal crest density, and the mRNA abundance of the leptin receptor (Ob-R) and surfactant protein (SP) B. Neither treatment influenced static lung compliance, maximal lung volume at 40 cmH2O, lung compartment volumes, alveolar surface area, pulmonary glycogen, protein content of the long form signaling Ob-Rb or phosphorylated signal transducers and activators of transcription-3, or mRNA levels of SP-A, C, or D, elastin, vascular endothelial growth factor-A, the vascular endothelial growth factor receptor 2, angiotensin-converting enzyme, peroxisome proliferator-activated receptor γ, or parathyroid hormone-related peptide. Leptin administration in the ovine fetus during late gestation promotes aspects of lung maturation, including up-regulation of SP-B.
Collapse
Affiliation(s)
- Miles J De Blasio
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Maria Boije
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Sarah L Kempster
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gordon C S Smith
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - D Stephen Charnock-Jones
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alice Denyer
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alexandra Hughes
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - F B Peter Wooding
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Dominique Blache
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
20
|
De Blasio MJ, Boije M, Vaughan OR, Bernstein BS, Davies KL, Plein A, Kempster SL, Smith GCS, Charnock-Jones DS, Blache D, Wooding FBP, Giussani DA, Fowden AL, Forhead AJ. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung. PLoS One 2015; 10:e0136115. [PMID: 26287800 PMCID: PMC4545393 DOI: 10.1371/journal.pone.0136115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022] Open
Abstract
The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.
Collapse
Affiliation(s)
- Miles J. De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Maria Boije
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Owen R. Vaughan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Brett S. Bernstein
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Alice Plein
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Sarah L. Kempster
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, United Kingdom
| | - Gordon C. S. Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, United Kingdom
| | - Dominique Blache
- School of Animal Biology, University of Western Australia, Perth, Western Australia, Australia
| | - F. B. Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
21
|
Suzukawa M, Koketsu R, Baba S, Igarashi S, Nagase H, Yamaguchi M, Matsutani N, Kawamura M, Shoji S, Hebisawa A, Ohta K. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L801-11. [PMID: 26276826 DOI: 10.1152/ajplung.00365.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 08/08/2015] [Indexed: 12/22/2022] Open
Abstract
There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation.
Collapse
Affiliation(s)
- Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan;
| | | | - Shintaro Baba
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sayaka Igarashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Nagase
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Masao Yamaguchi
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Noriyuki Matsutani
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Masafumi Kawamura
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunsuke Shoji
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Chen H, Liang ZW, Wang ZH, Zhang JP, Hu B, Xing XB, Cai WB. Akt Activation and Inhibition of Cytochrome C Release: Mechanistic Insights into Leptin-promoted Survival of Type II Alveolar Epithelial Cells. J Cell Biochem 2015; 116:2313-24. [PMID: 25833759 DOI: 10.1002/jcb.25182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/31/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Chen
- Department of Obstetrics and Gynecology; Sun Yat-sen Memorial Hospital; Guangdong Province China
- Key Laboratory of malignant tumor gene regulation and target therapy of Guangdong Higher Education Institutes; Sun Yat-sen Memorial Hospital; Guangdong Province China
| | - Zhen-Wei Liang
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangdong Province China
- Center for Disease Model Animals; Sun Yat-sen University; Guangdong Province China
| | - Zhen-Hua Wang
- Department of Obstetrics and Gynecology; Sun Yat-sen Memorial Hospital; Guangdong Province China
| | - Jian-Ping Zhang
- Department of Obstetrics and Gynecology; Sun Yat-sen Memorial Hospital; Guangdong Province China
| | - Bo Hu
- Department of Laboratory Medicine; The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Province China
| | - Xiang-Bin Xing
- Department of Gastroenterology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province China
| | - Wei-Bin Cai
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangdong Province China
- Center for Disease Model Animals; Sun Yat-sen University; Guangdong Province China
| |
Collapse
|
23
|
Friedmacher F, Hofmann AD, Takahashi T, Takahashi H, Kutasy B, Puri P. Prenatal administration of all-trans retinoic acid upregulates leptin signaling in hypoplastic rat lungs with experimental congenital diaphragmatic hernia. Pediatr Surg Int 2014; 30:1183-90. [PMID: 25330951 DOI: 10.1007/s00383-014-3605-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
Abstract
PURPOSE Pulmonary hypoplasia (PH), characterized by alveolar immaturity, is one of the leading causes of respiratory insufficiency in newborns with congenital diaphragmatic hernia (CDH). Leptin (Lep) and its receptor (Lep-R) play an important role in fetal lung growth by stimulating alveolar differentiation and maturation. Lep and Lep-R are strongly expressed by alveolar cells during the saccular stage of fetal lung development. Lep-deficient mice exhibit decreased alveolarization with reduced pulmonary surfactant phospholipid synthesis, similar to human and nitrofen-induced PH. Prenatal administration of all-trans retinoic acid (ATRA) has been shown to stimulate alveolarization in nitrofen-induced PH. Recent studies have demonstrated that Lep and Lep-R expression in developing lungs is regulated by ATRA. We hypothesized that prenatal treatment with ATRA increases pulmonary Lep and Lep-R expression in the nitrofen model of CDH-associated PH. METHODS Time-mated rats received either 100 mg nitrofen or vehicle via oral-gastric lavage on embryonic day 9.5 (E9.5). Control and nitrofen-exposed dams were randomly assigned to either intraperitoneal ATRA (5 mg/kg/d) or placebo administration on E18.5, E19.5 and E20.5. Fetal lungs were harvested on E21.5, and divided into Control+Placebo, Control+ATRA, Nitrofen+Placebo and Nitrofen+ATRA. Alveolarization was assessed using stereo- and morphometric analysis techniques. Surfactant phospholipid synthesis was analyzed by labeling for surfactant protein B (SP-B). Pulmonary gene expression levels of Lep and Lep-R were determined using quantitative real-time polymerase chain reaction. Immunohistochemical staining for Lep and Lep-R was performed to evaluate alveolar protein expression and localization. RESULTS In vivo administration of ATRA resulted in significantly increased lung-to-body weight ratio with enhanced radial alveolar count and decreased mean linear intercept compared to placebo treatment. Immunofluorescence analysis demonstrated markedly increased pulmonary SP-B expression in Nitrofen+ATRA compared to Nitrofen+Placebo. Relative mRNA expression of Lep and Lep-R was significantly increased in Nitrofen+ATRA compared to Nitrofen+Placebo. Lep and Lep-R immunoreactivity was markedly increased in interstitial and alveolar epithelial cells of Nitrofen+ATRA compared to Nitrofen+Placebo. CONCLUSION Increased Lep and Lep-R expression after prenatal administration of ATRA in nitrofen-induced PH suggests that ATRA may have therapeutic potential in attenuating CDH-associated PH by stimulating alveolarization and de novo surfactant production.
Collapse
Affiliation(s)
- Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | | | | | | | | | | |
Collapse
|
24
|
Silveyra P, Chroneos ZC, DiAngelo SL, Thomas NJ, Noutsios GT, Tsotakos N, Howrylak JA, Umstead TM, Floros J. Knockdown of Drosha in human alveolar type II cells alters expression of SP-A in culture: a pilot study. Exp Lung Res 2014; 40:354-66. [PMID: 25058539 DOI: 10.3109/01902148.2014.929757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II (ATII) cells, one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3'UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII versus ATI, 12 of which predicted to bind SP-A 3'UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SP-A expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI.
Collapse
Affiliation(s)
- Patricia Silveyra
- 1Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Scleroderma is a systemic autoimmune disease of unknown etiology whose characteristic features include endothelial cell dysfunction, fibroblast proliferation, and immune dysregulation. Although almost any organ can be pathologically involved in scleroderma, lung complications including interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are the leading cause of death in patients with this condition. Currently, the molecular mechanisms leading to development of scleroderma-related lung disease are poorly understood; however, the systemic nature of this condition has led many to implicate circulating factors in the pathogenesis of some of its organ impairment. In this article we focus on a new class of circulating factors derived from adipose-tissue called adipokines, which are known to be altered in scleroderma. Recently, the adipokines adiponectin and leptin have been found to regulate biological activity in endothelial, fibroblast, and immune cell types in lung and in many other tissues. The pleiotropic nature of these circulating factors and their functional activity on many cell types implicated in the pathogenesis of ILD and PAH suggest these hormones may be mechanistically involved in the onset and/or progression of scleroderma-related lung diseases.
Collapse
|
26
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|