1
|
Zhao L, Zhao C, Miao Y, Lei S, Li Y, Gong J, Peng C. Theabrownin from Pu-erh Tea Improves DSS-Induced Colitis via Restoring Gut Homeostasis and Inhibiting TLR2&4 Signaling Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155852. [PMID: 39029137 DOI: 10.1016/j.phymed.2024.155852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Theabrownin (TB) is a dark brown pigment from Pu-erh tea or other dark teas. It is formed by further oxidization of theaflavins and thearubigins, in combination with proteins, polysaccharides, and caffeine etc. TB is a characteristic ingredient and bioactive substance of Pu-erh tea. However, the effects of TB on ulcerative colitis (UC) remains unclear. PURPOSE This study aims to elucidate the mechanism of TB on UC in terms of recovery of intestinal homeostasis and regulation of toll-like receptor (TLR) 2&4 signaling pathway. METHODS The colitis models were established by administering 5% dextran sulfate sodium (DSS) to C57BL/6 mice for 5 days to evaluate the therapeutic and preventive effects of TB on UC. Mesalazine was used as a positive control. H&E staining, complete blood count, enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, and 16S rRNA sequencing were employed to assess histological changes, blood cells analysis, content of cytokines, expression and distribution of mucin (MUC)2 and TLR2&4, differentiation of CD4+T cells in lamina propria, and changes in intestinal microbiota, respectively. Western blot was utilized to study the relative expression of tight junction proteins and the key proteins in TLR2&4-mediated MyD88-dependent MAPK, NF-κB, and AKT signaling pathways. RESULTS TB outstanding alleviated colitis, inhibited the release of pro-inflammatory cytokines, reduced white blood cells while increasing red blood cells, hemoglobin, and platelets. TB increased the expression of occludin, claudin-1 and MUC2, effectively restored intestinal barrier function. TB also suppressed differentiation of Th1 and Th17 cells in the colon's lamina propria, increased the fraction of Treg cells, and promoted the balance of Treg/Th17 to tilt towards Tregs. Moreover, TB increased the Firmicutes to Bacteroides (F/B) ratio, as well as the abundance of Akkermansia, Muribaculaceae, and Eubacterium_coprostanoligenes_group at the genus level. In addition, TB inhibited the activation of TLR2&4-mediated MAPK, NF-κB, and AKT signaling pathways in intestinal epithelial cells of DSS-induced mice. CONCLUSION TB acts in restoring intestinal homeostasis and anti-inflammatory in DSS-induced UC, and exhibiting a preventive effect after long-term use. In a word, TB is a promising beverage, health product and food additive for UC.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yujing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Ullah H, Deng T, Ali M, Farooqui NA, Alsholi DM, Siddiqui NZ, Rehman AU, Ali S, Ilyas M, Wang L, Xin Y. Sea Conch Peptides Hydrolysate Alleviates DSS-Induced Colitis in Mice through Immune Modulation and Gut Microbiota Restoration. Molecules 2023; 28:6849. [PMID: 37836692 PMCID: PMC10574497 DOI: 10.3390/molecules28196849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a persistent, lifelong inflammation of the digestive system. Dextran sulfate sodium is commonly used to induce colitis in experimental animal models, which causes epithelial damage, intestinal inflammation, mucin depletion, and dysbiosis of the gut microbiota. Various prebiotics, polysaccharides, and polypeptides are used for IBD treatment. In this study, we used a murine model utilizing BALB/c mice, with 10 mice per group, to investigate the treatment effect of sea conch peptide hydrolysate (CPH) on DSS-induced colitis mice. Colitis was induced through the administration of 2.5% DSS in drinking water over a seven-days period. Furthermore, on the eighth day of the experiment, sea conch peptide hydrolysate (CPH) at low (100 mg/kg), medium (200 mg/kg), and high (400 mg/kg) doses, which were continued for 14 days, were assessed for medicinal purposes in DSS-induced colitis mice. Our results showed that CPH treatment significantly alleviated the severity and symptoms of colitis. The epithelial integrity and histological damage were improved. Intestinal inflammation and inflammatory cell infiltration were improved. Furthermore, the expression of pro-inflammatory cytokines was reduced, and intestinal barrier integrity was restored by elevating the tight junction proteins. Moreover, 16s RNA sequencing revealed dysbiosis of the gut microbiota was observed upon DSS treatment, which was reinstated after CPH treatment. An increased level of Firmicutes and Lactobacillus was observed in the treatment groups. Finally, our results suggest that CPH would be recommended as a functional food source and also have the potential to be used as a medicinal product for different gastrointestinal disorders.
Collapse
Affiliation(s)
- Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Ting Deng
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Muhsin Ali
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Duaa M. Alsholi
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Sharafat Ali
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Muhammad Ilyas
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.U.); (T.D.); (M.A.); (N.A.F.); (D.M.A.); (N.Z.S.); (A.U.R.); (M.I.)
| |
Collapse
|
3
|
Sun R, Chen H, Yao S, Yu Z, Lai C, Huang J. Ecological and dynamic analysis of gut microbiota in the early stage of azomethane-dextran sodium sulfate model in mice. Front Cell Infect Microbiol 2023; 13:1178714. [PMID: 37153156 PMCID: PMC10157258 DOI: 10.3389/fcimb.2023.1178714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The success rate of azomethane-dextran sodium sulfate (AOM-DSS) model in mice has been a long-standing problem. Treatment of AOM and the first round DSS induces acute colitis and is of great significance for the success of AOM-DSS model. In this study, we focused on the role of gut microbiota in the early stage of AOM-DSS model. Few mice with obvious weight loss and high disease-activity score survived from double strike of AOM and the first round DSS. Different ecological dynamics of gut microbiota were observed in AOM-DSS treated mice. Pseudescherichia, Turicibacter, and Clostridium_XVIII were of significance in the model, uncontrolled proliferation of which accompanied with rapid deterioration and death of mice. Akkermansia and Ruthenibacterium were significantly enriched in the alive AOM-DSS treated mice. Decrease of Ligilactobacillus, Lactobacillus, and Limosilactobacillus were observed in AOM-DSS model, but significant drop of these genera could be lethal. Millionella was the only hub genus of gut microbiota network in dead mice, which indicated dysbiosis of the intestinal flora and fragility of microbial network. Our results will provide a better understanding for the role of gut microbiota in the early stage of AOM-DSS model and help improve the success rate of model construction.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Oh C, Lee W, Park J, Choi J, Lee S, Li S, Jung HN, Lee JS, Hwang JE, Park J, Kim M, Baek S, Im HJ. Development of Spleen Targeting H 2S Donor Loaded Liposome for the Effective Systemic Immunomodulation and Treatment of Inflammatory Bowel Disease. ACS NANO 2023; 17:4327-4345. [PMID: 36744655 DOI: 10.1021/acsnano.2c08898] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticles are primarily taken up by immune cells after systemic administration. Thus, they are considered an ideal drug delivery vehicle for immunomodulation. Because the spleen is the largest lymphatic organ and regulates the systemic immune system, there have been studies to develop spleen targeting nanoparticles for immunomodulation of cancer and immunological disorders. Inflammatory bowel disease (IBD) includes disorders involving chronic inflammation in the gastrointestinal tract and is considered incurable despite a variety of treatment options. Hydrogen sulfide (H2S) is one of the gasotransmitters that carries out anti-inflammatory functions and has shown promising immunomodulatory effects in various inflammatory diseases including IBD. Herein, we developed a delicately tuned H2S donor delivering liposome for spleen targeting (ST-H2S lipo) and studied its therapeutic effects in a dextran sulfate sodium (DSS) induced colitis model. We identified the ideal PEG type and ratio of liposome for a high stability, loading efficiency, and spleen targeting effect. In the treatment of the DSS-induced colitis model, we found that ST-H2S lipo and conventional long-circulating liposomes loaded with H2S donors (LC-H2S lipo) reduced the severity of colitis, whereas unloaded H2S donors did not. Furthermore, the therapeutic effect of ST-H2S lipo was superior to that of LC-H2S lipo due to its better systemic immunomodulatory effect than that of LC-H2S lipo. Our findings demonstrate that spleen targeting H2S lipo may have therapeutic potential for IBD.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongbin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Somin Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Shengjun Li
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Na Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Seob Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jiwoo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Peters LA, Friedman JR, Stojmirovic A, Hagen J, Houten S, Dodatko T, Amaro MP, Restrepo P, Chai Z, Rodrigo Mora J, Raymond HA, Curran M, Dobrin R, Das A, Xiong H, Schadt EE, Argmann C, Losic B. A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients. Commun Biol 2023; 6:95. [PMID: 36694043 PMCID: PMC9873918 DOI: 10.1038/s42003-023-04469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes.
Collapse
Affiliation(s)
- Lauren A. Peters
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joshua R. Friedman
- grid.476706.40000 0004 7647 0615Spark Therapeutics, Philadelphia, PA USA ,grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Aleksandar Stojmirovic
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Jacob Hagen
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sander Houten
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Tetyana Dodatko
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mariana P. Amaro
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paula Restrepo
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhi Chai
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J. Rodrigo Mora
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA ,grid.479574.c0000 0004 1791 3172Moderna, Cambridge, MA USA
| | - Holly A. Raymond
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Mark Curran
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Radu Dobrin
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA ,Pathos AI, Berwyn, PA USA
| | - Anuk Das
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Spring House, Philadelphia, PA USA
| | - Huabao Xiong
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric E. Schadt
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Carmen Argmann
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bojan Losic
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.511203.4Present Address: Guardant Health, Redwood City, CA USA
| |
Collapse
|
6
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
7
|
Kumar R, Maurya AK, Parker KD, Kant R, Ibrahim H, Kabir MI, Kumar D, Weber AM, Agarwal R, Kuhn KA, Ryan EP, Raina K. Gender-based effect of absence of gut microbiota on the protective efficacy of Bifidobacterium longum-fermented rice bran diet against inflammation-associated colon tumorigenesis. Mol Carcinog 2022; 61:941-957. [PMID: 35856887 PMCID: PMC9474629 DOI: 10.1002/mc.23452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/19/2022]
Abstract
Dietary rice bran (RB) has shown capacity to influence metabolism by modulation of gut microbiota in individuals at risk for colorectal cancer (CRC), which warranted attention for delineating mechanisms for bidirectional influences and cross-feeding between the host and RB-modified gut microbiota to reduce CRC. Accordingly, in the present study, fermented rice bran (FRB, fermented with a RB responsive microbe Bifidobacterium longum), and non-fermented RB were fed as 10% w/w (diet) to gut microbiota-intactspf or germ-free micegf to investigate comparative efficacy against inflammation-associated azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC. Results indicated both microbiota-dependent and independent mechanisms for RB meditated protective efficacy against CRC that was associated with reduced neoplastic lesion size and local-mucosal/systemic inflammation, and restoration of colonic epithelial integrity. Enrichment of beneficial commensals (such as, Clostridiales, Blautia, Roseburia), phenolic metabolites (benzoate and catechol metabolism), and dietary components (ferulic acid-4 sulfate, trigonelline, and salicylate) were correlated with anti-CRC efficacy. Germ-free studies revealed gender-specific physiological variables could differentially impact CRC growth and progression. In the germ-free females, the RB dietary treatment showed a ∼72% reduction in the incidence of colonic epithelial erosion when compared to the ∼40% reduction in FRB-fed micegf . Ex vivo fermentation of RB did not parallel the localized-protective benefits of gut microbial metabolism by RB in damaged colonic tissues. Findings from this study suggest potential needs for safety considerations of fermented fiber rich foods as dietary strategies against severe inflammation-associated colon tumorigenesis (particularly with severe damage to the colonic epithelium).
Collapse
Affiliation(s)
- Robin Kumar
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Akhilendra K Maurya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristopher D Parker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Natural Sciences, Middle Georgia State University, Cochran, GA, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Md Imtiazul Kabir
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Liu Z, Niu X, Wang J. Naringenin as a natural immunomodulator against T cell-mediated autoimmune diseases: literature review and network-based pharmacology study. Crit Rev Food Sci Nutr 2022; 63:11026-11043. [PMID: 35776085 DOI: 10.1080/10408398.2022.2092054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
T cells, especially CD4+ T helper (Th) cells, play a vital role in the pathogenesis of specific autoimmune diseases. Naringenin, a citrus flavonoid, exhibits anti-inflammatory, anti-oxidant, and antitumor properties, which have been verified in animal autoimmune disease models. However, naringenin's possible effects and molecular mechanisms in T cell-mediated autoimmune diseases are unclear. This review summarizes the findings of previous studies and predicts the target of naringenin in T cell-mediated autoimmune disorders such as multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis through network pharmacology analysis. We performed DAVID enrichment analysis, protein-protein interaction analysis, and molecular docking to predict the positive effect of naringenin on T cell-mediated autoimmune disorders. Sixteen common genes were screened, among which the core genes were PTGS2, ESR1, CAT, CASP3, MAPK1, and AKT1. The possible molecular mechanism relates to HIF-1, estrogen, TNF, and NF-κB signaling pathways. Our findings have significance for future naringenin treatment of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
9
|
Co-administration of Lactobacillus gasseri KBL697 and tumor necrosis factor-alpha inhibitor infliximab improves colitis in mice. Sci Rep 2022; 12:9640. [PMID: 35688918 PMCID: PMC9187735 DOI: 10.1038/s41598-022-13753-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammatory bowel disease (IBD) refers to disorders involving chronic inflammation of the gastrointestinal tract. Well-established treatments for IBD have not yet to be suggested. To address this gap, we investigated the effects of co-administration of Lactobacillus gasseri (L. gasseri) KBL697 and infliximab (IFX), the first approved tumor necrosis factor (TNF)-alpha inhibitor, on the dextran sodium sulfate-induced colitis mouse model. 2 × 109 colony-forming units/g of L. gasseri KBL697 were administered to seven-week-old female C57BL/6J mice daily by oral gavage. On day three, IFX (5 mg/kg) suspended in 1 × PBS (200 µL) was intravenously injected in the IFX-treated group and all mice were sacrificed on day nine. Co-administration of L. gasseri KBL697 and IFX improved colitis symptoms in mice, including body weight, disease activity index, colon length, and histology score. Additionally, pro-inflammatory cytokines, such as interferon-gamma, interleukin (IL)-2, IL-6, IL-17A, and TNF were significantly decreased, while IL-10, an anti-inflammatory cytokine, was increased. Expression levels of tight junction genes and CD4 + CD25 + Foxp3 + T regulatory cells in the mesenteric lymph nodes were synergistically upregulated with the combined treatment. Furthermore, co-administered mice displayed altered cecum microbial diversity and composition with increases in the genus Prevotella. Related changes in the predicted amino and nucleic acid metabolic pathways were also evident, along with increased acetate and butyrate level. Therefore, the synergistic effect of L. gasseri KBL697 and IFX co-administration is a possible method of prevention and treatment for IBD.
Collapse
|
10
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
11
|
Intestinal helminth infection transforms the CD4 + T cell composition of the skin. Mucosal Immunol 2022; 15:257-267. [PMID: 34931000 PMCID: PMC8866128 DOI: 10.1038/s41385-021-00473-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
Intestinal helminth parasites can alter immune responses to vaccines, other infections, allergens and autoantigens, implying effects on host immune responses in distal barrier tissues. We herein show that the skin of C57BL/6 mice infected with the strictly intestinal nematode Heligmosomoides polygyrus contain higher numbers of CD4+ T cells compared to the skin of uninfected controls. Accumulated CD4+ T cells were H. polygyrus-specific TH2 cells that skewed the skin CD4+ T cell composition towards a higher TH2/TH1 ratio which persisted after worm expulsion. Accumulation of TH2 cells in the skin was associated with increased expression of the skin-homing chemokine receptors CCR4 and CCR10 on CD4+ T cells in the blood and mesenteric lymph nodes draining the infected intestine and was abolished by FTY720 treatment during infection, indicating gut-to-skin trafficking of cells. Remarkably, skin TH2 accumulation was associated with impaired capacity to initiate IFN-γ recall responses and develop skin-resident memory cells to mycobacterial antigens, both during infection and months after deworming therapy. In conclusion, we show that infection by a strictly intestinal helminth has long-term effects on immune cell composition and local immune responses to unrelated antigens in the skin, revealing a novel process for T cell colonisation and worm-mediated immunosuppression in this organ.
Collapse
|
12
|
Aguilera-Lizarraga J, Florens M, Hussein H, Boeckxstaens G. Local immune response as novel disease mechanism underlying abdominal pain in patients with irritable bowel syndrome. Acta Clin Belg 2021; 77:889-896. [PMID: 34709996 DOI: 10.1080/17843286.2021.1996069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is the most frequently diagnosed functional gastrointestinal disorder, with a prevalence of up to 25% of the global population. IBS patients suffer from abnormal abdominal pain, or visceral hypersensitivity (VHS), associated with altered bowel habits in the absence of an organic detectable cause. The pathophysiology of the disease is incompletely understood, but the dysregulation of the brain-gut axis is well established in IBS. METHODS IBS onset is mainly triggered by infectious gastroenteritis, psychological factors, and dietary factors, but genetic predispositions and intestinal dysbiosis might also play a role. Additionally, immune activation, and particularly chronic mast cell activation, have been shown to underlie the development of abdominal pain in IBS. RESULTS By releasing increased levels of mediators, including histamine, mast cells sensitize enteric nociceptors and lead to VHS development. The mechanisms underlying aberrant mast cell activation in IBS are still under investigation, but we recently showed that a local break in oral tolerance to food antigens led to IgE-mediated mast cell activation and food-induced abdominal pain in preclinical models and in IBS patients. CONCLUSION The concept of food-mediated VHS highlights the potential of therapies targeting upstream mechanisms of mast cell sensitization to treat IBS.
Collapse
Affiliation(s)
- J. Aguilera-Lizarraga
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
| | - M. Florens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
| | - H. Hussein
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
| | - G. Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
- Department of Gastroenterology & Hepatology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Fan L, Qi Y, Qu S, Chen X, Li A, Hendi M, Xu C, Wang L, Hou T, Si J, Chen S. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes 2021; 13:1-17. [PMID: 33557671 PMCID: PMC7889144 DOI: 10.1080/19490976.2020.1826746] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is defined as an immune dysregulation disease with poor prognosis. Various therapies based on gut microbe modulation have been proposed. In this study, we aim to explore the therapeutic effect of B. adolescentis on IBD, as well as the immune and microecology mechanism of B. adolescentis in IBD. The fecal level of B. adolescentis was decreased in the IBD patients compared with the normal people in our cohort and the GMrepo database. To further clarify the role of B. adolescentis in IBD, we induced chronic colitis with three cycles of dextran sulfate sodium (DSS). We found B. adolescentis gavage exhibited protective effects as evidenced by the significantly decreased diarrhea score, spleen weight, and increased colon length. Accordingly, the cumulative histological grading was decreased in the B. adolescentis administration group. In addition, tight junction protein and mucin family were enhanced after B. adolescentis treatment. Furthermore, distinct effects were found with decreased pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, IL-18, IL-22, IL-9 and increased anti-inflammatory cytokines IL-10, IL-4, IL-5. Importantly, the colon lamina propria in the B. adolescentis group consisted of more Treg and Th2 cells, which inhibited extreme gut inflammation. Additionally, 16srRNA sequencing showed an evident increase in the B:F ratio in the B. adolescentis group. In particular, B. adolescentis application inhibited the excessive growth of Akkermansia and Escherichia-Shigella in genus level. In conclusion, B. adolescentis refined the DSS-induced chronic colitis by stimulating protective Treg/Th2 response and gut microbiota remodeling. B. adolescentis regularly treatment might improve the therapeutic effects for inflammatory bowel disease.
Collapse
Affiliation(s)
- Lina Fan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Siwen Qu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Aiqing Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Maher Hendi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| |
Collapse
|
14
|
Colombo G, Clemente N, Zito A, Bracci C, Colombo FS, Sangaletti S, Jachetti E, Ribaldone DG, Caviglia GP, Pastorelli L, De Andrea M, Naviglio S, Lucafò M, Stocco G, Grolla AA, Campolo M, Casili G, Cuzzocrea S, Esposito E, Malavasi F, Genazzani AA, Porta C, Travelli C. Neutralization of extracellular NAMPT (nicotinamide phosphoribosyltransferase) ameliorates experimental murine colitis. J Mol Med (Berl) 2020; 98:595-612. [PMID: 32338310 DOI: 10.1007/s00109-020-01892-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Nausicaa Clemente
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
| | - Andrea Zito
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Cristiano Bracci
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Federico Simone Colombo
- Flow Cytometry and Cell Sorting Unit, Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, MI, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Gastroenterology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, 10126, Turin, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34137, Trieste, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Fabio Malavasi
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy.
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università degli Studi di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
15
|
Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm Sin B 2020; 10:447-461. [PMID: 32140391 PMCID: PMC7049614 DOI: 10.1016/j.apsb.2019.08.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) manifests as an etiologically complicated and relapsing gastrointestinal disease. The enteric nervous system (ENS) plays a pivotal role in rectifying and orchestrating the inflammatory responses in gut tract. Berberine, an isoquinoline alkaloid, is known as its anti-inflammatory and therapeutic effects in experimental colitis. However, little research focused on its regulatory function on ENS. Therefore, we set out to explore the pathological role of neurogenic inflammation in UC and the modulating effects of berberine on neuro-immune interactions. Functional defects of enteric glial cells (EGCs), with decreased glial fibrillary acidic protein (GFAP) and increased substance P expression, were observed in DSS-induced murine UC. Administration of berberine can obviously ameliorate the disease severity and restore the mucosal barrier homeostasis of UC, closely accompanying by maintaining the residence of EGCs and attenuating inflammatory infiltrations and immune cells overactivation. In vitro, berberine showed direct protective effects on monoculture of EGCs, bone marrow-derived dendritic cells (BMDCs), T cells, and intestinal epithelial cells (IECs) in the simulated inflammatory conditions. Furthermore, berberine could modulate gut EGCs-IECs-immune cell interactions in the co-culture systems. In summary, our study indicated the EGCs-IECs-immune cell interactions might function as a crucial paradigm in mucosal inflammation and provided an infusive mechanism of berberine in regulating enteric neurogenic inflammation.
Collapse
Key Words
- APCs, antigen-presenting cells
- BDNF, brain-derived neurotrophic factor
- BMDCs, bone marrow-derived dendritic cells
- Berberine
- CGRP, calcitonin gene-related peptide
- DSS, dextran sulfate sodium
- EGCs, enteric glial cells
- ENS, enteric nervous system
- Enteric glial cells
- Enteric nervous system
- GDNF, glial cell derived neurotrophic factor
- GFAP, glial fibrillary acidic protein
- IBD, inflammatory bowel diseases
- IECs, intestinal epithelial cells
- LMPC, lamina propria mononuclear cells
- MAPK, mitogen-activated protein kinases
- MLNs, mesenteric lymph nodes
- MPO, myeloperoxidase
- Mucosal inflammation
- UC, ulcerative colitis
- Ulcerative colitis
- VIP, vasoactive intestinal polypeptide
Collapse
|
16
|
Morsy MA, Gupta S, Nair AB, Venugopala KN, Greish K, El-Daly M. Protective Effect of Spirulina platensis Extract against Dextran-Sulfate-Sodium-Induced Ulcerative Colitis in Rats. Nutrients 2019; 11:nu11102309. [PMID: 31569451 PMCID: PMC6836255 DOI: 10.3390/nu11102309] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a multifactorial inflammatory condition. This study aimed to test the protective effects of Spirulina platensis against ulcerative colitis (UC). UC was induced in thirty-six male Wistar rats by adding dextran sulfate sodium (DSS) to their drinking water, while a control group received only drinking water. UC rats were equally-divided into six groups that received a single oral daily dose of vehicle (DSS), sulfasalazine (SSZ, 50 mg/kg/day), chloroform or the hydroalcoholic extracts of Spirulina platensis (100 or 200 mg/kg/day) for 15 days, and then blood and colon samples were harvested for determination of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), myeloperoxidase (MPO), and histopathology. At the end of the study, compared to time-matched controls, UC rats showed increased TNF-α (1.64-fold), IL-6 (5.73-fold), ESR (3.18-fold), and MPO (1.61-fold), along with loss of body weight (24.73%) and disease activity index (1.767 ± 0.216 vs. 0 ± 0), p < 0.001. These effects were prevented by SSZ treatment (p < 0.001 vs. DSS). The hydroalcoholic extract of Spirulina platensis dose-dependently modulated all DSS-induced inflammatory changes. However, the chloroform extract significantly lowered only IL-6 and ESR, but not TNF-α or MPO levels. The protective effects of the hydroalcoholic extract of Spirulina platensis against experimental UC involved mitigation of DSS-induced inflammation.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to University), Mullana, Ambala, Haryana 133203, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
17
|
Jang YJ, Kim WK, Han DH, Lee K, Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes 2019; 10:696-711. [PMID: 30939976 PMCID: PMC6866707 DOI: 10.1080/19490976.2019.1589281] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We evaluated immunometabolic functions of novel Lactobacillus fermentum strains (KBL374 and KBL375) isolated from feces of healthy Koreans. The levels of inflammatory cytokines, such as interleukin (IL)-2, interferon-γ, IL-4, IL-13, and IL-17A, were decreased, and that of the anti-inflammatory cytokine IL-10 was increased, in human peripheral blood mononuclear cells (PBMCs) treated with the L. fermentum KBL374 or KBL375 strain. When these strains were orally administered to mice with dextran sulfate sodium (DSS)-induced colitis, both L. fermentum KBL374 and KBL375 showed beneficial effects on body weight, disease activity index score, colon length, cecal weight, and histological scores. Furthermore, both L. fermentum KBL374 and KBL375 modulated the innate immune response by improving gut barrier function and reducing leukocyte infiltration. Consistent with the PBMC data, both L. fermentum KBL374- and KBL375-treated DSS mice demonstrated decreased Th1-, Th2-, and Th17-related cytokine levels and increased IL-10 in the colon compared with the DSS control mice. Administration of L. fermentum KBL374 or KBL375 to mice increased the CD4+CD25+Foxp3+Treg cell population in mesenteric lymph nodes. Additionally, L. fermentum KBL374 or KBL375 administration reshaped and increased the diversity of the gut microbiota. In particular, L. fermentum KBL375 increased the abundance of beneficial microorganisms, such as Lactobacillus spp. and Akkermansia spp. Both L. fermentum KBL374 and KBL375 may alleviate inflammatory diseases, such as inflammatory bowel disease, in the gut by regulating immune responses and altering the composition of gut microbiota.
Collapse
Affiliation(s)
- You Jin Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kiuk Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gwangpyo Ko
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea,N-Bio, Seoul National University, Seoul, Republic of Korea,KoBioLabs, Inc., Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea,Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea,CONTACT GwangPyo Ko Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
19
|
Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, Zhao X, Chen X, Paradee WJ, Meyerholz DK, Peng W, Xue HH. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med 2019; 216:847-866. [PMID: 30837262 PMCID: PMC6446865 DOI: 10.1084/jem.20182010] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Tcf1 and Lef1 are underexpressed in T reg cells compared with conventional CD4+ T cells. Xing et al. demonstrate that genetic ablation of both factors impairs immunosuppressive function of T reg cells and leads to spontaneous multi-organ autoimmunity. Tcf1 and Lef1 have versatile functions in regulating T cell development and differentiation, but intrinsic requirements for these factors in regulatory T (T reg) cells remain to be unequivocally defined. Specific ablation of Tcf1 and Lef1 in T reg cells resulted in spontaneous multi-organ autoimmunity that became more evident with age. Tcf1/Lef1-deficient T regs showed reduced protection against experimentally induced colitis, indicative of diminished immuno-suppressive capacity. Transcriptomic analysis revealed that Tcf1 and Lef1 were responsible for positive regulation of a subset of T reg–overrepresented signature genes such as Ikzf4 and Izumo1r. Unexpectedly, Tcf1 and Lef1 were necessary for restraining expression of cytotoxic CD8+ effector T cell–associated genes in T reg cells, including Prdm1 and Ifng. Tcf1 ChIP-seq revealed substantial overlap between Tcf1 and Foxp3 binding peaks in the T reg cell genome, with Tcf1-Foxp3 cooccupancy observed at key T reg signature and cytotoxic effector genes. Our data collectively indicate that Tcf1 and Lef1 are critical for sustaining T reg suppressive functions and preventing loss of self-tolerance.
Collapse
Affiliation(s)
- Shaojun Xing
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Kexin Gai
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xiang Li
- Department of Physics, The George Washington University, Washington DC
| | - Peng Shao
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington DC
| | - Xudong Zhao
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xin Zhao
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xia Chen
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC
| | - Hai-Hui Xue
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA .,Iowa City Veterans Affairs Health Care System, Iowa City, IA
| |
Collapse
|
20
|
Hu S, Cheng M, Fan R, Wang Z, Wang L, Zhang T, Zhang M, Louis E, Zhong J. Beneficial effects of dual TORC1/2 inhibition on chronic experimental colitis. Int Immunopharmacol 2019; 70:88-100. [PMID: 30797172 DOI: 10.1016/j.intimp.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM AZD8055, a new immunosuppressive reagent, a dual TORC1/2 inhibitor, had been used successfully in animal models for heart transplantation. The aim of this study was to evaluate the effects and mechanisms of AZD8055 on chronic intestinal inflammation. METHODS Dextran sulfate sodium (DSS) - induced chronic colitis was used to investigate the effects of AZD8055 on the development of colitis. Colitis activity was monitored by body weight assessment, colon length, histology and cytokine profile analysis. RESULTS AZD8055 treatment significantly alleviated the severity of colitis, as assessed by colonic length and colonic damage. In addition, AZD8055 treatment decreased the colonic CD4+ T cell numbers and reduced both Th1 and Th17 cell activation and cytokine production. The percentages of Treg cells in the colon were also expanded by AZD8055 treatment. Furthermore, AZD8055 effectively inhibited mTOR downstream proteins and signal transducer and activator of transcription related proteins in CD4+ T cells of intestinal lamina propria. CONCLUSIONS These findings increased our understanding of DSS-induced colitis and shed new lights on mechanisms of digestive tract chronic inflammation. Dual TORC1/2 inhibition showed potent anti-inflammatory and immune regulation effects by targeting critical signaling pathways. The results supported the strategy of using dual mTOR inhibitor to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Shurong Hu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China; Translational Gastroenterology Research Unit, GIGA-R, University of Liège, Belgium
| | - Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and technology, Wuhan, Hubei, PR China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Edouard Louis
- Translational Gastroenterology Research Unit, GIGA-R, University of Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Unit, University Hospital, CHU Liege, Domaine du Sart Tilman, 4000 Liege, Belgium.
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
21
|
Kim WK, Jang YJ, Seo B, Han DH, Park S, Ko G. Administration of Lactobacillus paracasei strains improves immunomodulation and changes the composition of gut microbiota leading to improvement of colitis in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
22
|
Santiago-López L, Hernández-Mendoza A, Mata-Haro V, Vallejo-Córdoba B, Wall-Medrano A, Astiazarán-García H, Estrada-Montoya MDC, González-Córdova AF. Effect of Milk Fermented with Lactobacillus fermentum on the Inflammatory Response in Mice. Nutrients 2018; 10:nu10081039. [PMID: 30096797 PMCID: PMC6116092 DOI: 10.3390/nu10081039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Currently, the effect of fermented milk on the T-helper 17 response in inflammatory bowel diseases (IBDs) is unknown. The aim of the present study was to evaluate the effect of milks fermented with Lactobacillus fermentum on the Th1/Th17 response in a murine model of mild IBD. Exopolysaccharide (EPS), lactic acid (LA), and total protein (TP) contents and bacterial concentration were determined. Male C57Bl/6 mice intragastrically received either raw (FM) or pasteurized (PFM) fermented milk before and during a dextran sulfate infusion protocol. Blood, spleen, and colon samples were collected at Weeks 6 and 10. IL-6, IL-10, and TNFα were determined in serum, and IL-17, IL-23, and IFNγ were determined in intestinal mucosa and serum. The FM groups did not differ in cell concentration, LA, or TP content (p > 0.05); FM-J28 had the highest EPS content. Spleen weight and colon length did not differ among the FM groups (p > 0.05). In the FM-J20 and PFM-J20 groups, IL-17 and IFNγ decreased, and the IL-10 concentration was enhanced (p < 0.05) at Week 6. IL-6, TNFα, IL-23, and IFNγ did not differ in serum and mucosa (p > 0.05), and IL-17 was lowest in FM-J28 and FM-J20. Therefore, FM appears to potentially play a role in decreasing the Th17 response. However, further studies are needed to elucidate the FM-mediated anti-inflammatory mechanisms in IBD.
Collapse
Affiliation(s)
- Lourdes Santiago-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Belinda Vallejo-Córdoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Abraham Wall-Medrano
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Humberto Astiazarán-García
- Laboratorio de Patología Experimental, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a la Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - María Del Carmen Estrada-Montoya
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
23
|
Togre N, Bhoj P, Amdare N, Goswami K, Tarnekar A, Shende M. Immunomodulatory potential of recombinant filarial protein, rWbL2, and its therapeutic implication in experimental ulcerative colitis in mouse. Immunopharmacol Immunotoxicol 2018; 40:483-490. [PMID: 29411665 DOI: 10.1080/08923973.2018.1431925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Immunomodulation by helminth proteins has potential therapeutic implications in inflammatory bowel disease. In the present study, we have explored the therapeutic effect of a RAL family protein of filarial parasite Wuchereria bancrofti i.e., rWbL2 protein against DSS induced colitis in a mouse model. MATERIALS AND METHODS Anti-inflammatory activity of rWbL2 on mice peritoneal exudate cells was analyzed under in vitro condition. The colitis mice were treated intraperitoneally (i.p.) with rWbL2 in increasing doses (10 µg, 25 µg, and 50 µg) on days 4, 5, and 6. Disease severity was assessed by disease activity index (DAI), macroscopic and histopathological scores, and enzyme myeloperoxidase activity (MPO) in the colon. The response of the cultured splenocytes from treated mice to Con-A stimulation, in terms of ELISA-based assessment of the protein followed by the assessment of mRNA expression of cytokines, was measured by real-time PCR analysis. RESULT rWbL2 protein showed anti-inflammatory activity in vitro. Treatment with rWbL2 (at 25 µg/dose) effectively attenuated disease severity by reducing weight loss, DAI, mucosal edema, colon damage, and MPO activity. This therapeutic effect was found to be associated with increased release of anti-inflammatory cytokine IL-10 and decreased release of pro-inflammatory cytokine IFN-γ and TNF-α by the splenocytes of treated mice followed by stimulation with Con-A. CONCLUSIONS These results provide evidence of the strong immunomodulatory potential of rWbL2 protein implicating its therapeutic application against ulcerative colitis.
Collapse
Affiliation(s)
- Namdev Togre
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Priyanka Bhoj
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Nitin Amdare
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Kalyan Goswami
- a Department of Biochemistry and JB Tropical Disease Research Center , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Aaditya Tarnekar
- b Department of Anatomy , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| | - Moreshwar Shende
- b Department of Anatomy , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| |
Collapse
|
24
|
Togre N, Bhoj P, Goswami K, Tarnekar A, Patil M, Shende M. Human filarial proteins attenuate chronic colitis in an experimental mouse model. Parasite Immunol 2018; 40. [DOI: 10.1111/pim.12511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- N. Togre
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - P. Bhoj
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - K. Goswami
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - A. Tarnekar
- Department of Anatomy; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - M. Patil
- University Department of Biochemistry; RTM Nagpur University; Nagpur Maharashtra India
| | - M. Shende
- Department of Anatomy; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| |
Collapse
|
25
|
Pastille E, Frede A, McSorley HJ, Gräb J, Adamczyk A, Kollenda S, Hansen W, Epple M, Buer J, Maizels RM, Klopfleisch R, Westendorf AM. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer. PLoS Pathog 2017; 13:e1006649. [PMID: 28938014 PMCID: PMC5627963 DOI: 10.1371/journal.ppat.1006649] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/04/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract, strongly associated with an increased risk of colorectal cancer development. Parasitic infections caused by helminths have been shown to modulate the host’s immune response by releasing immunomodulatory molecules and inducing regulatory T cells (Tregs). This immunosuppressive state provoked in the host has been considered as a novel and promising approach to treat IBD patients and alleviate acute intestinal inflammation. On the contrary, specific parasite infections are well known to be directly linked to carcinogenesis. Whether a helminth infection interferes with the development of colitis-associated colon cancer (CAC) is not yet known. In the present study, we demonstrate that the treatment of mice with the intestinal helminth Heligmosomoides polygyrus at the onset of tumor progression in a mouse model of CAC does not alter tumor growth and distribution. In contrast, H. polygyrus infection in the early inflammatory phase of CAC strengthens the inflammatory response and significantly boosts tumor development. Here, H. polygyrus infection was accompanied by long-lasting alterations in the colonic immune cell compartment, with reduced frequencies of colonic CD8+ effector T cells. Moreover, H. polygyrus infection in the course of dextran sulfate sodium (DSS) mediated colitis significantly exacerbates intestinal inflammation by amplifying the release of colonic IL-6 and CXCL1. Thus, our findings indicate that the therapeutic application of helminths during CAC might have tumor-promoting effects and therefore should be well-considered. Evidence from epidemiological studies indicates an inverse correlation between the incidence of certain immune-mediated diseases, including inflammatory bowel diseases, and exposure to helminths. As a consequence, helminth parasites were tested for treating IBD patients, resulting in clinical amelioration of the disease due to the induction of an immunosuppressive microenvironment. However, some infection–related cancers can be attributed to helminth infection, probably due to the generation of a microenvironment that might be conductive to the initiation and development of cancer. In the present study, we aimed to unravel the apparently controversial function of helminths in a mouse model of colitis-associated colon cancer. We show that helminth infection in the onset of colitis and colitis-associated colon cancer does not ameliorate colonic inflammation but activates intestinal immune cells that further facilitate tumor development. Therefore, a better understanding of mechanisms by which helminths modulate host immune responses in the gut should be defined precisely before application of helminths in autoimmune diseases like IBD.
Collapse
Affiliation(s)
- Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Annika Frede
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Henry J. McSorley
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica Gräb
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Kollenda
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rick M. Maizels
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
26
|
Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 2017; 23:6016-6029. [PMID: 28970718 PMCID: PMC5597494 DOI: 10.3748/wjg.v23.i33.6016] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are complex diseases that result from the chronic dysregulated immune response in the gastrointestinal tract. The exact etiology is not fully understood, but it is accepted that it occurs when an inappropriate aggressive inflammatory response in a genetically susceptible host due to inciting environmental factors occurs. To investigate the pathogenesis and etiology of human IBD, various animal models of IBD have been developed that provided indispensable insights into the histopathological and morphological changes as well as factors associated with the pathogenesis of IBD and evaluation of therapeutic options in the last few decades. The most widely used experimental model employs dextran sodium sulfate (DSS) to induce epithelial damage. The DSS colitis model in IBD research has advantages over other various chemically induced experimental models due to its rapidity, simplicity, reproducibility and controllability. In this manuscript, we review the newer publicized advances of research in murine colitis models that focus upon the disruption of the barrier function of the intestine, effects of mucin on the development of colitis, alterations found in microbial balance and resultant changes in the metabolome specifically in the DSS colitis murine model and its relation to the pathogenesis of IBD.
Collapse
Affiliation(s)
- Derrick D Eichele
- Department of Internal Medicine, Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
27
|
CD45 regulates GM-CSF, retinoic acid and T-cell homing in intestinal inflammation. Mucosal Immunol 2016; 9:1514-1527. [PMID: 27007678 DOI: 10.1038/mi.2016.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
CD45 is a leukocyte-specific tyrosine phosphatase important for T-cell development, and as a result, CD45-/- mice have substantially reduced numbers of T cells. Here we show that, upon dextran sodium sulfate (DSS)-induced colitis, CD45-/- mice have equivalent intestinal pathology and T-cell numbers in their colon as C57BL/6 mice and show enhanced weight loss. CD45-/- mice have a greater percentage of α4β7+ T cells prior to and after colitis and an increased percentage of T cells producing inflammatory cytokines in the inflamed colon, suggesting that CD45-/- effector T cells preferentially home to the intestine. In DSS-induced colitis in CD45RAG-/- mice lacking an adaptive immune system, CD45 was required for optimal granulocyte-macrophage colony-stimulating factor (GM-CSF) and retinoic acid (RA) production by innate immune cells. Addition of CD45+/+ T cells led to greater weight loss in the RAG-/- mice compared with CD45RAG-/- mice that correlated with reduced α4β7+ T cells and lower recruitment to the colon of CD45RAG-/- mice in DSS-induced colitis. Addition of exogenous GM-CSF to CD45RAG-/- mice rescued RA production, increased colonic T-cell numbers, and increased weight loss. This demonstrates opposing effects of CD45 in innate and adaptive immune cells in proinflammatory responses and the expression of the gut-homing molecule, α4β7.
Collapse
|
28
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Noninvasive Longitudinal Study of a Magnetic Resonance Imaging Biomarker for the Quantification of Colon Inflammation in a Mouse Model of Colitis. Inflamm Bowel Dis 2016; 22:1286-95. [PMID: 27104818 DOI: 10.1097/mib.0000000000000755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colonoscopy is the gold standard to diagnose and follow up the evolution of inflammatory bowel diseases. However, this technique can still present a risk of severe complications, a general discomfort in patients, and its diagnostic value is limited to the visualization of the colon mucosal changes. Magnetic resonance imaging (MRI) is emerging as a noninvasive imaging technique of choice to overcome these limitations. The aim of this work was to evaluate the potential of colon wall thickness measured using MRI as an in vivo imaging biomarker of inflammation for inflammatory bowel disease in an animal model of this disease. METHODS On day 0, 2% or 3% Dextran sodium sulfate was added to the drinking water of mice (n = 10/group) for 5 days. Six mice were left as controls. Animals were imaged with colonoscopy and MRI on days 7, 11, and 21 to study the colitis progression. Histology was performed at the end of the protocol. RESULTS The colon wall thickness measured in Dextran sodium sulfate-treated animals was shown to be significantly and dose dependently increased compared to controls. Colonoscopy showed similar results and excellently correlated with MRI measurements and histology. The proposed protocol showed high robustness, with negligible interoperator and intraoperator variability. CONCLUSIONS The findings of this investigation suggest the feasibility of using MRI for the noninvasive assessment of colon wall thickness as a robust surrogate biomarker for colon inflammation detection and follow-up. The data presented show the potential of MRI in in vivo preclinical longitudinal studies, including testing of new drugs or investigation of inflammatory bowel disease development mechanisms.
Collapse
|
30
|
Hu S, Chen M, Wang Y, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, Lin Y, Zhang M, Tao R, Zhong J. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile. PLoS One 2016; 11:e0154564. [PMID: 27128484 PMCID: PMC4851424 DOI: 10.1371/journal.pone.0154564] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.
Collapse
Affiliation(s)
- Shurong Hu
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Mengmeng Chen
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yilin Wang
- Department of Surgery, Cancer hospital, Fudan University, Shanghai, PR China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yaofei Pei
- Department of Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Rong Fan
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Xiqiang Liu
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Lei Wang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jie Zhou
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Sichang Zheng
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yun Lin
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| |
Collapse
|
31
|
Du Z, Hudcovic T, Mrazek J, Kozakova H, Srutkova D, Schwarzer M, Tlaskalova-Hogenova H, Kostovcik M, Kverka M. Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathog 2015; 7:32. [PMID: 26697117 PMCID: PMC4687314 DOI: 10.1186/s13099-015-0080-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/10/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Disturbances in the intestinal microbial community (i.e. dysbiosis) or presence of the microbes with deleterious effects on colonic mucosa has been linked to the pathogenesis of inflammatory bowel diseases. However the role of microbiota in induction and progression of ulcerative colitis (UC) has not yet been fully elucidated. METHODS Three lines of human microbiota-associated (HMA) mice were established by gavage of colon biopsy from three patients with active UC. The shift in microbial community during its transferring from humans to mice was analyzed by next-generation sequencing using Illumina MiSeq sequencer. Spontaneous or dextran sulfate sodium (DSS)-induced colitis and microbiota composition profiling in germ-free mice and HMA mice over 3-4 generations were assessed to decipher the features of the distinctive and crucial events occurring during microbial colonization and animal reproduction. RESULTS None of the HMA mice developed colitis spontaneously. When treated with DSS, mice in F4 generation of one line of colonized mice (aHMA) developed colitis. Compared to the DSS-resistant earlier generations of aHMA mice, the F4 generation have increased abundance of Clostridium difficile and decrease abundance of C. symbiosum in their cecum contents measured by denaturing gradient gel electrophoresis and DNA sequencing. CONCLUSION In our study, mucosa-associated microbes of UC patients were not able to induce spontaneous colitis in gnotobiotic BALB/c mice but they were able to increase the susceptibility to DSS-induced colitis, once the potentially deleterious microbes found a suitable niche.
Collapse
Affiliation(s)
- Zhengyu Du
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic ; Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Tomas Hudcovic
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kozakova
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Dagmar Srutkova
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Martin Schwarzer
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | | | - Martin Kostovcik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Kverka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic ; Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
32
|
Khatri V, Amdare N, Tarnekar A, Goswami K, Reddy MVR. Brugia malayi cystatin therapeutically ameliorates dextran sulfate sodium-induced colitis in mice. J Dig Dis 2015; 16:585-94. [PMID: 26358507 DOI: 10.1111/1751-2980.12290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/25/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Helminth immunomodulation in the host has been shown to have therapeutic implications in inflammatory bowel diseases. In this study we aimed to evaluate the therapeutic effect of Brugia malayi recombinant cystatin (rBmCys) in a dose-dependent manner on dextran sulfate sodium (DSS)-induced colitis in mice. METHODS The anti-inflammatory activity of rBmCys on mice peritoneal exudate cells was initially analyzed in vitro. BALB/c mice were fed with 5% DSS for 7 days to induce colitis. The colitis mice were treated intraperitoneally with rBmCys (10, 25 or 50 µg for the three different groups of mice) on days 1, 3 and 5 of the DSS administration. Disease severity was assessed by the disease activity index (DAI) and macroscopic and histopathological scores of colon and myeloperoxidase activity in colonic mucosa. Cytokine profiles were measured in sera and cultured splenocytes of treated mice followed by stimulation with rBmCys. RESULTS rBmCys showed anti-inflammatory activity in vitro. Treatment of DSS-induced colitis with rBmCys in mice ameliorated the overall disease severity as reflected by a significant reduction in weight loss, the DAI, mucosal edema, colon damage and myeloperoxidase activity of the colonic mucosa. While the mRNA expressions of IFN-γ, TNF-α, interleukin (IL)-5, IL-6 and IL-17 were downregulated, IL-10 expression was upregulated in the splenocytes of colitis mice treated with rBmCys. The amelioration of DSS-induced colitis occurred in a dose-dependent manner. CONCLUSION The results of this study indicate an anti-inflammatory potential of rBmCys and provide evidence for using this protein as a promising therapeutic agent in ulcerative colitis.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biochemistry & JB Tropical Disease Research Center, Mahatma Gandhi Institute of Medical Sciences, Maharashtra, India
| | - Nitin Amdare
- Department of Biochemistry & JB Tropical Disease Research Center, Mahatma Gandhi Institute of Medical Sciences, Maharashtra, India
| | - Aaditya Tarnekar
- Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Maharashtra, India
| | - Kalyan Goswami
- Department of Biochemistry & JB Tropical Disease Research Center, Mahatma Gandhi Institute of Medical Sciences, Maharashtra, India
| | - Maryada Venkata Rami Reddy
- Department of Biochemistry & JB Tropical Disease Research Center, Mahatma Gandhi Institute of Medical Sciences, Maharashtra, India
| |
Collapse
|
33
|
Menconi A, Hernandez-Velasco X, Vicuña E, Kuttappan V, Faulkner O, Tellez G, Hargis B, Bielke L. Histopathological and morphometric changes induced by a dextran sodium sulfate (DSS) model in broilers. Poult Sci 2015; 94:906-11. [DOI: 10.3382/ps/pev054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 01/03/2023] Open
|
34
|
Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:279-88. [PMID: 25177159 PMCID: PMC4146629 DOI: 10.4196/kjpp.2014.18.4.279] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Kavinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
35
|
Jones-Hall YL, Grisham MB. Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease. ACTA ACUST UNITED AC 2014; 21:267-88. [PMID: 24935242 DOI: 10.1016/j.pathophys.2014.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, relapsing conditions of multifactorial etiology. The two primary diseases of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Both entities are hypothesized to occur in genetically susceptible individuals due to microbial alterations and environmental contributions. The exact etiopathogenesis, however, is not known for either disease. A variety of mouse models of CD and UC have been developed to investigate the pathogenesis of these diseases and evaluate treatment modalities. Broadly speaking, the mouse models can be divided into 4 categories: genetically engineered, immune manipulated, spontaneous and erosive/chemically induced. No one mouse model completely recapitulates the immunopathology of CD or UC, however each model possesses particular similarities to human IBD and offers advantageous for specific details of IBD pathogenesis. Here we discuss the more commonly used models in each category and critically evaluate how the immunopathology induced compares to CD or UC, as well as the advantages and disadvantages associated with each model.
Collapse
Affiliation(s)
- Yava L Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906, United States.
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
36
|
Zheng B, van Bergenhenegouwen J, Overbeek S, van de Kant HJG, Garssen J, Folkerts G, Vos P, Morgan ME, Kraneveld AD. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses. PLoS One 2014; 9:e95441. [PMID: 24787575 PMCID: PMC4008378 DOI: 10.1371/journal.pone.0095441] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.
Collapse
Affiliation(s)
- Bin Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Nutricia Research, Utrecht, The Netherlands
| | - Saskia Overbeek
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Hendrik J. G. van de Kant
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Nutricia Research, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul Vos
- Nutricia Research, Utrecht, The Netherlands
| | - Mary E. Morgan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|