1
|
Cuibus MA, Abdel-Wahab O. Blood pressure regulation through circadian variation: PRDM16 as a target in vascular smooth muscle cells. J Clin Invest 2025; 135:e188784. [PMID: 39895629 PMCID: PMC11785916 DOI: 10.1172/jci188784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
The precise mechanisms of blood pressure (BP) regulation are not fully elucidated, and understanding BP regulation is crucial for managing hypertension and improving outcomes for cardiovascular disease. In this issue of the JCI, Wang et al. identified the transcription factor PR domain-containing protein 16 (PRDM16) as a regulator of both vascular smooth muscle cell contraction and the circadian response to BP control. PRDM16 directly transcriptionally controlled the expression of the adrenergic receptor α 1d and several clock genes crucial for BP circadian regulation. These findings identify a mechanism of how molecular pathways govern circadian BP variation, highlighting PRDM16 as a potential target for hypertension.
Collapse
|
2
|
Wang Z, Mu W, Zhong J, Xu R, Liu Y, Zhao G, Guo Y, Zhang J, Surakka I, Chen YE, Chang L. Vascular smooth muscle cell PRDM16 regulates circadian variation in blood pressure. J Clin Invest 2024; 135:e183409. [PMID: 39625782 PMCID: PMC11785921 DOI: 10.1172/jci183409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/27/2024] [Indexed: 02/03/2025] Open
Abstract
Disruptions of blood pressure (BP) circadian variation are closely associated with an increased risk of cardiovascular disease. Thus, gaining insights into the molecular mechanisms of BP circadian variation is essential for comprehending BP regulation. Human genetic analyses suggest that PR domain-containing protein 16 (PRDM16), a transcription factor highly expressed in vascular smooth muscle cells (VSMCs), is significantly associated with BP-related traits. However, the roles of PRDM16 in BP regulation are largely unknown. Here, we demonstrate that BP in VSMC-specific Prdm16-KO (Prdm16SMKO) mice was significantly lower than that in control mice during the active period, resulting in aberrant BP circadian variation. Mesenteric artery rings from Prdm16SMKO mice showed a reduced response to phenylephrine. Mechanistically, we identified adrenergic receptor α 1d (Adra1d) as a transcriptional target of PRDM16. Notably, PRDM16 exhibited a remarkable circadian expression pattern and regulated the expression of clock genes, particularly Npas2, which is crucial for BP circadian variation regulation. Consequently, PRDM16 deficiency in VSMCs caused disrupted BP circadian variation through a reduced response to adrenergic signaling and clock gene regulation. Our findings provide insights into the intricate molecular pathways that govern circadian fluctuations in BP.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjuan Mu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan Zhong
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruiyan Xu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yaozhong Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Paschos GK, Lordan R, Hollingsworth T, Lekkas D, Kelch S, Loro E, Verginadis I, Khurana T, Sengupta A, Weljie A, FitzGerald GA. Brown adipose tissue thermogenesis rhythms are driven by the SCN independent of adipocyte clocks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620609. [PMID: 39553928 PMCID: PMC11565843 DOI: 10.1101/2024.10.28.620609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Circadian misalignment has been associated with obesity both in rodents and humans. Brown adipose tissue (BAT) thermogenesis contributes to energy expenditure and can be activated in adults to reduce body weight. Although previous studies suggest control of BAT thermogenesis by the circadian clock, the site and mechanisms of regulation remain unclear. We used mice with genetic disruption of the circadian clock in the suprachiasmatic nucleus (SCN) and peripheral tissues to delineate their role in BAT thermogenesis. Global post-natal deletion of Bmal1 in adult mice ( Bmal1 -/- ) abolishes the rhythms of interscapular BAT temperature, a measure of thermogenesis, while normal locomotor activity rhythms are maintained under a regular 12h light-12h dark schedule. Activation of thermogenesis either by exposure to cold or adrenergic stimulation of BAT displays a diurnal rhythm with higher activation during the active period. Both the rhythm and the magnitude of the thermogenic response is preserved in Bmal1 -/- mice. In contrast to mice with global deletion of Bmal1 , mice with brown adipocyte (Ucp1- Bmal1 -/- ) or brown and white adipocyte (Ad- Bmal1 -/- ) deletion of Bmal1 show intact rhythms of BAT thermogenic activity. The capacity of Ucp1- Bmal1 -/- mice to activate thermogenesis in response to exposure to cold is identical to WT mice, independent of time of stimulation. Circadian rhythmicity of interscapular BAT temperature is lost in mice with SCN deletion of Bmal1 (SCN- Bmal1 -/- ), indicating control of BAT thermogenesis rhythms by the SCN. Control mice exhibit rhythmic BAT glucose and fatty acid uptake - a rhythm that is not recapitulated in Bmal1 -/- and SCN- Bmal1 -/- mice but is present in Ucp1- Bmal1 -/- and Ad- Bmal1 -/- mice. BAT cAMP and phosphorylated hormone-sensitive lipase (pHSL) is reduced during the active period in Bmal1 -/- and SCN- Bmal1 -/- mice consistent with reduced sympathetic tone. Furthermore, sympathetic denervation of BAT ablates BAT temperature rhythms in WT mice. Taken together, our findings suggest that the SCN drives rhythms of BAT thermogenesis through adipocyte clock-independent, sympathetic signaling to the BAT.
Collapse
|
4
|
Pereira AC, Serrano-Cuñarro L, Cruz MT, Cavadas C, Pereira CMF. The link between alterations in circadian rhythms and lipid metabolism in bipolar disorder: the hypothesis of lipid droplets. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2024; 46:e20243670. [PMID: 39102528 PMCID: PMC11744263 DOI: 10.47626/1516-4446-2024-3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Bipolar disorder (BD) is a neuropsychiatric illness characterized by recurrent episodes of mania and depression, leading to significant cognitive and functional impairments, psychiatric and metabolic comorbidities, and substantial healthcare costs. The complex nature and lack of specific biomarkers for BD make it a daily challenge for clinicians. Therefore, advancing our understanding of BD pathophysiology is essential to identify novel diagnostic biomarkers and potential therapeutic targets. Although its neurobiology remains unclear, circadian disruption and lipid alterations have emerged as key hallmarks of BD. Lipids are essential components of the brain and play a critical role in regulating synaptic activity and neuronal development. Consequently, alterations in brain lipids may contribute to the neuroanatomical changes and reduced neuroplasticity observed in BD. Lipid droplets, which regulate the storage of neutral lipids, buffer the levels of toxic lipids within cells. These dynamic organelles adapt to cellular needs, and their dysregulated accumulation has been implicated in several pathological conditions. Notably, lipid droplets and different classes of lipids exhibit rhythmic oscillations throughout the 24-hour cycle, suggesting a link between lipid metabolism, circadian rhythms, and lipid droplets. In this review, we explore the impairment of circadian rhythms and lipid metabolism in BD and present evidence that circadian clocks regulate lipid droplet accumulation. Importantly, we propose the "hypothesis of lipid droplets for BD," which posits that impaired lipid metabolism in BD is closely linked to alterations in lipid droplet homeostasis driven by circadian clock disruption.
Collapse
Affiliation(s)
- Ana Catarina Pereira
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Faculdade de Medicina, UC, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, Coimbra, Portugal
| | - Laura Serrano-Cuñarro
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
| | - Maria Teresa Cruz
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, Coimbra, Portugal
- Faculdade de Farmácia, UC, Coimbra, Portugal
| | - Cláudia Cavadas
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Faculdade de Farmácia, UC, Coimbra, Portugal
| | - Cláudia Maria Fragão Pereira
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Faculdade de Medicina, UC, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Ma D, Qu Y, Wu T, Liu X, Cai L, Wang Y. Excessive fat expenditure in MCT-induced heart failure rats is associated with BMAL1/REV-ERBα circadian rhythmic loop disruption. Sci Rep 2024; 14:8128. [PMID: 38584196 PMCID: PMC10999456 DOI: 10.1038/s41598-024-58577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA β-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA β oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.
Collapse
Affiliation(s)
- Dufang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Yiwei Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Tao Wu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xue Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
6
|
Civelek E, Ozturk Civelek D, Akyel YK, Kaleli Durman D, Okyar A. Circadian Dysfunction in Adipose Tissue: Chronotherapy in Metabolic Diseases. BIOLOGY 2023; 12:1077. [PMID: 37626963 PMCID: PMC10452180 DOI: 10.3390/biology12081077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Essential for survival and reproduction, the circadian timing system (CTS) regulates adaptation to cyclical changes such as the light/dark cycle, temperature change, and food availability. The regulation of energy homeostasis possesses rhythmic properties that correspond to constantly fluctuating needs for energy production and consumption. Adipose tissue is mainly responsible for energy storage and, thus, operates as one of the principal components of energy homeostasis regulation. In accordance with its roles in energy homeostasis, alterations in adipose tissue's physiological processes are associated with numerous pathologies, such as obesity and type 2 diabetes. These alterations also include changes in circadian rhythm. In the current review, we aim to summarize the current knowledge regarding the circadian rhythmicity of adipogenesis, lipolysis, adipokine secretion, browning, and non-shivering thermogenesis in adipose tissue and to evaluate possible links between those alterations and metabolic diseases. Based on this evaluation, potential therapeutic approaches, as well as clock genes as potential therapeutic targets, are also discussed in the context of chronotherapy.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakıf University, 34093 Istanbul, Turkey;
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, 34815 Istanbul, Turkey;
| | - Deniz Kaleli Durman
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| |
Collapse
|
7
|
Sarlon J, Partonen T, Lang UE. Potential links between brown adipose tissue, circadian dysregulation, and suicide risk. Front Neurosci 2023; 17:1196029. [PMID: 37360180 PMCID: PMC10288144 DOI: 10.3389/fnins.2023.1196029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Circadian desynchronizations are associated with psychiatric disorders as well as with higher suicidal risk. Brown adipose tissue (BAT) is important in the regulation of body temperature and contributes to the homeostasis of the metabolic, cardiovascular, skeletal muscle or central nervous system. BAT is under neuronal, hormonal and immune control and secrets batokines: i.e., autocrine, paracrine and endocrine active substances. Moreover, BAT is involved in circadian system. Light, ambient temperature as well as exogen substances interact with BAT. Thus, a dysregulation of BAT can indirectly worsen psychiatric conditions and the risk of suicide, as one of previously suggested explanations for the seasonality of suicide rate. Furthermore, overactivation of BAT is associated with lower body weight and lower level of blood lipids. Reduced body mass index (BMI) or decrease in BMI respectively, as well as lower triglyceride concentrations were found to correlate with higher risk of suicide, however the findings are inconclusive. Hyperactivation or dysregulation of BAT in relation to the circadian system as a possible common factor is discussed. Interestingly, substances with proven efficacy in reducing suicidal risk, like clozapine or lithium, interact with BAT. The effects of clozapine on fat tissue are stronger and might differ qualitatively from other antipsychotics; however, the significance remains unclear. We suggest that BAT is involved in the brain/environment homeostasis and deserves attention from a psychiatric point of view. Better understanding of circadian disruptions and its mechanisms can contribute to personalized diagnostic and therapy as well as better assessment of suicide risk.
Collapse
Affiliation(s)
- Jan Sarlon
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Undine E. Lang
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Peng X, Chen Y. The emerging role of circadian rhythms in the development and function of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1175845. [PMID: 37293491 PMCID: PMC10244810 DOI: 10.3389/fendo.2023.1175845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 06/10/2023] Open
Abstract
Circadian rhythms regulate many biological processes in response to ambient influences. A disrupted circadian rhythm has been shown to be associated with obesity and obesity-related metabolic disorders. Thermogenic fat, including brown and beige fat, may play an important role in this process since it displays a high capacity to burn fat and release the stored energy as heat, contributing to the combat against obesity and its associated metabolic disorders. In this review, we summarize the relationship between the circadian clock and thermogenic fat and the prominent mechanisms which are involved in the regulation of the development and function of thermogenic fat by circadian rhythms, which may provide novel therapeutics for the prevention and treatment of metabolic diseases by targeting thermogenic fat in a circadian manner.
Collapse
Affiliation(s)
- Xuemin Peng
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
9
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
10
|
Ma D, Li X, Wang Y, Cai L, Wang Y. Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutr Metab (Lond) 2021; 18:89. [PMID: 34627306 PMCID: PMC8502262 DOI: 10.1186/s12986-021-00616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a progressive metabolic disorder characterized by the excessive depletion of adipose tissue. This hypermetabolic condition has catastrophic impacts on the survival and quality of life for patients suffering from critical illness. However, efficient therapies to prevent adipose expenditure have not been discovered. It has been established that the circadian clock plays an important role in modulating fat metabolic processes. Recently, an increasing number of studies had provided evidence showing that disrupted circadian rhythm leads to insulin resistance and obesity; however, studies analyzing the relationship between circadian misalignment and adipose tissue expenditure in cachexia are scarce. In the present review, we cover the involvement of the circadian clocks in the regulation of adipogenesis, lipid metabolism and thermogenesis as well as inflammation in white and brown adipose tissue. According to the present review, we conclude that circadian clock disruption is associated with lipid metabolism imbalance and elevated adipose tissue inflammation. Moreover, under cachexia conditions, lipid synthesis and storage processes lost rhythm and decreased, while lipolysis and thermogenesis activities remained high for 24 h. Therefore, disordered circadian clock may be responsible for fat expenditure in cachexia by adversely influencing lipid synthesis/ storage/lipolysis/utilization. Further study needs to be performed to explore the direct interaction between circadian clock and fat expenditure in cachexia, it will likely provide potential efficient drugs for the treatment of fat expenditure in cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yongcheng Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
11
|
Straat ME, Hogenboom R, Boon MR, Rensen PCN, Kooijman S. Circadian control of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158961. [PMID: 33933649 DOI: 10.1016/j.bbalip.2021.158961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Disruption of circadian (~24 h) rhythms is associated with an increased risk of cardiometabolic diseases. Therefore, unravelling how circadian rhythms are regulated in different metabolic tissues has become a prominent research focus. Of particular interest is brown adipose tissue (BAT), which combusts triglyceride-derived fatty acids and glucose into heat and displays a circannual and diurnal rhythm in its thermogenic activity. In this review, the genetic, neuronal and endocrine generation of these rhythms in BAT is discussed. In addition, the potential risks of disruption or attenuation of these rhythms in BAT, and possible factors influencing these rhythms, are addressed.
Collapse
Affiliation(s)
- Maaike E Straat
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick Hogenboom
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Zhang T, Liu CF, Zhang TN, Wen R, Song WL. Overexpression of Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α Protects Cardiomyocytes from Lipopolysaccharide-Induced Mitochondrial Damage and Apoptosis. Inflammation 2021; 43:1806-1820. [PMID: 32529514 DOI: 10.1007/s10753-020-01255-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial damage is considered one of the main pathogenetic mechanisms in septic cardiomyopathy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is critical for maintaining energy homeostasis in different organs and in various physiological and pathological states. It is also a key regulator gene in mitochondrial metabolism. In this study, we investigated whether regulation of the PGC-1α gene had protective effects on septic cardiomyopathy. We developed a rat model of septic cardiomyopathy. H9c2 myocardiocytes were treated with lipopolysaccharide (LPS) and PGC-1α expression measured. PGC-1α-overexpressing lentivirus was used to transfect H9c2 cells. ZLN005 was used to activate PGC-1α. The effect of the inhibition of PGC-1α expression on myocardial cell injury and its underlying mechanisms were also explored. Cell viability was measured by CCK-8 assay. Mitochondrial damage was determined by measuring cellular ATP, reactive oxygen species, and the mitochondrial membrane potential. An apoptosis analysis kit was used to measure cellular apoptosis. Mitochondrial DNA was extracted and real-time PCR performed. LC3B, mitochondrial transcription factor A (TFA), P62, Bcl2, and Bax were determined by immunofluorescence. LC3B, TFA, P62, Parkin, PTEN-induced putative kinase 1, and PGC-1α proteins were determined by Western blotting. We found mitochondrial damage and apoptotic cells in the myocardial tissue of rats with septic cardiomyopathy and in LPS-treated cardiomyocytes. PGC-1α expression was decreased in the late phase of septic cardiomyopathy and in LPS-treated cardiomyocytes. PGC-1α activation by ZLN005 and PGC-1α overexpression reduced apoptosis in myocardiocytes after LPS incubation. PGC-1α gene overexpression alleviated LPS-induced cardiomyocyte mitochondrial damage by activating mitochondrial biogenesis and autophagy functions. Our study indicated that mitochondrial damage and apoptosis occurred in septic cardiomyopathy and LPS-treated cardiomyocytes. The low expression level of PGC-1α protein may have contributed to this damage. By activating the expression of PGC-1α, apoptosis was reduced in cardiomyocytes. The underlying mechanism may be that PGC-1α can activate mitochondrial biogenesis and autophagy functions, reducing mitochondrial damage and thereby reducing apoptosis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Chun-Feng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Wen-Liang Song
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
13
|
Hasan N, Nagata N, Morishige JI, Islam MT, Jing Z, Harada KI, Mieda M, Ono M, Fujiwara H, Daikoku T, Fujiwara T, Maida Y, Ota T, Shimba S, Kaneko S, Fujimura A, Ando H. Brown adipocyte-specific knockout of Bmal1 causes mild but significant thermogenesis impairment in mice. Mol Metab 2021; 49:101202. [PMID: 33676029 PMCID: PMC8042177 DOI: 10.1016/j.molmet.2021.101202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Impaired circadian clocks can cause obesity, but their pathophysiological role in brown adipose tissue (BAT), a major tissue regulating energy metabolism, remains unclear. To address this issue, we investigated the effects of complete disruption of the BAT clock on thermogenesis and energy expenditure. METHODS Mice with brown adipocyte-specific knockout of the core clock gene Bmal1 (BA-Bmal1 KO) were generated and analyzed. RESULTS The BA-Bmal1 KO mice maintained normal core body temperatures by increasing shivering and locomotor activity despite the elevated expression of thermogenic uncoupling protein 1 in BAT. BA-Bmal1 KO disrupted 24 h rhythmicity of fatty acid utilization in BAT and mildly reduced both BAT thermogenesis and whole-body energy expenditure. The impact of BA-Bmal1 KO on the development of obesity became obvious when the mice were fed a high-fat diet. CONCLUSIONS These results reveal the importance of the BAT clock for maintaining energy homeostasis and preventing obesity.
Collapse
Affiliation(s)
- Nazmul Hasan
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Md Tarikul Islam
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ken-Ichi Harada
- Department of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takiko Daikoku
- Institute for Experimental Animals, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto, Japan
| | - Yoshiko Maida
- Department of Health Development Nursing, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuguhito Ota
- Department of Internal Medicine, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Funabashi, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akio Fujimura
- Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
14
|
Pati P, Valcin JA, Zhang D, Neder TH, Millender-Swain T, Allan JM, Sedaka R, Jin C, Becker BK, Pollock DM, Bailey SM, Pollock JS. Liver circadian clock disruption alters perivascular adipose tissue gene expression and aortic function in mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R960-R971. [PMID: 33881363 PMCID: PMC8285618 DOI: 10.1152/ajpregu.00128.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The liver plays a central role that influences cardiovascular disease outcomes through regulation of glucose and lipid metabolism. It is recognized that the local liver molecular clock regulates some liver-derived metabolites. However, it is unknown whether the liver clock may impact cardiovascular function. Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue surrounding blood vessels. Importantly, cross talk between the endothelium and PVAT via vasoactive factors is critical for vascular function. Therefore, we designed studies to test the hypothesis that cardiovascular function, including PVAT function, is impaired in mice with liver-specific circadian clock disruption. Bmal1 is a core circadian clock gene, thus studies were undertaken in male hepatocyte-specific Bmal1 knockout (HBK) mice and littermate controls (i.e., flox mice). HBK mice showed significantly elevated plasma levels of β-hydroxybutyrate, nonesterified fatty acids/free fatty acids, triglycerides, and insulin-like growth factor 1 compared with flox mice. Thoracic aorta PVAT in HBK mice had increased mRNA expression of several key regulatory and metabolic genes, Ppargc1a, Pparg, Adipoq, Lpl, and Ucp1, suggesting altered PVAT energy metabolism and thermogenesis. Sensitivity to acetylcholine-induced vasorelaxation was significantly decreased in the aortae of HBK mice with PVAT attached compared with aortae of HBK mice with PVAT removed, however, aortic vasorelaxation in flox mice showed no differences with or without attached PVAT. HBK mice had a significantly lower systolic blood pressure during the inactive period of the day. These new findings establish a novel role of the liver circadian clock in regulating PVAT metabolic gene expression and PVAT-mediated aortic vascular function.
Collapse
Affiliation(s)
- Paramita Pati
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dingguo Zhang
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas H Neder
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Telisha Millender-Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John Miller Allan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee Sedaka
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Duan YN, Ge X, Jiang HW, Zhang HJ, Zhao Y, Li JL, Zhang W, Li JY. Diphyllin Improves High-Fat Diet-Induced Obesity in Mice Through Brown and Beige Adipocytes. Front Endocrinol (Lausanne) 2020; 11:592818. [PMID: 33424769 PMCID: PMC7793827 DOI: 10.3389/fendo.2020.592818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Brown adipose tissue (BAT) and beige adipose tissue dissipate metabolic energy and mediate nonshivering thermogenesis, thereby boosting energy expenditure. Increasing the browning of BAT and beige adipose tissue is expected to be a promising strategy for combatting obesity. Through phenotype screening of C3H10-T1/2 mesenchymal stem cells, diphyllin was identified as a promising molecule in promoting brown adipocyte differentiation. In vitro studies revealed that diphyllin promoted C3H10-T1/2 cell and primary brown/beige preadipocyte differentiation and thermogenesis, which resulted increased energy consumption. We synthesized the compound and evaluated its effect on metabolism in vivo. Chronic experiments revealed that mice fed a high-fat diet (HFD) with 100 mg/kg diphyllin had ameliorated oral glucose tolerance and insulin sensitivity and decreased body weight and fat content ratio. Adaptive thermogenesis in HFD-fed mice under cold stimulation and whole-body energy expenditure were augmented after chronic diphyllin treatment. Diphyllin may be involved in regulating the development of brown and beige adipocytes by inhibiting V-ATPase and reducing intracellular autophagy. This study provides new clues for the discovery of anti-obesity molecules from natural products.
Collapse
Affiliation(s)
- Ya-Nan Duan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Ge
- School of Pharmacy, Nantong University, Nantong, China
| | - Hao-Wen Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Jin-Long Li
- School of Pharmacy, Nantong University, Nantong, China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wei Zhang
- Kay Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Jing-Ya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Chang L, Xiong W, Zhao X, Fan Y, Guo Y, Garcia-Barrio M, Zhang J, Jiang Z, Lin JD, Chen YE. Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen. Circulation 2018; 138:67-79. [PMID: 29371216 PMCID: PMC6030431 DOI: 10.1161/circulationaha.117.029972] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The perivascular adipose tissue (PVAT) surrounding vessels constitutes a distinct functional integral layer of the vasculature required to preserve vascular tone under physiological conditions. However, there is little information on the relationship between PVAT and blood pressure regulation, including its potential contributions to circadian blood pressure variation. METHODS Using unique brown adipocyte-specific aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and angiotensinogen knockout mice, we determined the vasoactivity of homogenized PVAT in aortic rings and how brown adipocyte peripheral expression of Bmal1 and angiotensinogen in PVAT regulates the amplitude of diurnal change in blood pressure in mice. RESULTS We uncovered a peripheral clock in PVAT and demonstrated that loss of Bmal1 in PVAT reduces blood pressure in mice during the resting phase, leading to a superdipper phenotype. PVAT extracts from wild-type mice significantly induced contractility of isolated aortic rings in vitro in an endothelium-independent manner. This property was impaired in PVAT from brown adipocyte-selective Bmal1-deficient (BA-Bmal1-KO) mice. The PVAT contractile properties were mediated by local angiotensin II, operating through angiotensin II type 1 receptor-dependent signaling in the isolated vessels and linked to PVAT circadian regulation of angiotensinogen. Indeed, angiotensinogen mRNA and angiotensin II levels in PVAT of BA-Bmal1-KO mice were significantly reduced. Systemic infusion of angiotensin II, in turn, reduced Bmal1 expression in PVAT while eliminating the hypotensive phenotype during the resting phase in BA-Bmal1-KO mice. Angiotensinogen, highly expressed in PVAT, shows circadian expression in PVAT, and selective deletion of angiotensinogen in brown adipocytes recapitulates the phenotype of selective deletion of Bmal1 in brown adipocytes. Furthermore, angiotensinogen is a transcriptional target of Bmal1 in PVAT. CONCLUSIONS These data indicate that local Bmal1 in PVAT regulates angiotensinogen expression and the ensuing increase in angiotensin II, which acts on smooth muscle cells in the vessel walls to regulate vasoactivity and blood pressure in a circadian fashion during the resting phase. These findings will contribute to a better understanding of the cardiovascular complications of circadian disorders, alterations in the circadian dipping phenotype, and cross-talk between systemic and peripheral regulation of blood pressure.
Collapse
Affiliation(s)
- Lin Chang
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Wenhao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang (W.X., Z.J.)
| | - Xiangjie Zhao
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Yanhong Guo
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Minerva Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang (W.X., Z.J.)
| | - Jiandie D Lin
- Life Sciences Institute (J.D.L.)
- Department of Cell and Developmental Biology (J.D.L.), University of Michigan, Ann Arbor
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine (L.C., X.Z., Y.F., Y.G., M.G.B., J.Z., Y.E.C.)
| |
Collapse
|
17
|
Razzoli M, Emmett MJ, Lazar MA, Bartolomucci A. β-Adrenergic receptors control brown adipose UCP-1 tone and cold response without affecting its circadian rhythmicity. FASEB J 2018; 32:5640-5646. [PMID: 29715048 DOI: 10.1096/fj.201800452r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) thermogenic functions are primarily mediated by uncoupling protein (UCP)-1. Ucp1 gene expression is highly induced by cold temperature, via sympathetic nervous system and β-adrenergic receptors (βARs). Ucp1 is also repressed by the clock gene Rev-erbα, contributing to its circadian rhythmicity. In this study, we investigated mice lacking βARs (β-less mice) to test the relationship between βAR signaling and the BAT molecular clock. We found that in addition to controlling the induction of Ucp1 and other key BAT genes at near freezing temperatures, βARs are essential for the basal expression of BAT Ucp1 at room temperature. Remarkably, although basal Ucp1 expression is low throughout day and night in β-less mice, the circadian rhythmicity of Ucp1 and clock genes in BAT is maintained. Thus, the requirement of βAR signaling for BAT activity is independent of the circadian rhythmicity of Ucp1 expression and circadian oscillation of the molecular clock genes. On the other hand, we found that βARs are essential for the normal circadian rhythms of locomotor activity. Our results demonstrate that in addition to controlling the BAT response to extreme cold, βAR signaling is necessary to maintain basal Ucp1 tone and to couple BAT circadian rhythmicity to the central clock.-Razzoli, M., Emmett, M. J., Lazar, M. A., Bartolomucci, A. β-Adrenergic receptors control brown adipose UCP-1 tone and cold response without affecting its circadian rhythmicity.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA; and
| | - Matthew J Emmett
- Division of Endocrinology, Diabetes, and Metabolism, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA; and
| |
Collapse
|
18
|
Abstract
Circadian clocks synchronize the daily functions of organisms with environmental cues like light-dark cycles and feeding rhythms. The master clock in the suprachiasmatic nucleus in the hypothalamus of the brain and the many clocks in the periphery are organized in a hierarchical manner; the master clock synchronizes the peripheral clocks, and the peripheral clocks provide feedback to the master clock in return. Not surprisingly, it has been shown that circadian rhythms and metabolism are closely linked. Metabolic disorders like obesity have a large cost to the individual and society and they are marked by adipose tissue and mitochondrial dysfunction. Mitochondria are central to energy metabolism and have key functions in processes like ATP production, oxidative phosphorylation, reactive oxygen species production and Ca2+ homeostasis. Mitochondria also play an important role in adipose tissue homeostasis and remodeling. Despite the extensive research investigating the link between circadian clock and metabolism, the circadian regulation of adipose tissue and mitochondria has mostly been unexplored until recently, and the emerging data in this topic are the focus of this review. Mitochondrial dynamics in BAT and WAT are central to energy homeostasis. Disruption of circadian genes specifically in adipose tissue leads to metabolic dysfunction in mice. Bidirectional communication between the adipocyte-hypothalamic axis clocks is crucial for coordination of energy expenditure and feeding rhythms. Circadian clock helps maintain the ratio of oxidative stress to antioxidant mechanisms in balance
Collapse
Affiliation(s)
- Yasemin Onder
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
19
|
Meng ZX, Tao W, Sun J, Wang Q, Mi L, Lin JD. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes 2018; 67:85-97. [PMID: 29092888 PMCID: PMC5741141 DOI: 10.2337/db17-0367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
Abstract
Impaired skeletal muscle energy metabolism is linked to the pathogenesis of insulin resistance and glucose intolerance in type 2 diabetes. The contractile and metabolic properties of myofibers exhibit a high degree of heterogeneity and plasticity. The regulatory circuitry underpinning skeletal muscle energy metabolism is critically linked to exercise endurance and systemic homeostasis. Recent work has identified the Baf60 subunits of the SWI/SNF chromatin-remodeling complex as powerful regulators of the metabolic gene programs. However, their role in integrating myofiber energy metabolism with exercise endurance and metabolic physiology remains largely unknown. In this study, we conditionally inactivated Baf60a, Baf60c, or both in mature skeletal myocytes to delineate their contribution to muscle bioenergetics and metabolic physiology. Our work revealed functional redundancy between Baf60a and Baf60c in maintaining oxidative and glycolytic metabolism in skeletal myofibers and exercise endurance. Unexpectedly, mice lacking these two factors in skeletal muscle were protected from diet-induced and age-associated metabolic disorders. Transcriptional profiling analysis identified the muscle thermogenic gene program and myokine secretion as key pathways that integrate myofiber metabolism with systemic energy balance. As such, Baf60 deficiency in skeletal muscle illustrates a surprising disconnect between exercise endurance and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Zhuo-Xian Meng
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, and Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwei Tao
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Jingxia Sun
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, and Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuyu Wang
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Lin Mi
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan, and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
20
|
Machado FSM, Zhang Z, Su Y, de Goede P, Jansen R, Foppen E, Coimbra CC, Kalsbeek A. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold. Front Endocrinol (Lausanne) 2018; 9:199. [PMID: 29755411 PMCID: PMC5932155 DOI: 10.3389/fendo.2018.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. METHODS Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. RESULTS During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia (p < 0.001). Light phase cold exposure also increased metabolic rate and LA (p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase (p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP (p < 0.0001) and REV-ERBα (p < 0.01) in the BAT and CLOCK (p < 0.05), PER2 (p < 0.05), CRY1 (p < 0.05), CRY2 (p < 0.01), and REV-ERBα (p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. CONCLUSION The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.
Collapse
Affiliation(s)
- Frederico Sander Mansur Machado
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Zhi Zhang
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Yan Su
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Paul de Goede
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Andries Kalsbeek,
| |
Collapse
|
21
|
Ninel Hansen S, Peics J, Gerhart-Hines Z. Keeping fat on time: Circadian control of adipose tissue. Exp Cell Res 2017; 360:31-34. [PMID: 28344052 DOI: 10.1016/j.yexcr.2017.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 02/01/2023]
Abstract
Circadian clocks harmonize processes ranging from intracellular biochemistry to whole-body physiology in accordance with the Earth's 24h rotation. These intrinsic oscillators are based on an interlocked transcriptional-translational feedback loop comprised from a set of core clock factors. In addition to maintaining rhythmicity in nearly every cell of the body, these clock factors also mediate tissue specific metabolic functions. In this review, we will explore how the molecular clock shapes the unique features of different adipose depots.
Collapse
Affiliation(s)
- Stine Ninel Hansen
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Julia Peics
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
22
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Mi L, Zhao XY, Li S, Yang G, Lin JD. Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. Mol Metab 2016; 6:101-110. [PMID: 28123941 PMCID: PMC5220282 DOI: 10.1016/j.molmet.2016.10.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological processes. Recent work has demonstrated that the inducible lncRNA Blnc1 stimulates thermogenic gene expression during brown and beige adipocyte differentiation. However, whether Blnc1 is functionally conserved in humans has not been explored. In addition, the molecular basis of the Blnc1 ribonucleoprotein complex in thermogenic gene induction remains incompletely understood. The aims of the current study were to: i) investigate functional conservation of Blnc1 in mice and humans and ii) elucidate the molecular mechanisms by which Blnc1 controls the thermogenic gene program in brown adipocytes. METHODS Full-length human Blnc1 was cloned and examined for its ability to stimulate brown adipocyte differentiation. Different truncation mutants of Blnc1 were generated to identify functional RNA domains responsible for thermogenic gene induction. RNA-protein interaction studies were performed to delineate the molecular features of the Blnc1 ribonucleoprotein complex. RESULTS Blnc1 is highly conserved in mice and humans at the sequence and function levels, both capable of stimulating brown adipocyte gene expression. A conserved RNA domain was identified to be required and sufficient for the biological activity of Blnc1. We identified hnRNPU as an RNA-binding protein that facilitates the assembly and augments the transcriptional function of the Blnc1/EBF2 ribonucleoprotein complex. CONCLUSIONS Blnc1 is a conserved lncRNA that promotes thermogenic gene expression in brown adipocytes through formation of the Blnc1/hnRNPU/EBF2 ribonucleoprotein complex.
Collapse
Key Words
- ATP5A, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha 1
- BAT, brown adipose tissue
- Blnc1
- Brown adipocyte differentiation
- Brown fat
- Cox7a1, cytochrome c oxidase subunit 7A1
- Dio2, deiodinase, iodothyronine type II
- EBF2
- EBF2, early B cell factor 2
- Elovl3, elongation of very long chain fatty acids like 3
- FABP4, fatty acid binding protein 4
- PPARγ, peroxisome proliferator-activated receptor gamma
- Ppargc1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- Pparα, peroxisome proliferator-activated receptor alpha
- Prdm16, PR domain zinc finger protein 16
- RACE, rapid amplification of cDNA ends
- SDHB, succinate dehydrogenase complex iron sulfur subunit B
- Thermogenesis
- UQCRC2, ubiquinol-cytochrome c reductase core protein II
- Ucp1, uncoupling protein 1
- lncRNA
Collapse
Affiliation(s)
- Lin Mi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China; Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xu-Yun Zhao
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Ye JX, Wang SS, Ge M, Wang DJ. Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1233-42. [PMID: 27084848 DOI: 10.1152/ajplung.00356.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2016] [Indexed: 01/22/2023] Open
Abstract
Endothelial dysfunction plays a principal role in the pathogenesis of pulmonary arterial hypertension (PAH), which is a fatal disease with limited effective clinical treatments. Mitochondrial dysregulation and oxidative stress are involved in endothelial dysfunction. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key regulator of cellular energy metabolism and a master regulator of mitochondrial biogenesis. However, the roles of PGC-1α in hypoxia-induced endothelial dysfunction are not completely understood. We hypothesized that hypoxia reduces PGC-1α expression and leads to endothelial dysfunction in hypoxia-induced PAH. We confirmed that hypoxia has a negative impact on endothelial PGC-1α in experimental PAH in vitro and in vivo. Hypoxia-induced PGC-1α inhibited the oxidative metabolism and mitochondrial function, whereas sustained PGC-1α decreased reactive oxygen species (ROS) formation, mitochondrial swelling, and NF-κB activation and increased ATP formation and endothelial nitric oxide synthase (eNOS) phosphorylation. Furthermore, hypoxia-induced changes in the mean pulmonary arterial pressure and right heart hypertrophy were nearly normal after intervention. These results suggest that PGC-1α is associated with endothelial function in hypoxia-induced PAH and that improved endothelial function is associated with improved cellular mitochondrial respiration, reduced inflammation and oxygen stress, and increased PGC-1α expression. Taken together, these findings indicate that PGC-1α may be a new therapeutic target in PAH.
Collapse
Affiliation(s)
- Jia-Xin Ye
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| | - Shan-Shan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Ge
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| | - Dong-Jin Wang
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| |
Collapse
|
25
|
Nam D, Yechoor VK, Ma K. Molecular clock integration of brown adipose tissue formation and function. Adipocyte 2016; 5:243-50. [PMID: 27385482 PMCID: PMC4916866 DOI: 10.1080/21623945.2015.1082015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation.
Collapse
Affiliation(s)
- Deokhwa Nam
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | - Vijay K. Yechoor
- Diabetes and Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ke Ma
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, TX, USA
| |
Collapse
|
26
|
Abstract
Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic (eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony.
Collapse
Affiliation(s)
- Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Gerhart-Hines Z, Lazar MA. Rev-erbα and the circadian transcriptional regulation of metabolism. Diabetes Obes Metab 2015; 17 Suppl 1:12-6. [PMID: 26332963 PMCID: PMC4562061 DOI: 10.1111/dom.12510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
The circadian clock orchestrates the co-ordinated rhythmicity of numerous metabolic pathways to anticipate daily and seasonal changes in energy demand. This vital physiological function is controlled by a set of individual clock components that are present in each cell of the body, and regulate each other as well as clock output genes. A key factor is the nuclear receptor, Rev-erbα, a transcriptional repressor which functions not only as a clock component but also as a modulator of metabolic programming in an array of tissues. This review explores the role of Rev-erbα in mediating this crosstalk between circadian rhythm and tissue-specific biological networks and its relevance to organismal physiology.
Collapse
Affiliation(s)
- Zachary Gerhart-Hines
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, DK
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Abstract
Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health.
Collapse
Affiliation(s)
- Zachary Gerhart-Hines
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mitchell A Lazar
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
29
|
Partonen T. Clock genes in human alcohol abuse and comorbid conditions. Alcohol 2015; 49:359-65. [PMID: 25677407 DOI: 10.1016/j.alcohol.2014.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
Alcohol-use disorders are often comorbid conditions with mood and anxiety disorders. Clinical studies have demonstrated that there are abnormalities in circadian rhythms and clocks in patients with alcohol-use disorders. Circadian clock gene variants are therefore a fruitful target of interest. Concerning alcohol use, the current findings give support, but are preliminary to, the associations of ARNTL (BMAL1) rs6486120 with alcohol consumption, ARNTL2 rs7958822 and ARNTL2 rs4964057 with alcohol abuse, and PER1 rs3027172 and PER2 rs56013859 with alcohol dependence. Furthermore, it is of interest that CLOCK rs2412646 and CLOCK rs11240 associate with alcohol-use disorders only if comorbid with depressive disorders. The mechanistic basis of these associations and the intracellular actions for the encoded proteins in question remain to be elucidated in order to have the first insight of the potential small-molecule options for treatment of alcohol-use disorders.
Collapse
|
30
|
Janich P, Meng QJ, Benitah SA. Circadian control of tissue homeostasis and adult stem cells. Curr Opin Cell Biol 2014; 31:8-15. [PMID: 25016176 DOI: 10.1016/j.ceb.2014.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023]
Abstract
The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.
Collapse
Affiliation(s)
- Peggy Janich
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Qing-Jun Meng
- MRC Career Development Award Fellow, Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Salvador Aznar Benitah
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.
| |
Collapse
|
31
|
Local daily temperatures, thermal seasons, and suicide rates in Finland from 1974 to 2010. Environ Health Prev Med 2014; 19:286-94. [PMID: 24794752 DOI: 10.1007/s12199-014-0391-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/31/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Suicide peaks in late spring and October are still seen in Finland among many countries. Weather factors have been suggested as explanations for these peaks, although with inconsistent results. Since the exact timing of these peaks varies each year, the length of daylight and changes in it seem inadequate as an explanation. We hypothesized that ambient temperature and the timing of thermal seasons might associate with suicide rate. METHODS Suicide rates from three areas across Finland (N = 10,802) were analyzed with Poisson regression in six different models against variables calculated from the local ambient daily temperature, diurnal temperature range, and the duration from the onset of thermal seasons. Separate models for men and women were constructed. RESULTS The temperature change over 5 days associated with the suicide rate of men in Helsinki region, or in other words, the lower the suicide rate was, the higher the temperature decrease had been. For women, the results were more inconsistent. CONCLUSIONS Our study is in line with some earlier studies which imply that impairment of thermoregulation might exist among suicide victims.
Collapse
|
32
|
Valente A, Jamurtas AZ, Koutedakis Y, Flouris AD. Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development. Biol Rev Camb Philos Soc 2014; 90:77-88. [DOI: 10.1111/brv.12099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Angelica Valente
- FAME Laboratory; Centre for Research and Technology Hellas; Karies Trikala 42100 Greece
- School of Physical Education and Exercise Sciences; University of Thessaly; Trikala 42100 Greece
| | - Athanasios Z. Jamurtas
- School of Physical Education and Exercise Sciences; University of Thessaly; Trikala 42100 Greece
| | - Yiannis Koutedakis
- School of Physical Education and Exercise Sciences; University of Thessaly; Trikala 42100 Greece
- Faculty of Education, Health and Wellbeing; University of Wolverhampton; Walsall WS13BD U.K
| | - Andreas D. Flouris
- FAME Laboratory; Centre for Research and Technology Hellas; Karies Trikala 42100 Greece
| |
Collapse
|
33
|
Seron-Ferre M, Reynolds H, Mendez NA, Mondaca M, Valenzuela F, Ebensperger R, Valenzuela GJ, Herrera EA, Llanos AJ, Torres-Farfan C. Impact of Maternal Melatonin Suppression on Amount and Functionality of Brown Adipose Tissue (BAT) in the Newborn Sheep. Front Endocrinol (Lausanne) 2014; 5:232. [PMID: 25610428 PMCID: PMC4285176 DOI: 10.3389/fendo.2014.00232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022] Open
Abstract
In human and sheep newborns, brown adipose tissue (BAT) accrued during fetal development is used for newborn thermogenesis. Here, we explored the role of maternal melatonin during gestation on the amount and functionality of BAT in the neonate. We studied BAT from six lambs gestated by ewes exposed to constant light from 63% gestation until delivery to suppress melatonin (LL), six lambs gestated by ewes exposed to LL but receiving daily oral melatonin (12 mg at 1700 h, LL + Mel) and another six control lambs gestated by ewes maintained in 12 h light:12 h dark (LD). Lambs were instrumented at 2 days of age. At 4-6 days of age, they were exposed to 24°C (thermal neutrality conditions) for 1 h, 4°C for 1 h, and 24°C for 1 h. Afterward, lambs were euthanized and BAT was dissected for mRNA measurement, histology, and ex vivo experiments. LL newborns had lower central BAT and skin temperature under thermal neutrality and at 4°C, and higher plasma norepinephrine concentration than LD newborns. In response to 4°C, they had a pronounced decrease in skin temperature and did not increase plasma glycerol. BAT weight in LL newborns was about half of that of LD newborns. Ex vivo, BAT from LL newborns showed increased basal lipolysis and did not respond to NE. In addition, expression of adipogenic/thermogenic genes (UCP1, ADBR3, PPARγ, PPARα, PGC1α, C/EBPβ, and perilipin) and of the clock genes Bmal1, Clock, and Per2 was increased. Remarkably, the effects observed in LL newborns were absent in LL + Mel newborns. Thus, our results support that maternal melatonin during gestation is important in determining amount and normal functionality of BAT in the neonate.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Henry Reynolds
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Natalia Andrea Mendez
- Facultad de Medicina, Laboratorio de Cronobiología del Desarrollo, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Mondaca
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Francisco Valenzuela
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Renato Ebensperger
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | | | - Emilio A. Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Anibal J. Llanos
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Claudia Torres-Farfan
- Facultad de Medicina, Laboratorio de Cronobiología del Desarrollo, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudia Torres-Farfan, Edificio Ciencias Biomédicas, Facultad de Medicina, Universidad Austral de Chile, Isla Teja S/N, P.O. Box 567, Valdivia, Chile e-mail:
| |
Collapse
|
34
|
Partonen T. Black dog barks at brown fat. Ann Med 2013; 45:465-6. [PMID: 24099037 DOI: 10.3109/07853890.2013.845379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CRY2 genetic variants associate with the depressive episodes in a range of mood disorders. Expression of core clock genes is highly responsive to stimuli in brown fat. Brown fat clocks might synchronize clocks in other tissues through their control of heat production and core body temperature. Among the repressors within the clocks, CRY2 is hypothesized to a key to the resetting of clocks throughout and play a leading role in the antidepressant effect of total sleep deprivation.
Collapse
Affiliation(s)
- Timo Partonen
- National Institute for Health and Welfare, Department of Mental Health and Substance Abuse Services , Helsinki , Finland
| |
Collapse
|