1
|
Pang H, Fan F, Zheng J, Xiao H, Tan Z, Song J, Kan B, Liu H. Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states. Structure 2024; 32:2364-2374.e2. [PMID: 39471801 DOI: 10.1016/j.str.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Lytic podophages (VP1-VP5) play crucial roles in subtyping Vibrio cholerae O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.
Collapse
Affiliation(s)
- Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Fenxia Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
2
|
Iglesias SM, Li F, Briani F, Cingolani G. Viral Genome Delivery Across Bacterial Cell Surfaces. Annu Rev Microbiol 2024; 78:125-145. [PMID: 38986128 DOI: 10.1146/annurev-micro-041222-124727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In 1952, Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Over 70 years later, our understanding of bacteriophage structure has grown dramatically, mainly thanks to the cryogenic electron microscopy revolution. In stark contrast, phage genome delivery in prokaryotes remains poorly understood, mainly due to the inherent challenge of studying such a transient and complex process. Here, we review the current literature on viral genome delivery across bacterial cell surfaces. We focus on icosahedral bacterial viruses that we arbitrarily sort into three groups based on the presence and size of a tail apparatus. We inventory the building blocks implicated in genome delivery and critically analyze putative mechanisms of genome ejection. Bacteriophage genome delivery into bacteria is a topic of growing interest, given the renaissance of phage therapy in Western medicine as a therapeutic alternative to face the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
3
|
Sørensen AN, Brøndsted L. Renewed insights into Ackermannviridae phage biology and applications. NPJ VIRUSES 2024; 2:37. [PMID: 40295767 PMCID: PMC11721090 DOI: 10.1038/s44298-024-00046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 04/30/2025]
Abstract
The Ackermannviridae family was established in 2017, containing phages previously classified within the Myoviridae family under the Viunalikevirus genus. Ackermannviridae phages have been increasingly studied due to their broad range of hosts among Enterobacteriaceae, and currently, 174 complete genomes are available on NCBI. Instrumental for their wide host infectivity, Ackermannviridae phages display a branched complex of multiple Tail Spike Proteins (TSPs). These TSPs recognize diverse surface polysaccharide receptors, allowing the phages to target strains with distinct lipopolysaccharides or capsular polysaccharides. This review gives an updated overview of the taxonomy and hosts of the expanding Ackermannviridae family with significant emphasis on recent advances in structural and computational biology for elucidating TSP diversity, structural domains, and assembly of the branched TSP complex. Furthermore, we explore the potential of engineering Ackermannviridae phages and discuss the challenges of using transducing wildtype phages for biocontrol. Finally, this review identifies bottlenecks hindering further advances in understanding Ackermannviridae phage biology and applications.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. Coinfecting phages impede each other's entry into the cell. Curr Biol 2024; 34:2841-2853.e18. [PMID: 38878771 PMCID: PMC11233250 DOI: 10.1016/j.cub.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R Chemla
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Cingolani G, Lokareddy R, Hou CF, Forti F, Iglesias S, Li F, Pavlenok M, Niederweis M, Briani F. Integrative structural analysis of Pseudomonas phage DEV reveals a genome ejection motor. RESEARCH SQUARE 2024:rs.3.rs-3941185. [PMID: 38463957 PMCID: PMC10925440 DOI: 10.21203/rs.3.rs-3941185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
DEV is an obligatory lytic Pseudomonas phage of the N4-like genus, recently reclassified as Schitoviridae. The DEV genome encodes 91 ORFs, including a 3,398 amino acid virion-associated RNA polymerase. Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts. We built de novo structures of all capsid factors and tail components involved in host attachment. We demonstrate that DEV long tail fibers are essential for infection of Pseudomonas aeruginosa and dispensable for infecting mutants with a truncated lipopolysaccharide devoid of the O-antigen. We identified DEV ejection proteins and, unexpectedly, found that the giant DEV RNA polymerase, the hallmark of the Schitoviridae family, is an ejection protein. We propose that DEV ejection proteins form a genome ejection motor across the host cell envelope and that these structural principles are conserved in all Schitoviridae.
Collapse
|
6
|
Leavitt JC, Woodbury BM, Gilcrease EB, Bridges CM, Teschke CM, Casjens SR. Bacteriophage P22 SieA-mediated superinfection exclusion. mBio 2024; 15:e0216923. [PMID: 38236051 PMCID: PMC10883804 DOI: 10.1128/mbio.02169-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 01/19/2024] Open
Abstract
Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is necessary and sufficient for exclusion by the SieA system and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants that overcome the SieA block were isolated, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single-amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in phage target specificity. Our data strongly suggest a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.IMPORTANCEThe ongoing evolutionary battle between bacteria and the viruses that infect them is a critical feature of bacterial ecology on Earth. Viruses can kill bacteria by infecting them. However, when their chromosomes are integrated into a bacterial genome as a prophage, viruses can also protect the host bacterium by expressing genes whose products defend against infection by other viruses. This defense property is called "superinfection exclusion." A significant fraction of bacteria harbor prophages that encode such protective systems, and there are many different molecular strategies by which superinfection exclusion is mediated. This report is the first to describe the mechanism by which bacteriophage P22 SieA superinfection exclusion protein protects its host bacterium from infection by other P22-like phages. The P22 prophage-encoded inner membrane SieA protein prevents infection by blocking transport of superinfecting phage DNA across the inner membrane during injection.
Collapse
Affiliation(s)
- Justin C Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Brianna M Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Charles M Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Sherwood R Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Iglesias SM, Lokareddy RK, Yang R, Li F, Yeggoni DP, David Hou CF, Leroux MN, Cortines JR, Leavitt JC, Bird M, Casjens SR, White S, Teschke CM, Cingolani G. Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery. J Mol Biol 2023; 435:168365. [PMID: 37952769 PMCID: PMC10842050 DOI: 10.1016/j.jmb.2023.168365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by ∼6° relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted β-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Daniel P Yeggoni
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Makayla N Leroux
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Juliana R Cortines
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA; Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Justin C Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mary Bird
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Sherwood R Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA; Department of Chemistry, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Leavitt JC, Woodbury BM, Gilcrease EB, Bridges CM, Teschke CM, Casjens SR. Bacteriophage P22 SieA mediated superinfection exclusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553423. [PMID: 37645741 PMCID: PMC10461980 DOI: 10.1101/2023.08.15.553423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is the only phage protein required for exclusion by the SieA system, and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants were isolated that overcome the SieA block, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in target specificity. Our data are consistent with a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.
Collapse
Affiliation(s)
- Justin C. Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Current address: Green Raccoon Scientific, Gunlock UT 84733 USA
| | - Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Current address: York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Eddie B. Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current address: Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Charles M. Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269 USA
| | - Sherwood R. Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
9
|
Li F, Hou CFD, Yang R, Whitehead R, Teschke CM, Cingolani G. High-resolution cryo-EM structure of the Shigella virus Sf6 genome delivery tail machine. SCIENCE ADVANCES 2022; 8:eadc9641. [PMID: 36475795 PMCID: PMC9728967 DOI: 10.1126/sciadv.adc9641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Sf6 is a bacterial virus that infects the human pathogen Shigella flexneri. Here, we describe the cryo-electron microscopy structure of the Sf6 tail machine before DNA ejection, which we determined at a 2.7-angstrom resolution. We built de novo structures of all tail components and resolved four symmetry-mismatched interfaces. Unexpectedly, we found that the tail exists in two conformations, rotated by ~6° with respect to the capsid. The two tail conformers are identical in structure but differ solely in how the portal and head-to-tail adaptor carboxyl termini bond with the capsid at the fivefold vertex, similar to a diamond held over a five-pronged ring in two nonidentical states. Thus, in the mature Sf6 tail, the portal structure does not morph locally to accommodate the symmetry mismatch but exists in two energetic minima rotated by a discrete angle. We propose that the design principles of the Sf6 tail are conserved across P22-like Podoviridae.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard Whitehead
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, 91 N Eagleville Road, Storrs, CT 06269, USA
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, 91 N Eagleville Road, Storrs, CT 06269, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Sprotte S, Rasmussen TS, Cho GS, Brinks E, Lametsch R, Neve H, Vogensen FK, Nielsen DS, Franz CMAP. Morphological and Genetic Characterization of Eggerthella lenta Bacteriophage PMBT5. Viruses 2022; 14:1598. [PMID: 35893664 PMCID: PMC9394477 DOI: 10.3390/v14081598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Eggerthella lenta is a common member of the human gut microbiome. We here describe the isolation and characterization of a putative virulent bacteriophage having E. lenta as host. The double-layer agar method for isolating phages was adapted to anaerobic conditions for isolating bacteriophage PMBT5 from sewage on a strictly anaerobic E. lenta strain of intestinal origin. For this, anaerobically grown E. lenta cells were concentrated by centrifugation and used for a 24 h phage enrichment step. Subsequently, this suspension was added to anaerobically prepared top (soft) agar in Hungate tubes and further used in the double-layer agar method. Based on morphological characteristics observed by transmission electron microscopy, phage PMBT5 could be assigned to the Siphoviridae phage family. It showed an isometric head with a flexible, noncontractile tail and a distinct single 45 nm tail fiber under the baseplate. Genome sequencing and assembly resulted in one contig of 30,930 bp and a mol% GC content of 51.3, consisting of 44 predicted protein-encoding genes. Phage-related proteins could be largely identified based on their amino acid sequence, and a comparison with metagenomes in the human virome database showed that the phage genome exhibits similarity to two distantly related phages.
Collapse
Affiliation(s)
- Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Torben S. Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Finn K. Vogensen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| |
Collapse
|
11
|
Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins. Viruses 2021; 13:v13081504. [PMID: 34452369 PMCID: PMC8402733 DOI: 10.3390/v13081504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.
Collapse
|
12
|
Swanson NA, Lokareddy RK, Li F, Hou CFD, Leptihn S, Pavlenok M, Niederweis M, Pumroy RA, Moiseenkova-Bell VY, Cingolani G. Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7 Å resolution. Mol Cell 2021; 81:3145-3159.e7. [PMID: 34214465 DOI: 10.1016/j.molcel.2021.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.
Collapse
Affiliation(s)
- Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Hangzhou, China
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S. In vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front Microbiol 2020; 11:510638. [PMID: 33072001 PMCID: PMC7541932 DOI: 10.3389/fmicb.2020.510638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.
Collapse
Affiliation(s)
- Mareike S Stephan
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nina K Broeker
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Abstract
Numerous bacteriophages-viruses of bacteria, also known as phages-have been described for hundreds of bacterial species. The Gram-negative Shigella species are close relatives of Escherichia coli, yet relatively few previously described phages appear to exclusively infect this genus. Recent efforts to isolate Shigella phages have indicated these viruses are surprisingly abundant in the environment and have distinct genomic and structural properties. In addition, at least one model system used for experimental evolution studies has revealed a unique mechanism for developing faster infection cycles. Differences between these bacteriophages and other well-described model systems may mirror differences between their hosts' ecology and defense mechanisms. In this review, we discuss the history of Shigella phages and recent developments in their isolation and characterization and the structural information available for three model systems, Sf6, Sf14, and HRP29; we also provide an overview of potential selective pressures guiding both Shigella phage and host evolution.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sarah M Doore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
15
|
Ueno T, Niwase K, Tsubokawa D, Kikuchi K, Takai N, Furuta T, Kawano R, Uchihashi T. Dynamic behavior of an artificial protein needle contacting a membrane observed by high-speed atomic force microscopy. NANOSCALE 2020; 12:8166-8173. [PMID: 32239053 DOI: 10.1039/d0nr01121e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacteriophage T4 and other bacteriophages have a protein component known as a molecular needle which is used for the transmembrane reaction in the infection process. In this paper, the transmembrane reaction mechanisms of artificial protein needles (PNs) constructed by protein engineering of the component protein of bacteriophage T4 are elucidated by observation of single-molecules by high-speed atomic force microscopy (HS-AFM) and molecular dynamics (MD) simulations. The HS-AFM images indicate that the tip of the needle structure stabilizes the interaction of the needle with the membrane surface and is involved in controlling the contact angle and angular velocity with respect to the membrane. The MD simulations indicate that the dynamic behavior of PN is governed by hydrogen bonds between the membrane phosphate fragments and the tip. Moreover, quartz crystal microbalance (QCM) and electrophysiological experiments indicate that the tip structure of PN affects its kinetic behavior and membrane potential. These results demonstrate that protein assemblies derived from natural biosupramolecules can be used to create nanomaterials with rationally-designed functionality.
Collapse
Affiliation(s)
- Takafumi Ueno
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hartman R, Eilers BJ, Bollschweiler D, Munson-McGee JH, Engelhardt H, Young MJ, Lawrence CM. The Molecular Mechanism of Cellular Attachment for an Archaeal Virus. Structure 2019; 27:1634-1646.e3. [PMID: 31587916 DOI: 10.1016/j.str.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Sulfolobus turreted icosahedral virus (STIV) is a model archaeal virus and member of the PRD1-adenovirus lineage. Although STIV employs pyramidal lysis structures to exit the host, knowledge of the viral entry process is lacking. We therefore initiated studies on STIV attachment and entry. Negative stain and cryoelectron micrographs showed virion attachment to pili-like structures emanating from the Sulfolobus host. Tomographic reconstruction and sub-tomogram averaging revealed pili recognition by the STIV C381 turret protein. Specifically, the triple jelly roll structure of C381 determined by X-ray crystallography shows that pilus recognition is mediated by conserved surface residues in the second and third domains. In addition, the STIV petal protein (C557), when present, occludes the pili binding site, suggesting that it functions as a maturation protein. Combined, these results demonstrate a role for the namesake STIV turrets in initial cellular attachment and provide the first molecular model for viral attachment in the archaeal domain of life.
Collapse
Affiliation(s)
- Ross Hartman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian J Eilers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Daniel Bollschweiler
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Harald Engelhardt
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Mark J Young
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; The Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA.
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; The Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
17
|
Wang C, Tu J, Liu J, Molineux IJ. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat Microbiol 2019; 4:1049-1056. [PMID: 30886360 PMCID: PMC6533119 DOI: 10.1038/s41564-019-0403-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/07/2019] [Indexed: 01/06/2023]
Abstract
For successful infection, bacteriophages must overcome multiple barriers to transport the genome and proteins across the bacterial cell envelope. We use cryo-electron tomography to study infection initiation of phage P22 in Salmonella enterica sv. Typhimurium, revealing how a channel forms to allow genome translocation into the cytoplasm. Our results show free phages initially attaching obliquely to the cell through interactions between the O antigen and two of the six tailspikes; the tail needle also abuts the cell surface. The virion then orients to the perpendicular and the needle penetrates the outer membrane. The needle is released and the internal head protein gp7* is ejected and assembles into an extra-cellular channel extending from the gp10 baseplate to the cell surface. A second protein, gp20, is ejected and assembles into a structure that extends the extra-cellular channel across the outer membrane into the periplasm. Insertion of the third ejected protein gp16 into the cytoplasmic membrane likely completes the overall trans-envelope channel into the cytoplasm. Construction of a trans-envelope channel is an essential step during infection by all short-tailed phages of Gram-negative bacteria because such virions cannot directly deliver their genome into the cell cytoplasm.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ian J Molineux
- LaMontagne Center for Infectious Disease, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
18
|
In Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620. Viruses 2018; 10:v10060289. [PMID: 29843473 PMCID: PMC6024685 DOI: 10.3390/v10060289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change.
Collapse
|
19
|
Bohm K, Porwollik S, Chu W, Dover JA, Gilcrease EB, Casjens SR, McClelland M, Parent KN. Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens. Mol Microbiol 2018; 108:288-305. [PMID: 29470858 PMCID: PMC5912970 DOI: 10.1111/mmi.13936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Bacteriophages rely on their hosts for replication, and many host genes critically determine either viral progeny production or host success via phage resistance. A random insertion transposon library of 240,000 mutants in Salmonella enterica serovar Typhimurium was used to monitor effects of individual bacterial gene disruptions on bacteriophage P22 lytic infection. These experiments revealed candidate host genes that alter the timing of phage P22 propagation. Using a False Discovery Rate of < 0.1, mutations in 235 host genes either blocked or delayed progression of P22 lytic infection, including many genes for which this role was previously unknown. Mutations in 77 genes reduced the survival time of host DNA after infection, including mutations in genes for enterobacterial common antigen (ECA) synthesis and osmoregulated periplasmic glucan (OPG). We also screened over 2000 Salmonella single gene deletion mutants to identify genes that impacted either plaque formation or culture growth rates. The gene encoding the periplasmic membrane protein YajC was newly found to be essential for P22 infection. Targeted mutagenesis of yajC shows that an essentially full-length protein is required for function, and potassium efflux measurements demonstrated that YajC is critical for phage DNA ejection across the cytoplasmic membrane.
Collapse
Affiliation(s)
- Kaitlynne Bohm
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, School of Medicine, Irvine, California 92697, USA
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, School of Medicine, Irvine, California 92697, USA
| | - John A Dover
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, School of Medicine, Irvine, California 92697, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
20
|
Zhao H, Speir JA, Matsui T, Lin Z, Liang L, Lynn AY, Varnado B, Weiss TM, Tang L. Structure of a Bacterial Virus DNA-Injection Protein Complex Reveals a Decameric Assembly with a Constricted Molecular Channel. PLoS One 2016; 11:e0149337. [PMID: 26882199 PMCID: PMC4755594 DOI: 10.1371/journal.pone.0149337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
The multi-layered cell envelope structure of Gram-negative bacteria represents significant physical and chemical barriers for short-tailed phages to inject phage DNA into the host cytoplasm. Here we show that a DNA-injection protein of bacteriophage Sf6, gp12, forms a 465-kDa, decameric assembly in vitro. The electron microscopic structure of the gp12 assembly shows a ~150-Å, mushroom-like architecture consisting of a crown domain and a tube-like domain, which embraces a 25-Å-wide channel that could precisely accommodate dsDNA. The constricted channel suggests that gp12 mediates rapid, uni-directional injection of phage DNA into host cells by providing a molecular conduit for DNA translocation. The assembly exhibits a 10-fold symmetry, which may be a common feature among DNA-injection proteins of P22-like phages and may suggest a symmetry mismatch with respect to the 6-fold symmetric phage tail. The gp12 monomer is highly flexible in solution, supporting a mechanism for translocation of the protein through the conduit of the phage tail toward the host cell envelope, where it assembles into a DNA-injection device.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, United States of America
| | - Jeffrey A. Speir
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, California, United States of America
| | - Zihan Lin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, United States of America
| | - Lingfei Liang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, United States of America
| | - Anna Y. Lynn
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, United States of America
| | - Brittany Varnado
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, United States of America
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, California, United States of America
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bhardwaj A, Sankhala RS, Olia AS, Brooke D, Casjens SR, Taylor DJ, Prevelige PE, Cingolani G. Structural Plasticity of the Protein Plug That Traps Newly Packaged Genomes in Podoviridae Virions. J Biol Chem 2015; 291:215-26. [PMID: 26574546 DOI: 10.1074/jbc.m115.696260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
Bacterial viruses of the P22-like family encode a specialized tail needle essential for genome stabilization after DNA packaging and implicated in Gram-negative cell envelope penetration. The atomic structure of P22 tail needle (gp26) crystallized at acidic pH reveals a slender fiber containing an N-terminal "trimer of hairpins" tip. Although the length and composition of tail needles vary significantly in Podoviridae, unexpectedly, the amino acid sequence of the N-terminal tip is exceptionally conserved in more than 200 genomes of P22-like phages and prophages. In this paper, we used x-ray crystallography and EM to investigate the neutral pH structure of three tail needles from bacteriophage P22, HK620, and Sf6. In all cases, we found that the N-terminal tip is poorly structured, in stark contrast to the compact trimer of hairpins seen in gp26 crystallized at acidic pH. Hydrogen-deuterium exchange mass spectrometry, limited proteolysis, circular dichroism spectroscopy, and gel filtration chromatography revealed that the N-terminal tip is highly dynamic in solution and unlikely to adopt a stable trimeric conformation at physiological pH. This is supported by the cryo-EM reconstruction of P22 mature virion tail, where the density of gp26 N-terminal tip is incompatible with a trimer of hairpins. We propose the tail needle N-terminal tip exists in two conformations: a pre-ejection extended conformation, which seals the portal vertex after genome packaging, and a postejection trimer of hairpins, which forms upon its release from the virion. The conformational plasticity of the tail needle N-terminal tip is built in the amino acid sequence, explaining its extraordinary conservation in nature.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Adam S Olia
- the Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dewey Brooke
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sherwood R Casjens
- the Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Derek J Taylor
- the Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, and
| | - Peter E Prevelige
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, the Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| |
Collapse
|
22
|
Jin Y, Sdao SM, Dover JA, Porcek NB, Knobler CM, Gelbart WM, Parent KN. Bacteriophage P22 ejects all of its internal proteins before its genome. Virology 2015; 485:128-34. [PMID: 26245366 DOI: 10.1016/j.virol.2015.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022]
Abstract
Double-stranded DNA bacteriophages are highly pressurized, providing a force driving ejection of a significant fraction of the genome from its capsid. In P22-like Podoviridae, internal proteins ("E proteins") are packaged into the capsid along with the genome, and without them the virus is not infectious. However, little is known about how and when these proteins come out of the virus. We employed an in vitro osmotic suppression system with high-molecular-weight polyethylene glycol to study P22 E protein release. While slow ejection of the DNA can be triggered by lipopolysaccharide (LPS), the rate is significantly enhanced by the membrane protein OmpA from Salmonella. In contrast, E proteins are not ejected unless both OmpA and LPS are present and their ejection when OmpA is present is largely complete before any genome is ejected, suggesting that E proteins play a key role in the early stage of transferring P22 DNA into the host.
Collapse
Affiliation(s)
- Yan Jin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Sophia M Sdao
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - John A Dover
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Natalia B Porcek
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA; Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, MI 48824, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Kristin N Parent
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Exploring the Balance between DNA Pressure and Capsid Stability in Herpesviruses and Phages. J Virol 2015; 89:9288-98. [PMID: 26136570 DOI: 10.1128/jvi.01172-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have recently shown in both herpesviruses and phages that packaged viral DNA creates a pressure of tens of atmospheres pushing against the interior capsid wall. For the first time, using differential scanning microcalorimetry, we directly measured the energy powering the release of pressurized DNA from the capsid. Furthermore, using a new calorimetric assay to accurately determine the temperature inducing DNA release, we found a direct influence of internal DNA pressure on the stability of the viral particle. We show that the balance of forces between the DNA pressure and capsid strength, required for DNA retention between rounds of infection, is conserved between evolutionarily diverse bacterial viruses (phages λ and P22), as well as a eukaryotic virus, human herpes simplex 1 (HSV-1). Our data also suggest that the portal vertex in these viruses is the weakest point in the overall capsid structure and presents the Achilles heel of the virus's stability. Comparison between these viral systems shows that viruses with higher DNA packing density (resulting in higher capsid pressure) have inherently stronger capsid structures, preventing spontaneous genome release prior to infection. This force balance is of key importance for viral survival and replication. Investigating the ways to disrupt this balance can lead to development of new mutation-resistant antivirals. IMPORTANCE A virus can generally be described as a nucleic acid genome contained within a protective protein shell, called the capsid. For many double-stranded DNA viruses, confinement of the large DNA molecule within the small protein capsid results in an energetically stressed DNA state exerting tens of atmospheres of pressures on the inner capsid wall. We show that stability of viral particles (which directly relates to infectivity) is strongly influenced by the state of the packaged genome. Using scanning calorimetry on a bacterial virus (phage λ) as an experimental model system, we investigated the thermodynamics of genome release associated with destabilizing the viral particle. Furthermore, we compare the influence of tight genome confinement on the relative stability for diverse bacterial and eukaryotic viruses. These comparisons reveal an evolutionarily conserved force balance between the capsid stability and the density of the packaged genome.
Collapse
|
24
|
Parent KN, Tang J, Cardone G, Gilcrease EB, Janssen ME, Olson NH, Casjens SR, Baker TS. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain. Virology 2014; 464-465:55-66. [PMID: 25043589 DOI: 10.1016/j.virol.2014.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 01/21/2023]
Abstract
CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the "HK97-fold" shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain ("I-domain"), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States.
| | - Jinghua Tang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States
| | - Giovanni Cardone
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States
| | - Eddie B Gilcrease
- University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112, United States
| | - Mandy E Janssen
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States
| | - Norman H Olson
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States
| | - Sherwood R Casjens
- University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112, United States.
| | - Timothy S Baker
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, United States; University of California, San Diego, Division of Biological Sciences, La Jolla, CA, 92093, United States.
| |
Collapse
|
25
|
Seul A, Müller JJ, Andres D, Stettner E, Heinemann U, Seckler R. Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker. ACTA ACUST UNITED AC 2014; 70:1336-45. [PMID: 24816102 DOI: 10.1107/s1399004714002685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
Attachment of phages to host cells, followed by phage DNA ejection, represents the first stage of viral infection of bacteria. Salmonella phage P22 has been extensively studied, serving as an experimental model for bacterial infection by phages. P22 engages bacteria by binding to the sugar moiety of lipopolysaccharides using the viral tailspike protein for attachment. While the structures of the N-terminal particle-binding domain and the major receptor-binding domain of the tailspike have been analyzed individually, the three-dimensional organization of the intact protein, including the highly conserved linker region between the two domains, remained unknown. A single amino-acid exchange in the linker sequence made it possible to crystallize the full-length protein. Two crystal structures of the linker region are presented: one attached to the N-terminal domain and the other present within the complete tailspike protein. Both retain their biological function, but the mutated full-length tailspike displays a retarded folding pathway. Fitting of the full-length tailspike into a published cryo-electron microscopy map of the P22 virion requires an elastic distortion of the crystal structure. The conservation of the linker suggests a role in signal transmission from the distal tip of the molecule to the phage head, eventually leading to DNA ejection.
Collapse
Affiliation(s)
- Anaït Seul
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Jürgen J Müller
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Dorothee Andres
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Eva Stettner
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Robert Seckler
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
26
|
Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol 2014; 92:47-60. [PMID: 24673644 DOI: 10.1111/mmi.12536] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 12/26/2022]
Abstract
Despite being essential for successful infection, the molecular cues involved in host recognition and genome transfer of viruses are not completely understood. Bacterial outer membrane proteins A and C co-purify in lipid vesicles with bacteriophage Sf6, implicating both outer membrane proteins as potential host receptors. We determined that outer membrane proteins A and C mediate Sf6 infection by dramatically increasing its rate and efficiency. We performed a combination of in vivo studies with three omp null mutants of Shigella flexneri, including classic phage plaque assays and time-lapse fluorescence microscopy to monitor genome ejection at the single virion level. Cryo-electron tomography of phage 'infecting' outer membrane vesicles shows the tail needle contacting and indenting the outer membrane. Lastly, in vitro ejection studies reveal that lipopolysaccharide and outer membrane proteins are both required for Sf6 genome release. We conclude that Sf6 phage entry utilizes either outer membrane proteins A or C, with outer membrane protein A being the preferred receptor.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bhardwaj A, Casjens SR, Cingolani G. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:342-53. [PMID: 24531468 PMCID: PMC3940195 DOI: 10.1107/s1399004713027685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022]
Abstract
Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Sherwood R. Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
28
|
Bhardwaj A, Olia AS, Cingolani G. Architecture of viral genome-delivery molecular machines. Curr Opin Struct Biol 2013; 25:1-8. [PMID: 24878339 DOI: 10.1016/j.sbi.2013.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 12/27/2022]
Abstract
From the abyss of the ocean to the human gut, bacterial viruses (or bacteriophages) have colonized all ecosystems of the planet earth and evolved in sync with their bacterial hosts. Over 95% of bacteriophages have a tail that varies greatly in length and complexity. The tail complex interrupts the icosahedral capsid symmetry and provides both an entry for viral genome-packaging during replication and an exit for genome-ejection during infection. Here, we review recent progress in deciphering the structure, assembly and conformational dynamics of viral genome-delivery tail machines. We focus on the bacteriophages P22 and T7, two well-studied members of the Podoviridae family that use short, non-contractile tails to infect Gram-negative bacteria. The structure of specialized tail fibers and their putative role in host anchoring, cell-surface penetration and genome-ejection is discussed.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Adam S Olia
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
| |
Collapse
|