1
|
Lim JY, Choi EH, Kim Y, Kim M, Choi D, Kim W, Cha B. Identification of YAP regulators through high-throughput screening and NanoBiT-based validation-drug repositioning for cancer therapy. Anim Cells Syst (Seoul) 2025; 29:325-338. [PMID: 40353256 PMCID: PMC12064127 DOI: 10.1080/19768354.2025.2489389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Yes-associated protein (YAP), a key co-transcription factor of the Hippo pathway, is a promising drug target for cancer therapy due to its critical role in promoting cell proliferation, survival, and tumor progression when dysregulated. While most Hippo pathway-targeting drugs focus on disrupting TEAD-YAP interactions or modulating the MST or LATS kinase cascade, new approaches are needed to identify small molecules that regulate YAP activity. In this study, we conducted high-throughput screening of FDA-approved drugs to discover potential YAP modulators. Using a NanoBiT-based system, which enables real-time and quantitative measurement of protein interactions, combined with phenotype-based assays in EGFP-YAP-expressing cells, we identified compounds that activate or inhibit YAP function. Among the identified YAP regulators, the microtubule destabilizer vinorelbine promoted YAP nuclear localization and transcriptional activation, while the antipsychotic drug thioridazine enhanced YAP phosphorylation at Ser127, resulting in its cytoplasmic retention and reduced transcriptional activity, effectively suppressing cancer cell growth. These findings demonstrate the potential of FDA-approved drugs in modulating YAP activity and present a novel screening strategy for developing YAP-targeting therapeutics. Furthermore, this approach can be extended to identify modulators of other signaling pathways, advancing drug discovery for a wide range of diseases.
Collapse
Affiliation(s)
- Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Eui-Hwan Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Minseong Kim
- Department of Biopharmaceutical Engineering, Hannam University, Daejeon, Republic of Korea
| | - Dongkyu Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
2
|
Liu X, Yuan Y, Wu Y, Zhu C, Liu Y, Ke B. Extracellular Matrix Stiffness Modulates Myopia Scleral Remodeling Through Integrin/F-Actin/YAP Axis. Invest Ophthalmol Vis Sci 2025; 66:22. [PMID: 39918477 PMCID: PMC11809450 DOI: 10.1167/iovs.66.2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
Purpose Scleral extracellular matrix (ECM) remodeling and weakened scleral stiffness are characteristic of myopia. The purpose of this study was to investigate the precise underlying mechanisms of scleral remodeling regulated by mechanical signals emanating from the ECM. Methods The expression and regulation of YES-associated protein (YAP) were confirmed in human samples or guinea pig myopia models by Western blot (WB) or ELISA. To mimic the biomechanical microenvironment associated with myopia, stiff (50 kPa) and soft (8 kPa) substrates were established. The underlying mechanisms were further investigated by quantitative real-time RT-PCR, WB, and fluorescence staining in cells treated with siRNAs, plasmids or inhibitors. In vivo, a YAP activator, inhibitor and F-actin polymerization facilitator were applied to evaluate their therapeutic significance for myopia. Results Our findings revealed that YAP expression is decreased in the sclera of guinea pigs and humans with myopia. Under mechanical stimuli, YAP functions as a mediator, transducing mechanical signals and modulating collagen expression. Furthermore, integrin α1β1 acts as a regulator of YAP and operates through modification of the F-actin cytoskeleton. Specifically, in response to mechanical forces, integrin α1β1 modulates F-actin restructuring. This modified actin cytoskeletal architecture subsequently facilitates the nuclear translocation of YAP, ultimately leading to the suppression of COL1A1 expression. Conclusions Our results suggest that the integrin α1β1-F-actin-YAP-COL1A1 axis constitutes a vital regulatory mechanism intrinsically associated with the pathogenesis of myopia.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengcheng Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuying Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. NPJ Microgravity 2024; 10:35. [PMID: 38514677 PMCID: PMC10957960 DOI: 10.1038/s41526-024-00386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.
Collapse
Affiliation(s)
- Nadab H Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583164. [PMID: 38464311 PMCID: PMC10925314 DOI: 10.1101/2024.03.03.583164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Zhang M, Xiong S, Gao D, Liu C, Xiao L. Tension regulates the cartilage phenotypic expression of endplate chondrocytes through the α-catenin/actin skeleton/Hippo pathway. J Cell Mol Med 2024; 28:e18133. [PMID: 38332509 PMCID: PMC10853574 DOI: 10.1111/jcmm.18133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
The study aimed to investigate the regulatory mechanism of intracellular tension signaling in endplate chondrocytes and its impact on extracellular matrix synthesis. Human endplate chondrocytes were subjected to tension load using Flexcell FX-5000™, and changes in phenotype, morphology, and the expression of Hippo signaling pathway and α-Catenin were assessed through various techniques. Through the overexpression of YAP and inhibition of α-Catenin, the study clarified the intracellular tension signaling pathway and its regulation of extracellular matrix synthesis in endplate cartilage. In vitro-cultured human endplate chondrocytes significantly suppressed phenotype-related genes and proteins, accompanied by distinct changes in cytoskeleton morphology. Tension activation resulted in the substantial activation of the Hippo pathway, increased phosphorylation of YAP, and reduced nuclear translocation of YAP. YAP overexpression alleviated the inhibitory effect of tension on extracellular matrix synthesis in endplate chondrocytes. Tension also upregulated the expression of α-Catenin in endplate chondrocytes, which was attenuated by inhibiting α-Catenin expression, thereby reducing the impact of tension on cytoskeletal morphology and YAP nuclear translocation. Taken together, the α-Catenin/actin skeleton/Hippo-coupled network is a crucial signaling pathway for tension signaling in endplate chondrocytes, providing potential therapeutic targets for the treatment of endplate cartilage degeneration.
Collapse
Affiliation(s)
- Min Zhang
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Shouliang Xiong
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Daokuan Gao
- Department of Spine SurgeryYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Chen Liu
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Liang Xiao
- Department of Spine SurgeryYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| |
Collapse
|
6
|
Ding X, Lv S, Guo Z, Gong X, Wang C, Zhang X, Meng K. Potential Therapeutic Options for Premature Ovarian Insufficiency: Experimental and Clinical Evidence. Reprod Sci 2023; 30:3428-3442. [PMID: 37460850 DOI: 10.1007/s43032-023-01300-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 12/03/2023]
Abstract
Premature ovarian insufficiency (POI) is a condition in which a woman experiences premature decline in ovarian function before the age of 40 years, manifested by menstrual disorders, decreased fertility, and possibly postmenopausal symptoms such as insomnia, hot flashes, and osteoporosis, and is one of the predominant clinical syndromes leading to female infertility. Genetic, immunologic, iatrogenic and other factors, alone or in combination, have been reported to trigger POI, yet the etiology remains unknown in most cases. The main methods currently used clinically to ameliorate menopausal symptoms due to hypoestrogenemia in POI patients are hormone replacement therapy, while the primary methods available to address infertility in POI patients are oocyte donation and cryopreservation techniques, both of which have limitations to some degree. In recent years, researchers have continued to explore more efficient and safe therapies, and have achieved impressive results in preclinical trials. In this article, we will mainly review the three most popular therapies and their related signaling pathways published in the past ten years, with the aim of providing ideas for clinical applications.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Shenmin Lv
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhipeng Guo
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaoyan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
7
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Lin Z, Gao L, Hou N, Zhi X, Zhang Y, Che Z, Deng A. Application of low-intensity pulsed ultrasound on tissue resident stem cells: Potential for ophthalmic diseases. Front Endocrinol (Lausanne) 2023; 14:1153793. [PMID: 37008913 PMCID: PMC10063999 DOI: 10.3389/fendo.2023.1153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Tissue-resident stem cells (TRSCs) have the ability to self-renew and differentiate throughout an individual's lifespan, and they utilize both mechanisms to maintain homeostasis and regenerate damaged tissues. Several studies suggest that these stem cells can serve as a potential source for cell-replacement-based therapy by promoting differentiation or expansion. In recent years, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to effectively stimulate stem cell proliferation and differentiation, promote tissue regeneration, and inhibit inflammatory responses. AIMS To present a comprehensive overview of current application and mechanism of LIPUS on tissue resident stem cells. METHODS We searched PubMed, Web of Science for articles on the effects of LIPUS on tissue resident stem cells and its application. RESULTS The LIPUS could modulate cellular activities such as cell viability, proliferation and differentiation of tissue resident stem cells and related cells through various cellular signaling pathways. Currently, LIPUS, as the main therapeutic ultrasound, is being widely used in the treatment of preclinical and clinical diseases. CONCLUSION The stem cell research is the hot topic in the biological science, while in recent years, increasing evidence has shown that TRSCs are good targets for LIPUS-regulated regenerative medicine. LIPUS may be a novel and valuable therapeutic approach for the treatment of ophthalmic diseases. How to further improve its efficiency and accuracy, as well as the biological mechanism therein, will be the focus of future research.
Collapse
|
9
|
Khlebodarova TM. The molecular view of mechanical stress of brain cells, local translation, and neurodegenerative diseases. Vavilovskii Zhurnal Genet Selektsii 2021; 25:92-100. [PMID: 34901706 PMCID: PMC8629365 DOI: 10.18699/vj21.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
The assumption that chronic mechanical stress in brain cells stemming from intracranial hypertension,
arterial hypertension, or mechanical injury is a risk factor for neurodegenerative diseases was put forward in the
1990s and has since been supported. However, the molecular mechanisms that underlie the way from cell exposure to mechanical stress to disturbances in synaptic plasticity followed by changes in behavior, cognition, and
memory are still poorly understood. Here we review (1) the current knowledge of molecular mechanisms regulating local translation and the actin cytoskeleton state at an activated synapse, where they play a key role in the
formation of various sorts of synaptic plasticity and long-term memory, and (2) possible pathways of mechanical
stress intervention. The roles of the mTOR (mammalian target of rapamycin) signaling pathway; the RNA-binding
FMRP protein; the CYFIP1 protein, interacting with FMRP; the family of small GTPases; and the WAVE regulatory
complex in the regulation of translation initiation and actin cytoskeleton rearrangements in dendritic spines of the
activated synapse are discussed. Evidence is provided that chronic mechanical stress may result in aberrant activation of mTOR signaling and the WAVE regulatory complex via the YAP/TAZ system, the key sensor of mechanical
signals, and influence the associated pathways regulating the formation of F actin filaments and the dendritic spine
structure. These consequences may be a risk factor for various neurological conditions, including autistic spectrum
disorders and epileptic encephalopathy. In further consideration of the role of the local translation system in the
development of neuropsychic and neurodegenerative diseases, an original hypothesis was put forward that one
of the possible causes of synaptopathies is impaired proteome stability associated with mTOR hyperactivity and
formation of complex dynamic modes of de novo protein synthesis in response to synapse-stimulating factors,
including chronic mechanical stress.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Liu Z, Li S, Qian X, Li L, Zhang H, Liu Z. RhoA/ROCK-YAP/TAZ Axis Regulates the Fibrotic Activity in Dexamethasone-Treated Human Trabecular Meshwork Cells. Front Mol Biosci 2021; 8:728932. [PMID: 34552960 PMCID: PMC8450533 DOI: 10.3389/fmolb.2021.728932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
High intraocular pressure (IOP) is a major risk factor for glaucoma, a leading cause of irreversible blindness. Abnormal fibrotic activity in the human trabecular meshwork (HTM) cells is considered to be partly responsible for the increased resistance of aqueous humor outflow and IOP. This study aimed to identify the fibrotic pathways using integrated bioinformatics and further elucidate their mechanism of regulating fibrotic activity in dexamethasone (DEX)-treated HTM cells. Microarray datasets from the GEO database were obtained and analyzed by GEO2R. Bioinformatics analyses, including GO and KEGG analyses, were performed to explore biological functions and signaling pathways of differentially expressed genes (DEGs). The fibrotic pathways and targets were determined by western blot, RT-qPCR, or immunofluorescence staining. The cellular elastic modulus was measured using an atomic force microscope. A total of 204 DEGs, partly enriched in fibrotic activity (collagen-containing ECM, fibroblast activation) and Rap1, Ras, TGF-β, and Hippo pathways, were identified. Experimental results showed that DEX induced fibrotic activity and regulated the expression of RhoA/ROCK in HTM cells. Similarly, the constitutively active RhoA (RhoAG14V) also promoted the fibrotic activity of HTM cells. Mechanistically, RhoAG14V induced the expression and nuclear translocation of YAP/TAZ to produce CTGF. Moreover, inhibition of ROCK or YAP decreased the expression of Collagen I and α-SMA proteins induced by DEX or RhoAG14V in HTM cells. In conclusion, these results indicate that RhoA/ROCK-YAP/TAZ axis plays a crucial role in regulating the fibrotic activity of DEX-treated HTM cells.
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Shanshan Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiuqing Qian
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Lin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J 2021; 35:e21570. [PMID: 33831275 DOI: 10.1096/fj.202002284rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The liver is the only visceral organ in the body with a tremendous capacity to regenerate in response to insults that induce inflammation, cell death, and injury. Liver regeneration is a complicated process involving a well-orchestrated activation of non-parenchymal cells in the injured area and proliferation of undamaged hepatocytes. Furthermore, the liver has a Hepatostat, defined as adjustment of its volume to that required for homeostasis. Understanding the mechanisms that control different steps of liver regeneration is critical to informing therapies for liver repair, to help patients with liver disease. The Hippo signaling pathway is well known for playing an essential role in the control and regulation of liver size, regeneration, stem cell self-renewal, and liver cancer. Thus, the Hippo pathway regulates dynamic cell fates in liver, and in absence of its downstream effectors YAP and TAZ, liver regeneration is severely impaired, and the proliferative expansion of liver cells blocked. We will mainly review upstream mechanisms activating the Hippo signaling pathway following partial hepatectomy in mouse model and patients, its roles during different steps of liver regeneration, metabolism, and cancer. We will also discuss how targeting the Hippo signaling cascade might improve liver regeneration and suppress liver tumorigenesis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Nazia Selzner
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Nishida T, Nagao Y, Hashitani S, Yamanaka N, Takigawa M, Kubota S. Suppression of adipocyte differentiation by low-intensity pulsed ultrasound via inhibition of insulin signaling and promotion of CCN family protein 2. J Cell Biochem 2020; 121:4724-4740. [PMID: 32065439 DOI: 10.1002/jcb.29680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yurika Nagao
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoko Hashitani
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Devenutto L, Quintana R, Quintana T. In vitro activation of ovarian cortex and autologous transplantation: A novel approach to primary ovarian insufficiency and diminished ovarian reserve. Hum Reprod Open 2020; 2020:hoaa046. [PMID: 33225075 PMCID: PMC7668396 DOI: 10.1093/hropen/hoaa046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) and diminished ovarian reserve are two conditions that affect women’s fertility. Oocyte donation remains an option for these patients; however, the development of certain novel technologies, such as in vitro activation of ovarian cortex (IVA), enables the possibility of activating the pool of resting primordial follicles, increasing the chance of pregnancy. OBJECTIVE AND RATIONALE Here, we review the main pathways (PI3K and Hippo signaling) that govern the activation of primordial follicles and its application through the development of culture systems that support ovarian cortex for autologous transplantation. We also review the available data from case reports regarding outcomes of pregnancy and live birth rates with IVA. SEARCH METHODS A PubMed search was conducted using the PubMed-NCBI database to identify literature pertinent to the pathways involved in the activation of primordial follicles and the outcomes of IVA techniques from 2013 to the present. OUTCOMES Women with POI have around a 5% chance of spontaneous pregnancy. Recently, novel techniques involving the activation of primordial follicles through molecular pathways have been developed, thus increasing the odds of these patients. More recently, the introduction of a drug-free IVA technique has shown to increase the number of antral follicles with successful oocyte maturation after gonadotropin treatment, reaching pregnancy rates over 30%, either through spontaneous conception or by the implementation of assisted reproductive technology. LIMITATIONS The evidence of this review is based on a few small series, so data should be interpreted with caution, and only randomized controlled trials could estimate the real magnitude and success of the procedure. REASONS FOR CAUTION IVA technique remains an experimental strategy, with limited available data and the requirement of invasive procedures. Moreover, possible carcinogenic effects not yet determined after transplantation require special caution. WIDER IMPLICATIONS In view of the results achieved, IVA could provide a promising option for the preservation of fertility in some cancer patients and prepuberal girls where the only alternative is tissue cryopreservation. STUDY FUNDING/COMPETING INTERESTS The authors received no specific funding for this work and declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Collapse
Affiliation(s)
- L Devenutto
- Reproductive Medicine Service, "Procrearte", Institution Affiliated with the University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - R Quintana
- Reproductive Medicine Service, "Procrearte", Institution Affiliated with the University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - T Quintana
- Reproductive Medicine Service, "Procrearte", Institution Affiliated with the University of Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
14
|
Nishida T, Kubota S. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:119-126. [PMID: 33088364 PMCID: PMC7560579 DOI: 10.1016/j.jdsr.2020.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular communication network factor 2 (CCN2) is a cysteine-rich secreted matricellular protein that regulates various cellular functions including cell differentiation. CCN2 is highly expressed under several types of mechanical stress, such as stretch, compression, and shear stress, in mesenchymal cells including chondrocytes, osteoblasts, and fibroblasts. In particular, CCN2 not only promotes cell proliferation and differentiation of various cells but also regulates the stability of mRNA of TRPV4, a mechanosensitive ion channel in chondrocytes. Of note, CCN2 behaves like a biomarker to sense suitable mechanical stress, because CCN2 expression is down-regulated when chondrocytes are subjected to excessive mechanical stress. These findings suggest that CCN2 is a mechano-sensing regulator. CCN2 expression is regulated by the activation of various mechano-sensing signaling pathways, e.g., mechanosensitive ion channels, integrin-focal adhesion-actin dynamics, Rho GTPase family members, Hippo-YAP signaling, and G protein-coupled receptors. This review summarizes the characterization of mechanoreceptors involved in CCN2 gene regulation and discusses the role of CCN2 as a mechano-sensing regulator of mesenchymal cell differentiation, with particular focus on chondrocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|
15
|
Dubey T, Gorantla NV, Chandrashekara KT, Chinnathambi S. Photodynamic exposure of Rose-Bengal inhibits Tau aggregation and modulates cytoskeletal network in neuronal cells. Sci Rep 2020; 10:12380. [PMID: 32704015 PMCID: PMC7378248 DOI: 10.1038/s41598-020-69403-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023] Open
Abstract
The intracellular Tau aggregates are known to be associated with Alzheimer’s disease. The inhibition of Tau aggregation is an important strategy for screening of therapeutic molecules in Alzheimer's disease. Several classes of dyes possess a unique property of photo-excitation, which is applied as a therapeutic measure against numerous neurological dysfunctions. Rose Bengal is a Xanthene dye, which has been widely used as a photosensitizer in photodynamic therapy. The aim of this work was to study the protective role of Rose Bengal against Tau aggregation and cytoskeleton modulations. The aggregation inhibition and disaggregation potency of Rose Bengal and photo-excited Rose Bengal were observed by in-vitro fluorescence, circular dichroism, and electron microscopy. Rose Bengal and photo-excited Rose Bengal induce minimal cytotoxicity in neuronal cells. In our studies, we observed that Rose Bengal and photo-excited Rose Bengal modulate the cytoskeleton network of actin and tubulin. The immunofluorescence studies showed the increased filopodia structures after photo-excited Rose Bengal treatment. Furthermore, Rose Bengal treatment increases the connections between the cells. Rose Bengal and photo-excited Rose Bengal treatment-induced actin-rich podosome-like structures associated with cell membranes. The in-vivo studies on UAS E-14 Tau mutant Drosophila suggested that exposure to Rose Bengal and photo-excited Rose Bengal efficiency rescues the behavioural and memory deficit in flies. Thus, the overall results suggest that Rose Bengal could have a therapeutic potency against Tau aggregation.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | | | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
16
|
Hagiyama M, Kimura R, Yoneshige A, Inoue T, Otani T, Ito A. Cell Adhesion Molecule 1 Contributes to Cell Survival in Crowded Epithelial Monolayers. Int J Mol Sci 2020; 21:ijms21114123. [PMID: 32527032 PMCID: PMC7312920 DOI: 10.3390/ijms21114123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
When epithelial cells in vivo are stimulated to proliferate, they crowd and often grow in height. These processes are likely to implicate dynamic interactions among lateral membranous proteins, such as cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Pulmonary epithelial cell lines that express CADM1, named NCI-H441 and RLE-6TN, were grown to become overconfluent in the polarized 2D culture system, and were examined for the expression of CADM1. Western analyses showed that the CADM1 expression levels increased gradually up to 3 times in a cell density-dependent manner. Confocal microscopic observations revealed dense immunostaining for CADM1 on the lateral membrane. In the overconfluent monolayers, CADM1 knockdown was achieved by two methods using CADM1-targeting siRNA and an anti-CADM1 neutralizing antibody. Antibody treatment experiments were also done on 6 other epithelial cell lines expressing CADM1. The CADM1 expression levels were reduced roughly by half, in association with cell height decrease by half in 3 lines. TUNEL assays revealed that the CADM1 knockdown increased the proportion of TUNEL-positive apoptotic cells approximately 10 folds. Increased expression of CADM1 appeared to contribute to cell survival in crowded epithelial monolayers.
Collapse
|
17
|
Lunding SA, Andersen AN, Hardardottir L, Olesen HØ, Kristensen SG, Andersen CY, Pors SE. Hippo signaling, actin polymerization, and follicle activation in fragmented human ovarian cortex. Mol Reprod Dev 2020; 87:711-719. [PMID: 32506789 DOI: 10.1002/mrd.23353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The Hippo pathway has been associated with regulation of early follicle growth. Studies of murine ovaries suggest that changes in the actin cytoskeleton, caused by fragmentation, result in inhibition of the Hippo pathway, and in turn, may activate follicle growth. In humans, the connections between fragmentation, the actin cytoskeleton, and follicle activation are yet to be confirmed. In this study, we investigated the impact in vitro fragmentation of a human ovarian cortex on (a) actin polymerization, (b) components of the Hippo pathway, and (c) follicle growth in vivo. The results showed that the ratio between globular and filamentous actin remained unchanged at all timepoints (0, 10, 30, 60, 120, and 240 min) following tissue fragmentation. Neither was the Hippo pathway effector protein YES-associated protein upregulated nor was gene expression of the downstream growth factors CCN2, CCN3, or CCN5 increased at any timepoint in the fragmented cortex. Furthermore, the number of growing follicles was similar in fragmented and intact cortex pieces after 6 weeks' xenotransplantation. However, the total number of surviving follicles was considerably lower in the fragmented cortex compared with intact tissue, suggesting detrimental effects of fragmentation on tissue grafting. These results indicate that fragmentation is likely to be ineffective to activate follicle growth in the human ovarian cortex.
Collapse
Affiliation(s)
- Stine A Lunding
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders N Andersen
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lilja Hardardottir
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanna Ø Olesen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stine G Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Y Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne E Pors
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
YAP Non-cell-autonomously Promotes Pluripotency Induction in Mouse Cells. Stem Cell Reports 2020; 14:730-743. [PMID: 32243844 PMCID: PMC7160372 DOI: 10.1016/j.stemcr.2020.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 01/11/2023] Open
Abstract
Yes-associated protein (YAP) is known to promote the stemness of multiple stem cell types, including pluripotent stem cells, while also antagonizing pluripotency during early embryogenesis. How YAP accomplishes these distinct functions remains unclear. Here, we report that, depending on the specific cells in which it is expressed, YAP could exhibit opposing effects on pluripotency induction from mouse somatic cells. Specifically, YAP inhibits pluripotency induction cell-autonomously but promotes it non-cell-autonomously. For its non-cell-autonomous role, YAP alters the expression of many secreted and matricellular proteins, including CYR61. YAP's non-cell-autonomous promoting effect could be recapitulated by recombinant CYR61 and abrogated by CYR61 depletion. Thus, we define a YAP-driven effect on enhancing pluripotency induction largely mediated by CYR61. Our work highlights the importance of considering the distinct contributions from heterologous cell types in deciphering cell fate control mechanisms and calls for careful re-examination of the co-existing bystander cells in complex cultures and tissues. YAP inhibits pluripotency induction when expressed cell-autonomously YAP promotes pluripotency induction when expressed non-cell-autonomously YAP expression alters the expression of genes that encode extracellular components CYR61 is secreted by YAP-expressing cells to promote nearby reprogramming
Collapse
|
19
|
Hoffman LM, Smith MA, Jensen CC, Yoshigi M, Blankman E, Ullman KS, Beckerle MC. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell 2020; 31:1774-1787. [PMID: 31967947 PMCID: PMC7521858 DOI: 10.1091/mbc.e19-01-0027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanical stimulation of fibroblasts induces changes in the actin cytoskeleton including stress fiber (SF) reinforcement and realignment. Here we characterize the nuclear response to mechanical stimulation (uniaxial cyclic stretch). Using fluorescence microscopy and quantitative image analysis we find that stretch-induced nuclear elongation and alignment perpendicular to the stretch vector are dependent on formin-regulated actin polymerization. The mechanosensitive transcription factors Yes-associated protein/Transcriptional coactivator with PDZ domain (YAP/TAZ) and myocardin-related transcription factor (MRTF-A, also known as MKL1 and MAL1) accumulate in the nucleus and activate their target genes in response to uniaxial cyclic stretch. We show that transmembrane actin nuclear (TAN) lines are induced by stretch stimulation and nuclear envelope (NE) proteins including nesprins, SUN2, and lamins form Linkers of the Nucleoskeleton and Cytoskeleton (LINC) complexes aligned with actin SFs. These NE structures are altered by pharmacological treatments (Cytochalasin D and Jasplakinolide) or genetic disruption (zyxin gene deletion) that alter actin, and their persistence requires maintenance of stretch stimulation. Nuclear pore complexes (NPCs) accumulate at TAN lines providing a potential mechanism for linking mechanical cues to NPC function.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Mark A Smith
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Masaaki Yoshigi
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
| | | | - Katharine S Ullman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
20
|
Zhang Q, Liu N, Bai J, Zhou Q, Mao J, Xu L, Liu J, Wei H, Ren C, Wu X, Wang M, Zhao B, Cong YS. Human telomerase reverse transcriptase is a novel target of Hippo-YAP pathway. FASEB J 2020; 34:4178-4188. [PMID: 31950551 DOI: 10.1096/fj.201902147r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
Telomerase plays a pivotal role in tumorigenesis by maintaining telomere homeostasis, a hallmark of cancer. However, the mechanisms by which telomerase is reactivated or upregulated during tumorigenesis remain incompletely understood. Here, we report that the Hippo pathway effector Yes-associated protein (YAP) regulates the expression of human telomerase reverse transcriptase (hTERT). Ectopic expression or physiological activation of YAP increases hTERT expression, whereas knockdown of YAP decreases the expression of hTERT. YAP binds to the hTERT promoter through interaction with the TEA domain family transcription factors and activates hTERT transcription. Furthermore, sustained YAP hyperactivation promotes telomerase activity and extends telomere length, with increased hTERT expression. In addition, we show that hTERT expression is positively correlated with YAP activation in human liver cancer tissues. Together, our results demonstrate that YAP promotes hTERT expression, which could contribute to tumor progression.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Ning Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Junjie Bai
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Haibin Wei
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chengcheng Ren
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
V H, Titus AS, Cowling RT, Kailasam S. Collagen receptor cross-talk determines α-smooth muscle actin-dependent collagen gene expression in angiotensin II-stimulated cardiac fibroblasts. J Biol Chem 2019; 294:19723-19739. [PMID: 31699892 DOI: 10.1074/jbc.ra119.009744] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive collagen deposition by myofibroblasts during adverse cardiac remodeling leads to myocardial fibrosis that can compromise cardiac function. Unraveling the mechanisms underlying collagen gene expression in cardiac myofibroblasts is therefore an important clinical goal. The collagen receptors, discoidin domain receptor 2 (DDR2), a collagen-specific receptor tyrosine kinase, and integrin-β1, are reported to mediate tissue fibrosis. Here, we probed the role of DDR2-integrin-β1 cross-talk in the regulation of collagen α1(I) gene expression in angiotensin II (Ang II)-stimulated cardiac fibroblasts. Results from gene silencing/overexpression approaches, electrophoretic mobility shift assays, and ChIP revealed that DDR2 acts via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK)-dependent transforming growth factor-β1 (TGF-β1) signaling to activate activator protein-1 (AP-1) that in turn transcriptionally enhances the expression of collagen-binding integrin-β1 in Ang II-stimulated cardiac fibroblasts. The DDR2-integrin-β1 link was also evident in spontaneously hypertensive rats and DDR2-knockout mice. Further, DDR2 acted via integrin-β1 to regulate α-smooth muscle actin (α-SMA) and collagen type I expression in Ang II-exposed cardiac fibroblasts. Downstream of the DDR2-integrin-β1 axis, α-SMA was found to regulate collagen α1(I) gene expression via the Ca2+ channel, transient receptor potential cation channel subfamily C member 6 (TRPC6), and the profibrotic transcription factor, Yes-associated protein (YAP). This finding indicated that fibroblast-to-myofibroblast conversion is mechanistically coupled to collagen expression. The observation that collagen receptor cross-talk underlies α-SMA-dependent collagen type I expression in cardiac fibroblasts expands our understanding of the complex mechanisms involved in collagen gene expression in the heart and may be relevant to cardiac fibrogenesis.
Collapse
Affiliation(s)
- Harikrishnan V
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| | - Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, India
| |
Collapse
|
22
|
Chan B, Parreno J, Glogauer M, Wang Y, Kandel R. Adseverin, an actin binding protein, regulates articular chondrocyte phenotype. J Tissue Eng Regen Med 2019; 13:1438-1452. [PMID: 31090208 DOI: 10.1002/term.2898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/11/2022]
Abstract
Chondrocytes dedifferentiate as a result of monolayer culture for cell number expansion. This is associated with the development of an elongated shape, increased actin polymerization, development of stress fibres, and expression of contractile molecules. Given the changes in actin status with dedifferentiation, the hypothesis of this study was that adseverin, an actin severing and capping protein, plays a role in regulating chondrocyte phenotype and function. This study reports that serial passaging of articular chondrocytes in monolayer culture resulted in loss of adseverin protein expression as early as Day 14 of culture and remained repressed in Passage 2 (P2) cells. Knockdown of adseverin by siRNA in primary chondrocytes promoted an increase in cell size and an elongated shape, actin stress fibres, decreased G-/F-actin ratio, and increased number of actin-free barbed ends. The cells also showed increased expression of the contractile genes and proteins, vinculin and α-smooth muscle actin, and increased ability to contract collagen gels. These are all features of dedifferentiation. These effects were due to adseverin as adseverin overexpression following transfection of the green fluorescent protein-adseverin plasmid partially reversed all of these changes in P2 chondrocytes. Furthermore, sox9 and aggrecan chondrogenic gene expression was upregulated, and collagen type I genes expression was downregulated with adseverin overexpression. The change in aggrecan mRNA expression had functional consequence as these cells exhibited increased total proteoglycan synthesis. These findings demonstrate that adseverin regulates features indicative of redifferentiation in passaged articular chondrocytes through modulation of the actin cytoskeleton status and potentially may regulate the maintenance of phenotype in primary chondrocytes.
Collapse
Affiliation(s)
- Byron Chan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Tan M, Liang Y, Huang W, Cheng Y, Jiang Z, He G, Gao Y, Pan M. [Galectin-3 induces differentiation of rat bone marrow mesenchymal stem cells into hepatocyte-like cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1076-1082. [PMID: 30377104 DOI: 10.12122/j.issn.1673-4254.2018.09.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the effect of galectin-3 in inducing the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocyte- like cells and explore the involvement of the signaling pathways in the induced cell differentiation. METHODS The third passage of cultured rat femoral BMSCs were treated with 0.5 μg/mL galectin-3, 20 ng/mL hepatocyte growth factor (HGF) or both to induce their differentiation, with untreated rat BMSCs and hepatocytes as controls. At 7, 14, 21 and 28 days of induction, the cells were examined for morphological changes followed by glycogen staining, quantitative real-time PCR and Western blotting. Gene microarray technique was used to examine the mRNA expression profile of the BMSCs induced with galectin-3. The BMSCs were also induced with galectin-3 in combination with XMU-MP-1, a Hippo signaling pathway inhibitor, after which Western blotting was performed to detect the expressions of YAP, P-YAP, ALB, AFP and CK-18 in the cells. RESULTS The cells isolated from the femoral bone marrow of SD rats showed a consistent surface marker phenotype with the BMSCs. Induction with galectin-3, HGF, or both all resulted in gradual morphological changes of the BMSCs into hepatocyte-like cells, and the cells with a combined induction for 28 days showed the highest morphological similarity with hepatocytes. The cells induced with galectin-3, HGF, or their combination for 28 days all showed increased positivity rate of glycogen staining, which was the highest in the cells with combined induction (P < 0.05) without significant difference between the cells induced with galectin-3 and HGF alone (P > 0.05). Induction with galectin-3 and HGF alone both increased the expressions of AFP, ALB and CK-18 mRNAs in the cells, and their expression levels were similar between the cells at 28 days (P > 0.05). Galectin-3 and HGF did not show an interactive effect on the mRNA expressions of AFP (F=0.236, P=0.640) or ALB (F=50.639, P=0.000), but had a synergistic effect on CK-18 mRNA expression (F=50.639, P=0.000). The protein expressions of AFP, ALB and CK18 were also increased in the induced cells but not detected in the cells without induction. Gene microarray results revealed 27 up-regulated genes and 62 down-regulated genes in galectin-3-induced BMSCs involving TGF-β, PI3K-Akt and Hippo signal pathways. Induction with galectin-3 and galectin-3+XMU-MP-1 increased YAP expression in the cells, and galectin-3+XMU-MP-1 was more efficient to induce the differentiation of the BMSCs. CONCLUSIONS Galectin-3 can induce the differentiation of rat BMSCs into hepatocyte-like cells, and the combination with HGF increases the efficiency of induced differentiation of the cells. TGF-β, PI3K-Akt and Hippo pathways are involved in the induced differentiation of the BMSCs, and inhibiting Hippo pathway can improve the induction efficiency.
Collapse
Affiliation(s)
- Minghui Tan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,First Department of General Surgery, Nanhai People's Hospital, Foshan 528000, China
| | - Yuling Liang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenbin Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuan Cheng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zesheng Jiang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Guolin He
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Mingxin Pan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
24
|
Ho LTY, Skiba N, Ullmer C, Rao PV. Lysophosphatidic Acid Induces ECM Production via Activation of the Mechanosensitive YAP/TAZ Transcriptional Pathway in Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2019; 59:1969-1984. [PMID: 29677358 PMCID: PMC5896423 DOI: 10.1167/iovs.17-23702] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Lysophosphatidic acid (LPA), a bioactive lipid, has been shown to increase resistance to aqueous humor outflow (AH) through the trabecular meshwork (TM). The molecular basis for this response of the TM to LPA, however, is not completely understood. In this study, we explored the possible involvement of mechanosensitive Yes-associated protein (YAP) and its paralog, transcriptional coactivator with PDZ-binding domain (TAZ), transcriptional activation in extracellular matrix (ECM) production by LPA-induced contractile activity in human TM cells (HTM). Methods The responsiveness of genes encoding LPA receptors (LPARs), LPA hydrolyzing lipid phosphate phosphatases (LPPs), and the LPA-generating autotaxin (ATX) to cyclic mechanical stretch in HTM cells, was evaluated by RT-quantitative (q)PCR. The effects of LPA and LPA receptor antagonists on actomyosin contractile activity, activation of YAP/TAZ, and levels of connective tissue growth factor (CTGF), and Cyr61 and ECM proteins in HTM cells were determined by immunoblotting, mass spectrometry, and immunofluorescence analyses. Results Cyclic mechanical stretch significantly increased the expression of several types of LPARs, LPP1, and ATX in HTM cells. LPA and LPA receptor–dependent contractile activity led to increases in both, the protein levels and activation of YAP/TAZ, and increased the levels of CTGF, Cyr61, α-smooth muscle actin (α–SMA), and ECM proteins in HTM cells. Conclusions The results of this study reveal that LPA and its receptors stimulate YAP/TAZ transcriptional activity in HTM cells by modulating cellular contractile tension, and augment expression of CTGF that in turn leads to increased production of ECM. Therefore, YAP/TAZ-induced increases in CTGF and ECM production could be an important molecular mechanism underlying LPA-induced resistance to AH outflow and ocular hypertension.
Collapse
Affiliation(s)
- Leona T Y Ho
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Nikolai Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
25
|
Byun J, Del Re DP, Zhai P, Ikeda S, Shirakabe A, Mizushima W, Miyamoto S, Brown JH, Sadoshima J. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J Biol Chem 2019; 294:3603-3617. [PMID: 30635403 DOI: 10.1074/jbc.ra118.006123] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, and heart failure is a major component of CVD-related morbidity and mortality. The development of cardiac hypertrophy in response to hemodynamic overload is initially considered to be beneficial; however, this adaptive response is limited and, in the presence of prolonged stress, will transition to heart failure. Yes-associated protein (YAP), the central downstream effector of the Hippo signaling pathway, regulates proliferation and survival in mammalian cells. Our previous work demonstrated that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired CM hypertrophy during chronic myocardial infarction (MI) in the mouse heart. Because of its documented cardioprotective effects, we sought to determine the importance of YAP in response to acute pressure overload (PO). Our results indicate that endogenous YAP is activated in the heart during acute PO. YAP activation that depended upon RhoA was also observed in CMs subjected to cyclic stretch. To examine the function of endogenous YAP during acute PO, Yap +/ flox;Cre α-MHC (YAP-CHKO) and Yap +/ flox mice were subjected to transverse aortic constriction (TAC). We found that YAP-CHKO mice had attenuated cardiac hypertrophy and significant increases in CM apoptosis and fibrosis that correlated with worsened cardiac function after 1 week of TAC. Loss of CM YAP also impaired activation of the cardioprotective kinase Akt, which may underlie the YAP-CHKO phenotype. Together, these data indicate a prohypertrophic, prosurvival function of endogenous YAP and suggest a critical role for CM YAP in the adaptive response to acute PO.
Collapse
Affiliation(s)
- Jaemin Byun
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Akihiro Shirakabe
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Wataru Mizushima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Shigeki Miyamoto
- the Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Joan H Brown
- the Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| |
Collapse
|
26
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Gegenfurtner FA, Zisis T, Al Danaf N, Schrimpf W, Kliesmete Z, Ziegenhain C, Enard W, Kazmaier U, Lamb DC, Vollmar AM, Zahler S. Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone. Cell Mol Life Sci 2018; 75:4539-4555. [PMID: 30206640 PMCID: PMC11105542 DOI: 10.1007/s00018-018-2919-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Actin has emerged as a versatile regulator of gene transcription. Cytoplasmatic actin regulates mechanosensitive-signaling pathways such as MRTF-SRF and Hippo-YAP/TAZ. In the nucleus, both polymerized and monomeric actin directly interfere with transcription-associated molecular machineries. Natural actin-binding compounds are frequently used tools to study actin-related processes in cell biology. However, their influence on transcriptional regulation and intranuclear actin polymerization is poorly understood to date. Here, we analyze the effects of two representative actin-binding compounds, Miuraenamide A (polymerizing properties) and Latrunculin B (depolymerizing properties), on transcriptional regulation in primary cells. We find that actin stabilizing and destabilizing compounds inversely shift nuclear actin levels without a direct influence on polymerization state and intranuclear aspects of transcriptional regulation. Furthermore, we identify Miuraenamide A as a potent inducer of G-actin-dependent SRF target gene expression. In contrast, the F-actin-regulated Hippo-YAP/TAZ axis remains largely unaffected by compound-induced actin aggregation. This is due to the inability of AMOTp130 to bind to the amorphous actin aggregates resulting from treatment with miuraenamide. We conclude that actin-binding compounds predominantly regulate transcription via their influence on cytoplasmatic G-actin levels, while transcriptional processes relying on intranuclear actin polymerization or functional F-actin networks are not targeted by these compounds at tolerable doses.
Collapse
Affiliation(s)
- Florian A Gegenfurtner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Themistoklis Zisis
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Nader Al Danaf
- Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Waldemar Schrimpf
- Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Zane Kliesmete
- Department Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Christoph Ziegenhain
- Department Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Wolfgang Enard
- Department Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, 66041, Saarbrücken, Germany
| | - Don C Lamb
- Department of Chemistry, Munich Center for Integrated Protein Science, Nanosystems Initiative Munich and Centre for Nanoscience, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, 81377, Munich, Germany.
| |
Collapse
|
28
|
Puts R, Rikeit P, Ruschke K, Knaus P, Schreivogel S, Raum K. Functional regulation of YAP mechanosensitive transcriptional coactivator by Focused Low-Intensity Pulsed Ultrasound (FLIPUS) enhances proliferation of murine mesenchymal precursors. PLoS One 2018; 13:e0206041. [PMID: 30365513 PMCID: PMC6203358 DOI: 10.1371/journal.pone.0206041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/05/2018] [Indexed: 12/02/2022] Open
Abstract
Yes-associated protein (YAP) acts as a mechanotransducer in determining the cell fate of murine C2C12 mesenchymal precursors as investigated after stimulation with ultrasound. We applied Focused Low-Intensity Pulsed Ultrasound (FLIPUS) at a sound frequency of 3.6 MHz, 100 Hz pulse repetition frequency (PRF), 27.8% duty cycle (DC), and 44.5 mW/cm2 acoustic intensity ISATA for 5 minutes and evaluated early cellular responses. FLIPUS decreased the level of phosphorylated YAP on Serine 127, leading to higher levels of active YAP in the nucleus. This in turn enhanced the expression of YAP-target genes associated with actin nucleation and stabilization, cytokinesis, and cell cycle progression. FLIPUS enhanced proliferation of C2C12 cells, whereas silencing of YAP expression abolished the beneficial effects of ultrasound. The expression of the transcription factor MyoD, defining cellular myogenic differentiation, was inhibited by mechanical stimulation. This study shows that ultrasound exposure regulates YAP functioning, which in turn improves the cell proliferative potential, critical for tissue regeneration process.
Collapse
Affiliation(s)
- Regina Puts
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- * E-mail:
| | - Paul Rikeit
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Karen Ruschke
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Sophie Schreivogel
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Julius Wolff Institute, Charité–Berlin University of Medicine, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
| |
Collapse
|
29
|
Kang J, Wang J, Yao Z, Hu Y, Ma S, Fan Q, Gao F, Sun Y, Sun J. Fascin induces melanoma tumorigenesis and stemness through regulating the Hippo pathway. Cell Commun Signal 2018; 16:37. [PMID: 29970086 PMCID: PMC6029074 DOI: 10.1186/s12964-018-0250-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background Fascin is a F-actin bundling protein and its overexpression is correlated with poor prognosis and increases metastatic potential in a number of cancers. But underlying function and mechanism of fascin on tumorigenesis in melanoma remain elusive. Methods The melanoma cell lines WM793 and WM39 were employed for the soft agar and sphere formation assay. Quantitative RT-PCR and Western blot were performed for identifying the gene expression at mRNA and protein levels, respectively. Co-IP and in vitro GST pulldown experiments were used to test the interaction between fascin and MST2. Results Fascin regulates tumorigenesis and cancer cell stemness in melanoma through inhibition of the Hippo pathway kinase MST2 and the activation of transcription factor TAZ. Our data showed that fascin interacts with the kinase domain of MST2 to inhibit its homodimer formation and kinase activity. Depletion of fascin led to increase of p-LATS level and decrease of TAZ, but not YAP. We also demonstrated that fascin regulates melanoma tumorigenesis independent of its actin-bundling activity. Conclusions Fascin is a new regulator of the MST2-LATS-TAZ pathway and plays a critical role in melanoma tumorigenesis. Inhibition of fascin reduces melanoma tumorigenesis and stemness, and thus fascin could be a potential therapeutic target for this malignancy. Electronic supplementary material The online version of this article (10.1186/s12964-018-0250-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxin Kang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhuang Yao
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Yuanzhao Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shijie Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Gao
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yan Sun
- Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jianwei Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
31
|
Fan Q, Cheng Y, Chang HM, Deguchi M, Hsueh AJ, Leung PCK. Sphingosine-1-phosphate promotes ovarian cancer cell proliferation by disrupting Hippo signaling. Oncotarget 2018; 8:27166-27176. [PMID: 28460443 PMCID: PMC5432326 DOI: 10.18632/oncotarget.15677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Epithelial ovarian carcinomas account for more than 90% of human ovarian cancers and have become the primary cause of death for gynecological malignancies. Unlimited cell proliferation and resistance to cell apoptosis contribute to the development of ovarian cancers. However, the underlying mechanisms involved in these processes in epithelial ovarian carcinomas are yet poorly understood. In the present study, we examined the Hippo signaling gene expression and investigated the effects of Sphingosine 1-phosphate (S1P) on cell proliferation and the underlying mechanisms in human ovarian cancer cell lines, OVCAR3 and SKOV3. Our results demonstrate that S1P disrupts Hippo signaling by reducing YAP phosphorylation and increasing the expression of CCN1 and CCN2 in both ovarian cancer cells. Furthermore, the increase in CCN1/CCN2 expression contributes to the S1P-induced increase in cancer cell proliferation.
Collapse
Affiliation(s)
- Qianlan Fan
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Yuan Cheng
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Masashi Deguchi
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
32
|
Abstract
The Hippo pathway has generated considerable interest in recent years because of its involvement in several key hallmarks of cancer progression and metastasis. Research on the Hippo signaling pathway in cancer has been used to determine the activity of yes-associated protein (YAP) in tumorigenesis and disease progression. Previous studies have shown that the Hippo pathway can be used as a target to inhibit YAP activity and is a viable treatment for cancer. However, more studies are required to further advance our understanding of the Hippo signaling pathway in cancer. It has been shown that knockout of serine/threonine-kinases LATS1/2 in the Hippo pathway suppresses cancer immunity in mice. In addition, suppression of the oncogene YAP could contribute toward cancer immune therapy. Therefore, regulation of Hippo signaling can be an attractive alternative strategy for cancer treatment. This review will provide a summary of currently known compounds that activate or suppress the Hippo pathway.
Collapse
|
33
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
34
|
Gosselin P, Rando G, Fleury-Olela F, Schibler U. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM). Genes Dev 2017; 30:1895-907. [PMID: 27601530 PMCID: PMC5024686 DOI: 10.1101/gad.284828.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022]
Abstract
Gosselin et al. designed a widely applicable method, dubbed BC-STAR-PROM, to identify signal-activated TFs without any prior knowledge of their properties. To establish proof of concept for BC-STAR-PROM, they applied it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3′ untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF–myocardin-related TF (MRTF) activity bouts in proliferating cells.
Collapse
Affiliation(s)
- Pauline Gosselin
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gianpaolo Rando
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
35
|
Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B. Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 2017; 7:1405. [PMID: 28469167 PMCID: PMC5431199 DOI: 10.1038/s41598-017-01585-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Menna Elaskandrany
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60607, USA
| | - Douglas Lazzaro
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Maria B Grant
- Departments of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA.
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA.
| |
Collapse
|
36
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
37
|
Giampietro C. VE-cadherin complex plasticity: EPS8 and YAP play relay at adherens junctions. Tissue Barriers 2016; 4:e1232024. [PMID: 28123926 DOI: 10.1080/21688370.2016.1232024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/24/2023] Open
Abstract
The vascular endothelium is a selective barrier that separates the organs from the circulating blood. The endothelium has a wide variety of functions controlled by cell-to-cell junctions and in particular by Vascular Endothelial cadherin (VE-cadherin) complexes. Recent research identified the epidermal growth factor receptor kinase substrate 8 (EPS8) and the co-transcriptional regulator yes-associated protein (YAP) as new components of the adherens junction complexes. The binding of these 2 proteins to VE-cadherin determines the formation of different specialized adhesive structures contributing to the dynamic control of vascular permeability. This commentary will summarize what is currently known about the role of EPS8 and YAP in the modification of molecular organization and intracellular signaling of adherens junction complexes, and their potential multiple effects on vascular homeostasis.
Collapse
Affiliation(s)
- Costanza Giampietro
- Department of Biosciences, University of Milan, Milan, Italy; IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
38
|
Feng J, Gou J, Jia J, Yi T, Cui T, Li Z. Verteporfin, a suppressor of YAP-TEAD complex, presents promising antitumor properties on ovarian cancer. Onco Targets Ther 2016; 9:5371-81. [PMID: 27621651 PMCID: PMC5010158 DOI: 10.2147/ott.s109979] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Yes-associated protein (YAP) is a key transcriptional coactivator of Hippo pathway and has been shown to be an oncoprotein in ovarian cancer (OC). Verteporfin (VP), clinically used in photodynamic therapy for neovascular macular degeneration, has been recently proven to be a suppressor of YAP–TEAD complex and has shown potential in anticancer treatment. In this study, we aimed to explore the potential effect of VP in the treatment of OC. Our results showed that VP led to inhibition of proliferation in a time- and dose-dependent manner and to the suppression of migratory and invasive capacities of OC cells. Western blot and real-time polymerase chain reaction demonstrated that VP induced YAP cytoplasmic retention and deregulated inducible YAP and CCNs in OC cells. In vivo, VP exerted a significant effect on tumor growth in OVCAR8 xenograft mice, resulting in tumor nodules with lower average weight and reduced volume of gross ascites. In addition, VP treatment remarkably upregulated cytoplasmic YAP and phosphorylation YAP and downregulated CCN1 and CCN2, but exerted little effect on YAP-upstream components in Hippo pathway. In conclusion, our results suggested that VP may be a promising agent for OC, acting by suppressing YAP–TEAD complex.
Collapse
Affiliation(s)
| | | | - Jia Jia
- Department of Gynecology and Obstetrics
| | - Tao Yi
- Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao Cui
- Department of Gynecology and Obstetrics
| | - Zhengyu Li
- Department of Gynecology and Obstetrics; Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
39
|
Speight P, Kofler M, Szászi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun 2016; 7:11642. [PMID: 27189435 PMCID: PMC4873981 DOI: 10.1038/ncomms11642] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/15/2016] [Indexed: 01/12/2023] Open
Abstract
Myocardin-related transcription factor (MRTF) and TAZ are major mechanosensitive transcriptional co-activators that link cytoskeleton organization to gene expression. Despite many similarities in their regulation, their physical and/or functional interactions are unknown. Here we show that MRTF and TAZ associate partly through a WW domain-dependent mechanism, and exhibit multilevel crosstalk affecting each other's expression, transport and transcriptional activity. Specifically, MRTF is essential for TAZ expression; TAZ and MRTF inhibit each other's cytosolic mobility and stimulus-induced nuclear accumulation; they antagonize each other's stimulatory effect on the α-smooth muscle actin (SMA) promoter, which harbours nearby cis-elements for both, but synergize on isolated TEAD-elements. Importantly, TAZ confers Smad3 sensitivity to the SMA promoter. Thus, TAZ is a context-dependent switch during mechanical versus mechano/chemical signalling, which inhibits stretch-induced but is indispensable for stretch+TGFβ-induced SMA expression. Crosstalk between these cytoskeleton-regulated factors seems critical for fine-tuning mechanical and mechanochemical transcriptional programmes underlying myofibroblast transition, wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8.,Department Surgery, University of Toronto, Toronto, Ontario, Canada M5P 1T5
| | - András Kapus
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8.,Department Surgery, University of Toronto, Toronto, Ontario, Canada M5P 1T5.,Department Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
40
|
Corcoran JA, McCormick C. Viral activation of stress-regulated Rho-GTPase signaling pathway disrupts sites of mRNA degradation to influence cellular gene expression. Small GTPases 2015; 6:178-85. [PMID: 26480288 PMCID: PMC4905259 DOI: 10.1080/21541248.2015.1093068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023] Open
Abstract
Viruses are useful tools that often reveal previously unrecognized levels of control within a cell. By studying the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), we discovered a new signaling axis in endothelial cells (ECs) that links actin cytoskeleton dynamics to post-transcriptional control of gene expression. Translational repression and rapid decay of mRNAs containing AU-rich elements (AREs) occurs in cytoplasmic RNA granules known as processing bodies (PBs). Rho-GTPase activity influences PB dynamics but mechanistic details remain obscure. We have previously shown that the KSHV Kaposin B protein blocks the degradation of ARE-mRNAs that encode potent cytokines and angiogenic factors, at least in part by preventing PB formation. Moreover, Kaposin B is sufficient to cause marked alterations in endothelial cell physiology including the formation of long parallel actin stress fibers and accelerated migration and angiogenic phenotypes. All of these phenotypes depend on Kaposin B-mediated activation of a non-canonical signaling pathway comprising the stress-inducible kinase MK2, hsp27, p115RhoGEF and RhoA. Accelerated endothelial cell migration and angiogenesis depends on the subsequent activation of the RhoA-dependent kinase ROCK, but PB disruption is ROCK-independent. In this Commentary, we discuss implications of the activation of this signaling axis, and propose mechanistic links between RhoA activation and PB dynamics.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS, Canada
| |
Collapse
|
41
|
Kim HM, Jung WH, Koo JS. Expression of Yes-associated protein (YAP) in metastatic breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11248-11257. [PMID: 26617849 PMCID: PMC4637664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to investigate the expression of Yes-associated protein (YAP) in different metastatic sites in metastatic breast cancer and to determine the clinical implications of these patterns. Immunohistochemical staining was used to investigate the expression of YAP and phospho-YAP in tissue microarrays from 122 cases of metastatic breast cancer (bone metastasis = 29, brain metastasis = 38, liver metastasis = 12, and lung metastasis = 43). The expression levels of YAP and phospho-YAP differed according to the metastatic site in metastatic breast cancer. Specifically, nuclear expression of phospho-YAP was high in brain metastasis but low in lung metastasis (P = 0.010). The effects of YAP and phospho-YAP expression on clinical outcomes were investigated by univariate analysis. This analysis showed that nuclear YAP positivity (P = 0.008) and nuclear phospho-YAP positivity (P = 0.003) were both associated with shorter overall survival. In conclusion, the level of YAP expression varies according to the metastatic site in metastatic breast cancer. Moreover, high YAP expression was correlated with poor prognosis.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| | - Woo Hee Jung
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| |
Collapse
|
42
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|
43
|
Pasipoularides A. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. J Cardiovasc Transl Res 2015; 8:293-318. [PMID: 25971844 PMCID: PMC4519381 DOI: 10.1007/s12265-015-9630-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023]
Abstract
Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. A primary goal of translational cardiovascular research is recognizing whether disease-related changes in phenotype can be averted by eliminating or reducing the effects of environmental epigenetic risks. There may be significant medical benefits in using gene-by-environment interaction knowledge to prevent or reverse organ abnormalities and disease. This survey proposes that "environmental" forces associated with diastolic RV/LV rotatory flows exert important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations. Mechanisms analogous to Murray's law of hydrodynamic shear-induced endothelial cell modulation of vascular geometry are likely to link diastolic vortex-associated shear, torque and "squeeze" forces to RV/LV adaptations. The time has come to explore a new paradigm in which such forces play a fundamental epigenetic role, and to work out how heart cells react to them. Findings from various imaging modalities, computational fluid dynamics, molecular cell biology and cytomechanics are considered. The following are examined, among others: structural dynamics of myocardial cells (endocardium, cardiomyocytes, and fibroblasts), cytoskeleton, nucleoskeleton, and extracellular matrix; mechanotransduction and signaling; and mechanical epigenetic influences on genetic expression. To help integrate and focus relevant pluridisciplinary research, rotatory RV/LV filling flow is placed within a working context that has a cytomechanics perspective. This new frontier in cardiac research should uncover versatile mechanistic insights linking filling vortex patterns and attendant forces to variable expressions of gene regulation in RV/LV myocardium. In due course, it should reveal intrinsic homeostatic arrangements that support ventricular myocardial function and adaptability.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA,
| |
Collapse
|
44
|
Lorthongpanich C, Issaragrisil S. Emerging Role of the Hippo Signaling Pathway in Position Sensing and Lineage Specification in Mammalian Preimplantation Embryos. Biol Reprod 2015; 92:143. [PMID: 25947059 DOI: 10.1095/biolreprod.114.127803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/29/2015] [Indexed: 12/29/2022] Open
Abstract
In preimplantation mouse embryos, the first lineage differentiation takes place in the 8- to 16-cell-stage embryo and results in formation of the trophectoderm (TE) and inner cell mass (ICM), which will give rise to the trophoblast of the placenta and the embryo proper, respectively. Although, it is widely accepted that positioning of a cell within the embryo influences lineage differentiation, the mechanism underlying differential lineage differentiation and how it involves cell position are largely unknown. Interestingly, novel cues from the Hippo pathway have been recently demonstrated in the preimplantation mouse embryo. Unlike the mechanisms reported from epithelium-cultured cells, the Hippo pathway was found to be responsible for translating positional information to lineage specification through a position-sensing mechanism. Disruption of Hippo pathway-component genes in early embryos results in failure of lineage specification and failure of postimplantation development. In this review, we discuss the unique role of the Hippo signaling pathway in early embryo development and its role in lineage specification. Understanding the activity and regulation of the Hippo pathway may offer new insights into other areas of developmental biology that evolve from understanding of this cell-fate specification in the early embryonic cell.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Abstract
Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology (A.J.W.H., Y.C.), Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317; Department of Obstetrics and Gynecology (K.K.), St. Mariana University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan; Department of Reproductive Medicine & Gynecology (B.C.J.M.F.), University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
46
|
Metaplastic carcinoma show different expression pattern of YAP compared to triple-negative breast cancer. Tumour Biol 2014; 36:1207-12. [DOI: 10.1007/s13277-014-2735-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023] Open
|
47
|
Jin L, Chen Y, Mu X, Lian Q, Deng H, Ge R. Phosphoproteomic analysis of gossypol-induced apoptosis in ovarian cancer cell line, HOC1a. BIOMED RESEARCH INTERNATIONAL 2014; 2014:123482. [PMID: 25180175 PMCID: PMC4144078 DOI: 10.1155/2014/123482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/17/2022]
Abstract
Ovarian cancer is a major cause for death of gynecological cancer patients. The efficacy of traditional surgery and chemotherapy is rather compromised and platinum-resistant cancer recurs. Finding new therapeutic targets is urgently needed to increase the survival rate and to improve life quality of patients with ovarian cancer. In the present work, phosphoproteomic analysis was carried out on untreated and gossypol-treated ovarian cancer cell line, HOC1a. We identified approximately 9750 phosphopeptides from 3030 phosphoproteins, which are involved in diverse cellular processes including cytoskeletal organization, RNA and nucleotide binding, and cell cycle regulation. Upon gossypol treatment, changes in phosphorylation of twenty-nine proteins including YAP1 and AKAP12 were characterized. Western blotting and qPCR analysis were used to determine expression levels of proteins in YAP1-related Hippo pathway showing that gossypol induced upregulation of LATS1, which phosphorylates YAP1 at Ser 61. Furthermore, our data showed that gossypol targets the actin cytoskeletal organization through mediating phosphorylation states of actin-binding proteins. Taken together, our data provide valuable information to understand effects of gossypol on protein phosphorylation and apoptosis of ovarian cancer cells.
Collapse
Affiliation(s)
- Lixu Jin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinlin Mu
- Peking University People's Hospital, Beijing 100044, China
| | - Qingquan Lian
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haiyun Deng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renshan Ge
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
48
|
Kim SK, Jung WH, Koo JS. Yes-associated protein (YAP) is differentially expressed in tumor and stroma according to the molecular subtype of breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3224-3234. [PMID: 25031743 PMCID: PMC4097213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
In this study, we aimed to clarify the expression profiles of Yes-associated protein (YAP) and phosphorylated YAP (pYAP) protein and to verify the clinical implication of the expression of YAP protein in human breast cancer. We selected 678 cases of formalin-fixed paraffin-embedded (FFPE) breast cancer tissue to construct tissue microarray (TMA) blocks. We performed immunohistochemical staining of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth receptor-2 (HER-2) and Ki-67 and fluorescent in situ hybridization (FISH) assay for HER-2 on the TMA sections and divided breast cancers into molecular subtypes: luminal A, luminal B, HER-2, triple negative breast cancer (TNBC). Then, we examined YAP and pYAP expression status using immunohistochemical analysis according to the molecular subtypes of breast cancer. We found that HER-2 type breast cancer demonstrated elevated expression level in tumoral cytoplasmic YAP (P = 0.011) and pYAP (P = 0.049). Expressions of stromal YAP (P = 0.002) and pYAP (P < 0.001) were higher in luminal B and HER-2 type breast cancer but lower in TNBC. In univariate analysis, nuclear YAP expression of tumor cells was associated with shorter overall survival (OS) (P = 0.024). Cytoplasmic YAP expression of HER-2 type breast cancer cells negatively affected disease-free survival (DFS) (P = 0.034). In conclusion, we concluded that there was a significant difference in YAP and pYAP expression status according to molecular subtypes and tumoral and cellular components of breast cancers. Finally, we found that nuclear and cytoplasmic YAP expression could be a prognostic marker for breast cancer patients.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| | - Woo Hee Jung
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| |
Collapse
|
49
|
Rajakylä EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 2014; 5:e27539. [PMID: 24603113 DOI: 10.4161/sgtp.27539] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology; Institute of Biotechnology; University of Helsinki; Helsinki, Finland
| |
Collapse
|