1
|
Zeng J, Tong Z, Li Z, Liu Y, Xie L, Wang T, Li S, Li L. Complete degradation of polycyclic antibiotic methacycline by a micro/nanostructured biogenic Mn oxide composite from engineered Mn(II)-oxidizing Pseudomonas sp. MB04B. Microbiol Spectr 2025:e0161124. [PMID: 40377307 DOI: 10.1128/spectrum.01611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/04/2025] [Indexed: 05/18/2025] Open
Abstract
The misuse and improper disposal of methacycline (MTC), a widely used broad-spectrum antibiotic in human clinical settings and livestock production, poses significant threats to both human health and the ecological environment. In this study, a wild-type Mn(II)-oxidizing Pseudomonas strain MB04B was modified through multiple gene deletions, leading to a maximum 35% increase in Mn oxide deposit amount (MnODA) in the engineered strain MB04R-14, and accelerated formation of biogenic Mn oxide (BMO) aggregates, which exhibited the capability to degrade and detoxify MTC completely. After constructing a mini-Tn5 transposon insertion mutant library and screening for MnODA-increased mutants, a total of 10 target genes located in the corresponding mutant loci were identified using the high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) method. These genes were systematically knocked out singly or in multiple combinations, and the highest MnODA-promoted mutant (MB04R-14) was obtained, in which seven genes were knocked out. Following the characterization of the BMO aggregate complex formed in MB04R-14 as a micro-/nanostructured ramsdellite (MnO2) composite through means of several analysis methods, the complex was assessed for MTC degradation under laboratory trials. Complete MTC degradation was revealed after 24 h of treatment with the BMO complex, and the metal ions Mg2+, Cu2+, Ni2+, and Co2+ significantly inhibited MTC degradation efficiency. Liquid chromatography-mass spectrometry identified three intermediates in the degradation pathway, and a possible degradation-metabolic pathway of MTC by the BMO complex was proposed. Finally, the residual antibiotic activity, continuous degradation cycle performance, and treatment of MTC-containing hospital wastewater were evaluated. IMPORTANCE Due to the common usage and recalcitrance to degradation, methacycline is often found in various surface water and wastewater as a persistent antibiotic toxicant, posing significant risks to the environment and public health. By engineering a Pseudomonas strain, we developed a dynamic oxidative composite comprising engineered Pseudomonas cells and biogenic Mn oxides. This system not only enhances oxidative capacities but also accelerates the formation of biogenic Mn oxides, leading to the complete degradation of methacycline. The findings highlight the potential of engineered Pseudomonas strain as a sustainable solution for mitigating antibiotic pollution, thereby contributing to cleaner water resources and protecting ecosystems.
Collapse
Affiliation(s)
- Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenghu Tong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Xie
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiwei Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Mo W, Wang H, Wang J, Wang Y, Liu Y, Luo Y, He M, Cheng S, Mei H, He J, Su J. Advances in Research on Bacterial Oxidation of Mn(II): A Visualized Bibliometric Analysis Based on CiteSpace. Microorganisms 2024; 12:1611. [PMID: 39203453 PMCID: PMC11356483 DOI: 10.3390/microorganisms12081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Manganese (Mn) pollution poses a serious threat to the health of animals, plants, and humans. The microbial-mediated Mn(II) removal method has received widespread attention because of its rapid growth, high efficiency, and economy. Mn(II)-oxidizing bacteria can oxidize toxic soluble Mn(II) into non-toxic Mn(III/IV) oxides, which can further participate in the transformation of other heavy metals and organic pollutants, playing a crucial role in environmental remediation. This study aims to conduct a bibliometric analysis of research papers on bacterial Mn(II) oxidation using CiteSpace, and to explore the research hotspots and developmental trends within this field between 2008 and 2023. A series of visualized knowledge map analyses were conducted with 469 screened SCI research papers regarding annual publication quantity, author groups and their countries and regions, journal categories, publishing institutions, and keywords. China, the USA, and Japan published the most significant number of research papers on the research of bacterial Mn(II) oxidation. Research hotspots of bacterial Mn(II) oxidation mainly focused on the species and distributions of Mn(II)-oxidizing bacteria, the influencing factors of Mn(II) oxidation, the mechanisms of Mn(II) oxidation, and their applications in environment. This bibliometric analysis provides a comprehensive visualized knowledge map to quickly understand the current advancements, research hotspots, and academic frontiers in bacterial Mn(II) oxidation.
Collapse
Affiliation(s)
- Wentao Mo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Hang Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Jianghan Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yue Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yunfei Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Yi Luo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Minghui He
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Shuang Cheng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Huiting Mei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China;
| | - Jianmei Su
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (W.M.); (H.W.); (J.W.); (Y.W.); (Y.L.); (Y.L.); (M.H.); (S.C.); (H.M.)
| |
Collapse
|
3
|
Wang X, Pan H, Zhou H, Feng Z, Li A, Guan X. Draft genome of Pseudomonas sp. XK-1, a marine bacterium capable of degrading lignin and Mn(II) oxidation. Microbiol Resour Announc 2024; 13:e0041124. [PMID: 38864618 PMCID: PMC11256819 DOI: 10.1128/mra.00411-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
We report the draft genome sequence of marine bacteria, Pseudomonas sp. XK-1. Strain XK-1 could facilitate Mn(II) oxidation with lignin as the sole carbon source. The genome length of XK-1 is 4,751,776 bp, with a G + C content of 62.61%. Genome analyses reveal the carbon and manganese cycling driven by bacteria.
Collapse
Affiliation(s)
- Xukang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Zhongqing Feng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xiaoyan Guan
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| |
Collapse
|
4
|
Huang Y, Liu Z, Liu H, Ma C, Chen W, Huangfu X. Treatment of wastewater containing thallium(I) by long-term operated manganese sand filter: Synergistic action of MnOx and MnOM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168085. [PMID: 37914136 DOI: 10.1016/j.scitotenv.2023.168085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
The long-term and stable removal of thallium (Tl) from industrial wastewater generated by mining and smelting operations remains challenging. While sand filters are commonly applied for the simultaneous removal of Mn(II) and other heavy metals, they have limited efficacy in treating Tl-contaminated wastewater. To address this gap, we operated a lab-scale Mn sand filter (MF) without added microorganisms to investigate the efficiency and mechanisms of Mn(II) and Tl(I) removal. Trends in effluent Mn(II) and Tl(I) concentrations indicated three operational stages: start-up, developing and maturation. Over time, the removal efficiency of Tl(I) gradually improved, plateauing at approximately 80 % eventually. Throughout operation, Tl(I) was sequestrated via surface complexation and ion exchange. Besides, enrichment of Sphingobium and other typical manganese oxidizing microorganisms (MnOM) during operation facilitated Mn(II) and Tl(I) oxidation and sequestration by generating biogenic manganese oxides (BioMnOx). Additionally, the accurate control of water quality and operating conditions during operation could also enhance removal efficiency. In summary, physicochemical actions of Mn oxides and biochemical actions of microorganisms synergistically contributed to the sequestration of Mn(II) and Tl(I). These findings provided a novel and sustainable method for the long-term and stable treatment of industrial wastewater containing thallium.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wanpeng Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Balakrishnan A, Dhaipule NGK, Philip J. Microbiologically influenced corrosion of AISI 202 and 316L stainless steels under manganese-oxidizing biofilms. 3 Biotech 2024; 14:12. [PMID: 38107030 PMCID: PMC10719233 DOI: 10.1007/s13205-023-03845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2023] [Indexed: 12/19/2023] Open
Abstract
In this work, we study the microbiologically influenced corrosion (MIC) of AISI 316L (1-2% Mn) and AISI 202 (8-12% Mn) in the presence of manganese-oxidizing biofilms. Microbiological and 16S rRNA amplicon sequencing analysis on biofilms formed on the surfaces of both the SS materials after exposure to seawater for two months showed the presence of predominant Mn-oxidizing bacteria (MnOB) groups. The Mn contents in the biofilms formed on AISI 202 and 316L were 0.577 and 0.193 ppm, respectively. Mixed biofilms of 11 pure axenic cultures of MnOB isolated and identified from both the SS biofilms were used for MIC studies on SS. Electrochemical studies showed four orders of magnitude high icorr values (1.271 × 10-4 A.cm-2) and the onset of crevice corrosion potentials (502 mV) confirming the localized corrosion of AISI 202 and 316L, respectively, under MnOB biofilms. X-ray photoelectron spectroscopic (XPS) analysis on biotic surfaces showed a reduced Mn content from 10.1 to 7.9 atom.% confirming the Mn oxidation in AISI 202. This study confirms that MnOB biofilms on the SS surfaces can lead to MIC due to biogenic Mn oxidation, depletion of Fe and Mn content, and enrichment of Cr content. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03845-z.
Collapse
Affiliation(s)
- Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India
- Homi Bhabha National Institute Kalpakkam, Mumbai, 400094 India
| | - Nanda Gopala Krishna Dhaipule
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India
| | - John Philip
- Homi Bhabha National Institute Kalpakkam, Mumbai, 400094 India
- Materials Characterization Group, MMG, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India
| |
Collapse
|
6
|
Fan W, Yan S, Gao B, Xiu W, Zhao Y, Guo H. Linking groundwater microbiome and functional ecological clusters to geogenic high hexavalent chromium from deep aquifers in a loess plateau. WATER RESEARCH 2023; 244:120545. [PMID: 37659182 DOI: 10.1016/j.watres.2023.120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Geogenic high hexavalent chromium [Cr(Ⅵ)] in groundwater is a global environmental problem. However, the groundwater microbiome and its linkage to geogenic high Cr(Ⅵ) from deep aquifers still need to be elucidated. Here, we evaluated geogenic Cr(Ⅵ), groundwater microbiome with featured functional ecological clusters and their interactive responses in groundwater from a deep aquifer in a loess plateau of Northern Shaanxi, China. We found that the compositions and structures of microbial communities in groundwater from the deep aquifer were significantly different between low Cr(Ⅵ) (LCG, < 50 μg/L) and high Cr(Ⅵ) groundwater (HCG, > 50 μg/L), with higher microbial diversity and richness in HCG (p < 0.05). Functional "specialists" related to Cr biotransformation, including Cr(Ⅵ) reducing bacteria (CRB) Rhodococcus, Nocardioides, Novosphingobium, and Acidovorax and Mn-oxidizing bacteria (MnOB) Sphingobium, and Ralstonia were positively correlated to total Cr and Cr(VI) concentrations in groundwater. Moreover, these CRB and MnOB were dominant in high Cr(VI) groundwater and associated by strong interspecific relation in an ecological cluster (p < 0.05), suggesting their indicator roles for high Cr(Ⅵ) and the contribution of MnOB mediated Cr(III) oxidation to Cr(VI) enrichment. RDA and path analysis further revealed that the geogenic Cr(Ⅵ) directly promoted the key Cr-related functional cluster with the groundwater depth, dissolved oxygen, and total dissolved solids as the cofactors indirectly influencing Cr(Ⅵ) and the functional clusters (p < 0.05). Collectively, our results highlight the significant roles of microbial ecological clusters especially functional "specialists" MnOB and CRB in groundwater Cr(Ⅵ) from deep aquifers in the loess plateau and provide a basis for sustainable management of high Cr(Ⅵ) groundwater.
Collapse
Affiliation(s)
- Wendi Fan
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Song Yan
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Bingying Gao
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Science, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yi Zhao
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huaming Guo
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
7
|
Conceição TA, Andrade G, Brito I. Influence of Intact Mycelium of Arbuscular Mycorrhizal Fungi on Soil Microbiome Functional Profile in Wheat under Mn Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192598. [PMID: 36235464 PMCID: PMC9571271 DOI: 10.3390/plants11192598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In the current agronomic context, the adoption of alternative forms of soil management is essential to increase crop yield. Agricultural sustainability requires practices that generate positive impacts and promote an increase in microbiome diversity as a tool to overcome adverse environmental conditions. An important ally is the indigenous arbuscular mycorrhizal fungi (AMF) that can improve plant growth and provide protection against abiotic stress such as metal toxicity. In a greenhouse experiment, this work studied the effect of wheat growth on several parameters of biological activity and functional microbiome in relation to wheat antecedent plant mycotrophy and soil disturbance under Mn stress. When the wheat was planted after highly mycotrophic plants and the soil was not previously disturbed, the results showed a 60% increase in wheat arbuscular colonization and a 2.5-fold increase in dry weight along with higher values of photosynthetic parameters and dehydrogenase activity. Conversely, soil disturbance before wheat planting increased the β-glucosidase activity and the count of manganese oxidizers, irrespectively of antecedent plant, and decreased drastically the wheat dry weight, the AMF colonization and the chlorophyll content compared to the undisturbed treatment. These findings suggest that not only the wheat growth but also the soil functional microbiome associated is affected by the antecedent type of plant and previous soil disturbance imposed. In addition, the improvement in wheat dry weight despite Mn toxicity may rely on shifts in biological activity associated to a well-established and intact ERM early developed in the soil.
Collapse
Affiliation(s)
- Taiana A. Conceição
- Federal University of Recôncavo of Bahia, Bahia 44574-490, Brazil
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, 7006-554 Évora, Portugal
- Correspondence: (T.A.C.); (I.B.)
| | - Galdino Andrade
- Department of Microbiology, State University of Londrina, Paraná 86051-990, Brazil
| | - Isabel Brito
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, 7006-554 Évora, Portugal
- Correspondence: (T.A.C.); (I.B.)
| |
Collapse
|
8
|
Solano-Arguedas AF, Boothman C, Newsome L, Pattrick RAD, Arguedas-Quesada D, Robinson CH, Lloyd JR. Geochemistry and microbiology of tropical serpentine soils in the Santa Elena Ophiolite, a landscape-biogeographical approach. GEOCHEMICAL TRANSACTIONS 2022; 23:2. [PMID: 36167930 PMCID: PMC9516835 DOI: 10.1186/s12932-022-00079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in mountain soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the inner ophiolite lowland soils were more like the surrounding mountain soils rather than the north lowland soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.
Collapse
Affiliation(s)
- Agustín F Solano-Arguedas
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK.
- Forest Resources Unit (Reforesta), Engineering Research Institute (INII) and School of Chemistry, Universidad de Costa Rica, Montes de Oca, San José, 11501-2260, Costa Rica.
| | - Christopher Boothman
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Laura Newsome
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
- Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Richard A D Pattrick
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Daniel Arguedas-Quesada
- Sociedad Civil Pro Ambiente Verdiazul CR, Playa Junquillal de Santa Cruz, Guanacaste, 50303, Costa Rica
| | - Clare H Robinson
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
9
|
Mineralogical and Genomic Constraints on the Origin of Microbial Mn Oxide Formation in Complexed Microbial Community at the Terrestrial Hot Spring. Life (Basel) 2022; 12:life12060816. [PMID: 35743847 PMCID: PMC9224936 DOI: 10.3390/life12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Manganese (Mn) oxides are widespread on the surface environments of the modern Earth. The role of microbial activities in the formation of Mn oxides has been discussed for several decades. However, the mechanisms of microbial Mn oxidation, and its role in complex microbial communities in natural environments, remain uncertain. Here, we report the geochemical, mineralogical, and metagenomic evidence for biogenic Mn oxides, found in Japanese hot spring sinters. The low crystallinity of Mn oxides, and their spatial associations with organic matter, support the biogenic origin of Mn oxides. Specific multicopper oxidases (MCOs), which are considered Mn-oxidizing enzymes, were identified using metagenomic analyses. Nanoscale nuggets of copper sulfides were, also, discovered in the organic matter in Mn-rich sinters. A part of these copper sulfides most likely represents traces of MCOs, and this is the first report of traces of Mn-oxidizing enzyme in geological samples. Metagenomic analyses, surprisingly, indicated a close association of Mn oxides, not only in aerobic but also in anaerobic microbial communities. These new findings offer the unique and unified positions of Mn oxides, with roles that have not been ignored, to sustain anaerobic microbial communities in hot spring environments.
Collapse
|
10
|
Gu T, Tong Z, Zhang X, Wang Z, Zhang Z, Hwang TS, Li L. Carbon Metabolism of a Soilborne Mn(II)-Oxidizing Escherichia coli Isolate Implicated as a Pronounced Modulator of Bacterial Mn Oxidation. Int J Mol Sci 2022; 23:ijms23115951. [PMID: 35682628 PMCID: PMC9180420 DOI: 10.3390/ijms23115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs.
Collapse
Affiliation(s)
- Tong Gu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhenghu Tong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Xue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, China
| | - Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Tzann-Shun Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (T.-S.H.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Correspondence: (T.-S.H.); (L.L.)
| |
Collapse
|
11
|
Haidău C, Năstase-Bucur R, Bulzu P, Levei E, Cadar O, Mirea IC, Faur L, Fruth V, Atkinson I, Constantin S, Moldovan OT. A 16S rRNA Gene-Based Metabarcoding of Phosphate-Rich Deposits in Muierilor Cave, South-Western Carpathians. Front Microbiol 2022; 13:877481. [PMID: 35663904 PMCID: PMC9161362 DOI: 10.3389/fmicb.2022.877481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Muierilor Cave is one of Romania's most important show caves, with paleontological and archeological deposits. Recently, a new chamber was discovered in the cave, with unique yellow calcite crystals, fine-grained crusts, and black sediments. The deposits in this chamber were related to a leaking process from the upper level that contains fossil bones and a large pile of guano. Samples were taken from the new chamber and another passage to investigate the relationship between the substrate and microbial community. Chemical, mineralogical, and whole community 16S rRNA gene-based metabarcoding analyses were undertaken, and the base of the guano deposit was radiocarbon dated. Our study indicated bacteria linked to the presence of high phosphate concentration, most likely due to the nature of the substrate (hydroxyapatite). Bacteria involved in Fe, Mn, or N cycles were also found, as these elements are commonly identified in high concentrations in guano. Since no bat colonies or fossil bones were present in the new chamber, a high concentration of these elements could be sourced by organic deposits inside the cave (guano and fossil bones) even after hundreds of years of their deposition and in areas far from both deposits. Metabarcoding of the analyzed samples found that ∼0.7% of the identified bacteria are unknown to science, and ∼47% were not previously reported in caves or guano. Moreover, most of the identified human-related bacteria were not reported in caves or guano before, and some are known for their pathogenic potential. Therefore, continuous monitoring of air and floor microbiology should be considered in show caves with organic deposits containing bacteria that can threaten human health. The high number of unidentified taxa in a small sector of Muierilor Cave indicates the limited knowledge of the bacterial diversity in caves that can have potential applications in human health and biotechnology.
Collapse
Affiliation(s)
- Catalina Haidău
- Department of Biospeleology and Karst Edaphobiology, Emil Racovita Institute of Speleology, Bucureşti, Romania
| | - Ruxandra Năstase-Bucur
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Paul Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Erika Levei
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Cluj-Napoca, Romania
| | - Ionuţ Cornel Mirea
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
| | - Luchiana Faur
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
- Faculty of Geology and Geophysics, University of Bucharest, Bucureşti, Romania
| | - Victor Fruth
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Bucuresti, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Bucuresti, Romania
| | - Silviu Constantin
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
- Centro Nacional Sobre la Evolucion Humana, Burgos, Spain
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Centro Nacional Sobre la Evolucion Humana, Burgos, Spain
| |
Collapse
|
12
|
Jeyaraj A, Subramanian S. Synthesis, optimization, and characterization of biogenic manganese oxide (BioMnOx) by bacterial isolates from mangrove soils with sorbents property towards different toxic metals. Biometals 2022; 35:429-449. [PMID: 35357611 DOI: 10.1007/s10534-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Manganese oxidizing bacteria, Bacillus mycoides and Bacillus subtilis were isolated from mangrove soils and optimized for the removal of Mn(II) with simultaneous production of biogenic manganese oxide (BioMnOx). The removal rate of Mn(II) was 90% in 48 h for B. mycoides and 72 h for B. subtilis under the optimized conditions at pH 7, temperature 37 °C, 120 rpm, with 1% inoculum containing 10 mM MnCl2. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-Ray analysis (EDAX), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the synthesized biogenic manganese oxide. BioMnOx by Bacillus mycoides and Bacillus subtilis were identified as Bixbyite (Mn2O3) and Hausmannite (Mn3O4), respectively, with nano-sized monocrystalline nature. BioMnOx of Bacillus subtilis strain was more efficient in the removal of metals Zn and Co than BioMnOx of Bacillus mycoides except for mercury. The removal property of synthesized BioMnOx could be applied to treat multi-metal containing wastewater.
Collapse
Affiliation(s)
- Anitha Jeyaraj
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Sangeetha Subramanian
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Li H, Santos F, Butler K, Herndon E. A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12136-12152. [PMID: 34469151 DOI: 10.1021/acs.est.1c00299] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Manganese (Mn) is a biologically important and redox-active metal that may exert a poorly recognized control on carbon (C) cycling in terrestrial ecosystems. Manganese influences ecosystem C dynamics by mediating biochemical pathways that include photosynthesis, serving as a reactive intermediate in the breakdown of organic molecules, and binding and/or oxidizing organic molecules through organo-mineral associations. However, the potential for Mn to influence ecosystem C storage remains unresolved. Although substantial research has demonstrated the ability of Fe- and Al-oxides to stabilize organic matter, there is a scarcity of similar information regarding Mn-oxides. Furthermore, Mn-mediated reactions regulate important litter decomposition pathways, but these processes are poorly constrained across diverse ecosystems. Here, we discuss the ecological roles of Mn in terrestrial environments and synthesize existing knowledge on the multiple pathways by which biogeochemical Mn and C cycling intersect. We demonstrate that Mn has a high potential to degrade organic molecules through abiotic and microbially mediated oxidation and to stabilize organic molecules, at least temporarily, through organo-mineral associations. We outline research priorities needed to advance understanding of Mn-C interactions, highlighting knowledge gaps that may address key uncertainties in soil C predictions.
Collapse
Affiliation(s)
- Hui Li
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Fernanda Santos
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kristen Butler
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Earth and Planetary Sciences, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Earth and Planetary Sciences, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Li L, Liu J, Zeng J, Li J, Liu Y, Sun X, Xu L, Li L. Complete Degradation and Detoxification of Ciprofloxacin by a Micro-/Nanostructured Biogenic Mn Oxide Composite from a Highly Active Mn 2+-Oxidizing Pseudomonas Strain. NANOMATERIALS 2021; 11:nano11071660. [PMID: 34202527 PMCID: PMC8304510 DOI: 10.3390/nano11071660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Ciprofloxacin (CIP), as a representative broad-spectrum antibiotic, poses a major threat to human health and the ecological environment as a result of its abuse and emissions. In this study, a highly active Mn2+-oxidizing bacterium, Pseudomonas sp. CCTCC M2014168, was induced to form micro-/nanostructured biogenic Mn oxide (BMO) aggregates through continuous culturing with 1 mmoL-1 Mn2+. Following the characterization of Mn4+ oxides and the micro-/nanostructures by scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction assays, the BMO composites were subjected to CIP degradation and detoxification in laboratory trials. High-performance liquid chromatograph (HPLC) analysis identified that the BMO composites were capable of completely degrading CIP, and HPLC with a mass spectrometer (LC/MS) assays identified three intermediates in the degradation pathway. The reaction temperature, pH and initial ciprofloxacin concentration substantially affected the degradation efficiency of CIP to a certain extent, and the metal ions Mg2+, Cu2+, Ni2+ and Co2+ exerted significant inhibitory effects on CIP degradation. A toxicity test of the degradation products showed that CIP was completely detoxified by degradation. Moreover, the prepared BMO composite exhibited a high capacity for repeated degradation and good performance in continuous degradation cycles, as well as a high capacity to degrade CIP in real natural water.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Jin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Jie Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China;
| | - Yongxuan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Xiaowen Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Liangzheng Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China;
- Correspondence: (L.X.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
- Correspondence: (L.X.); (L.L.)
| |
Collapse
|
15
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
16
|
Liu J, Gu T, Li L, Li L. Synthesis of MnO/C/NiO-Doped Porous Multiphasic Composites for Lithium-Ion Batteries by Biomineralized Mn Oxides from Engineered Pseudomonas putida Cells. NANOMATERIALS 2021; 11:nano11020361. [PMID: 33535572 PMCID: PMC7912735 DOI: 10.3390/nano11020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
A biotemplated cation-incoporating method based on bacterial cell-surface display technology and biogenic Mn oxide mineralization process was developed to fabricate Mn-based multiphasic composites as anodes for Li-ion batteries. The engineered Pseudomonas putida MB285 cells with surface-immobilized multicopper oxidase serve as nucleation centers in the Mn oxide biomineralization process, and the Mn oxides act as a settler for incorporating Ni ions to form aggregates in this process. The assays using X-ray photoelectron spectroscopy, phase compositions, and fine structures verified that the resulting material MnO/C/NiO (CMB-Ni) was porous multiphasic composites with spherical and porous nanostructures. The electrochemical properties of materials were improved in the presence of NiO. The reversible discharge capacity of CMB-Ni remained at 352.92 mAh g-1 after 200 cycles at 0.1 A g-1 current density. In particular, the coulombic efficiency was approximately 100% after the second cycle for CMB-Ni.
Collapse
Affiliation(s)
| | | | | | - Lin Li
- Correspondence: ; Tel.: +86-27-87286952; Fax: +86-27-87280670
| |
Collapse
|
17
|
He Z, Zhu Y, Xu X, Wei Z, Wang Y, Zhang D, Pan X. Complex effects of pH and organic shocks on arsenic oxidation and removal by manganese-oxidizing aerobic granular sludge in sequencing batch reactors. CHEMOSPHERE 2020; 260:127621. [PMID: 32688320 DOI: 10.1016/j.chemosphere.2020.127621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Biological technologies are efficient and economical methods for removing toxic arsenic (As) from organic wastewaters. In this study, four sequencing batch reactors of manganese-oxidizing aerobic granular sludge (Mn-AGS) were operated in duplicate and imposed with acidic pH and high organic shocks. Batch experiments with different initial conditions were conducted to investigate the effects of pH and organic load on As(III) oxidation and removal. The results indicate that acidic pH shocks (influent pH decreased to 4.0/3.0) unexpectedly increased the As removal efficiency from 23.4-38.2% to 64.7-72.5%. The effects of high organic shocks were very complicated, as the results of the shocks were opposite twice. According to the results of the batch experiments, it was estimated that the suitable pH range for high performance was 5.0-8.5 in reaction liquid. Although acidic pH shocks initially inhibited As(III) oxidation and removal, they largely extended the reaction time of the suitable pH range and finally improved the As removal efficiency. There were many negative and positive factors affecting the As removal during the high organic shocks, leading to the unstable responses. Moreover, the microbial community was not largely changed by pH or organic shocks, and genus Hydrogenophaga (∼8%) might be responsible for the microbial As(III) oxidation. Finally, several operation strategies were proposed to obtain high performance, such as liquid pH control and aeration improvement.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xuyang Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
18
|
Galezowski L, Recham N, Larcher D, Miot J, Skouri-Panet F, Guyot F. Microbially Induced Mineralization of Layered Mn Oxides Electroactive in Li Batteries. Front Microbiol 2020; 11:2031. [PMID: 33013746 PMCID: PMC7511517 DOI: 10.3389/fmicb.2020.02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles produced by bacteria, fungi, or plants generally have physicochemical properties such as size, shape, crystalline structure, magnetic properties, and stability which are difficult to obtain by chemical synthesis. For instance, Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures under ambient conditions. Controlling their crystallinity and texture may offer environmentally relevant routes of Mn oxide synthesis with potential technological applications, e.g., for energy storage. However, whereas the electrochemical activity of synthetic (abiotic) Mn oxides has been extensively studied, the electroactivity of Mn biominerals has been seldom investigated yet. Here we evaluated the electroactivity of biologically induced biominerals produced by the Mn(II)-oxidizer bacteria Pseudomonas putida strain MnB1. For this purpose, we explored the mechanisms of Mn biomineralization, including the kinetics of Mn(II) oxidation, under different conditions. Manganese speciation, biomineral structure, and texture as well as organic matter content were determined by a combination of X-ray diffraction, electron and X-ray microscopies, and thermogravimetric analyses coupled to mass spectrometry. Our results evidence the formation of an organic–inorganic composite material and a competition between the enzymatic (biotic) oxidation of Mn(II) to Mn(IV) yielding MnO2 birnessite and the abiotic formation of Mn(III), of which the ratio depends on oxygenation levels and activity of the bacteria. We reveal that a subtle control over the conditions of the microbial environment orients the birnessite to Mn(III)-phases ratio and the porosity of the assembly, which both strongly impact the bulk electroactivity of the composite biomineral. The electrochemical properties were tested in lithium battery configuration and exhibit very appealing performances (voltage, capacity, reversibility, and power capability), thanks to the specific texture resulting from the microbially driven synthesis route. Given that such electroactive Mn biominerals are widespread in the environment, our study opens an alternative route for the synthesis of performing electrode materials under environment-friendly conditions.
Collapse
Affiliation(s)
- Laura Galezowski
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France
| | - Nadir Recham
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, Amiens, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens, France
| | - Dominique Larcher
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, Amiens, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens, France
| | - Jennyfer Miot
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France
| | - François Guyot
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD 206, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
19
|
He Z, Wei Z, Zhang Q, Zou J, Pan X. Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge. CHEMOSPHERE 2019; 236:124353. [PMID: 31319307 DOI: 10.1016/j.chemosphere.2019.124353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
As, Sb, and Cr are redox-sensitive and toxic heavy metal(loid)s, and redox reactions are usually involved in the treatment of substrates containing these elements. In this study, manganese-oxidizing aerobic granular sludge (Mn-AGS) was obtained by continuously adding Mn(II) to the sludge in a sequencing batch reactor (SBR). Morphological observations, and analyses of extracellular polymeric substances (EPS), Mn valence-states, and microbial communities were performed on the resulting sludge. After 50 days of cultivation, biogenic Mn(III,IV) oxides (bio-MnOx) accumulated up to approximately 25 mg Mn/g suspended solids (SS). X-ray photoelectron spectroscopy (XPS) revealed that the percentage of Mn(III,IV) was 87.6%. The protein (PN) component in EPS increased from 80.3 to 87.8 mg/g volatile suspended solids (VSS) during cultivation, which might be favorable for sludge granulation and heavy metal(loid) removal. Batch experiments showed that Mn-AGS was better at oxidizing As(III)/Sb(III) into less toxic As(V)/Sb(V) than traditional AGS. Remarkably, the results indicated that Mn-AGS did not oxidize Cr(III) but was able to reduce Cr(VI) into relatively harmless Cr(III). This work provided a new promising method with which to treat As(III), Sb(III), and Cr(VI) in wastewaters.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
20
|
Burté L, Cravotta CA, Bethencourt L, Farasin J, Pédrot M, Dufresne A, Gérard MF, Baranger C, Le Borgne T, Aquilina L. Kinetic Study on Clogging of a Geothermal Pumping Well Triggered by Mixing-Induced Biogeochemical Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5848-5857. [PMID: 31038936 DOI: 10.1021/acs.est.9b00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The sustainability of ground-source geothermal systems can be severely impacted by microbially mediated clogging processes. Biofouling of water wells by hydrous ferric oxide is a widespread problem. Although the mechanisms and critical environmental factors associated with clogging development are widely recognized, effects of mixing processes within the wells and time scales for clogging processes are not well characterized. Here we report insights from a joint hydrological, geochemical, and metagenomics characterization of a geothermal doublet in which hydrous ferric oxide and hydrous manganese oxide deposits had formed as a consequence of mixing shallow groundwater containing dissolved oxygen and nitrate with deeper, anoxic groundwater containing dissolved iron (FeII) and manganese (MnII). Metagenomics identify distinct bacteria consortia in the pumping well oxic and anoxic zones, including autotrophic iron-oxidizing bacteria. Batch mixing experiments and geochemical kinetics modeling of the associated reactions indicate that FeII and MnII oxidation are slow compared to the residence time of water in the pumping well; however, adsorption of FeII and MnII by accumulated hydrous ferric oxide and hydrous manganese oxide in the well bore and pump riser provides "infinite" time for surface-catalyzed oxidation and a convenient source of energy for iron-oxidizing bacteria, which colonize the surfaces and also catalyze oxidation. Thus, rapid clogging is caused by mixing-induced redox reactions and is exacerbated by microbial activity on accumulated hydrous oxide surfaces.
Collapse
Affiliation(s)
- Luc Burté
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
- Antea Group , ZAC du Moulin 803 boulevard Duhamel du Monceau , 45160 Olivet , France
| | - Charles A Cravotta
- U.S. Geological Survey , 215 Limekiln Road. , New Cumberland , Pennsylvania 17070 , United States
| | - Lorine Bethencourt
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
- Écobio , Univ Rennes, CNRS , UMR 6553, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| | - Julien Farasin
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| | - Mathieu Pédrot
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| | - Alexis Dufresne
- Écobio , Univ Rennes, CNRS , UMR 6553, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| | - Marie-Françoise Gérard
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| | - Catherine Baranger
- Antea Group , ZAC du Moulin 803 boulevard Duhamel du Monceau , 45160 Olivet , France
| | - Tanguy Le Borgne
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| | - Luc Aquilina
- Géosciences Rennes , Univ Rennes, CNRS , UMR 6118, Avenue Général Leclerc , F-35042 Rennes Cedex , France
| |
Collapse
|
21
|
|
22
|
Yang H, Li D, Zeng H, Zhang J. Long-term operation and autotrophic nitrogen conversion process analysis in a biofilter that simultaneously removes Fe, Mn and ammonia from low-temperature groundwater. CHEMOSPHERE 2019; 222:407-414. [PMID: 30711730 DOI: 10.1016/j.chemosphere.2019.01.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
One lab-scale biofilter that simultaneously removes Fe, Mn and ammonia from 4 °C groundwater was established to investigate the nitrogen conversion process. The results showed that 333 days were needed to achieve the required standards for Fe, Mn and ammonia under a filtration rate of 3 m/h. Effluent nitrite concentration was the key factor determining the final operation parameters. Both nitrification and anaerobic ammonium oxidation (ANAMMOX) contributed to nitrogen conversion. The calculation results demonstrated that autotrophic nitrogen removal proportion was about 15.92% in steady operation period. Meanwhile, 7 genera of Mn oxidizing bacteria (MnOB) were detected; Candidatus Brocadia was the only detected ANAMMOX genera. The corresponding functional oxidizing bacteria could be acclimated sufficiently in biofilter treating low-temperature groundwater.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Swain LE, Knocke WR, Falkinham JO, Pruden A. Interference of manganese removal by biologically-mediated reductive release of manganese from MnO x(s) coated filtration media. WATER RESEARCH X 2018; 1:100009. [PMID: 31194072 PMCID: PMC6549940 DOI: 10.1016/j.wroa.2018.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 05/05/2023]
Abstract
Discontinuing application of pre-filter chlorine is a common water treatment plant practice to permit a bioactive filtration process for the removal of soluble Mn. However, soluble Mn desorption has sometimes been observed following cessation of chlorine addition, where filter effluent Mn concentration exceeds the influent Mn concentration. In this paper it is hypothesized that Mn-reducing bacteria present in a biofilm on the filter media may be a factor in this Mn-release phenomenon. The primary objective of this research was to assess the role of Mn-reducing microorganisms in the release of soluble Mn from MnOx(s)-coated filter media following interruption of pre-filtration chlorination. Bench-scale filter column studies were inoculated with Shewanella oneidensis MR-1 to investigate the impacts of a known Mn-reducing bacterium on release of soluble Mn from MnOx(s) coatings. In situ vial assays were developed to gain insight into the impacts of MnOx(s) age on bioavailability to Mn-reducing microorganisms and a quantitative polymerase chain reaction (qPCR) method was developed to quantify gene copies of the mtrB gene, which is involved in Mn-reduction. Results demonstrated that microbially-mediated Mn release was possible above a threshold equivalent of 2 × 102 S. oneidensis MR-1 CFU per gram of MnOx(s) coated media and that those organisms contributed to Mn desorption and release. Further, detectable mtrB gene copies were associated with observed Mn desorption. Lastly, MnOx(s) age appeared to play a role in Mn reduction and subsequent release, where MnOx(s) solids of greater age indicated lower bioavailability. These findings can help inform means of preventing soluble Mn release from drinking water treatment plant filters.
Collapse
Affiliation(s)
- Lindsay E. Swain
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - William R. Knocke
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Fernandes SO, Surya Prakash L, Balan Binish M, Padinchati Krishnan K, John Kurian P. Changes in morphology and metabolism enable Mn-oxidizing bacteria from mid-oceanic ridge environment to counter metal-induced stress. J Basic Microbiol 2018. [DOI: 10.1002/jobm.201700580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Palayil John Kurian
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| |
Collapse
|
25
|
Zhang Y, Sun R, Zhou A, Zhang J, Luan Y, Jia J, Yue X, Zhang J. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater. AMB Express 2018; 8:2. [PMID: 29313157 PMCID: PMC5758488 DOI: 10.1186/s13568-017-0534-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/29/2017] [Indexed: 11/25/2022] Open
Abstract
Most studies have employed aeration–biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what’s inside the “black box”, i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.
Collapse
|
26
|
Narenkumar J, Sathishkumar K, Selvi A, Gobinath R, Murugan K, Rajasekar A. Role of calcium-depositing bacteria Agrobacterium tumefaciens and its influence on corrosion of different engineering metals used in cooling water system. 3 Biotech 2017; 7:374. [PMID: 29071171 DOI: 10.1007/s13205-017-1007-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
The present investigation deals with the role of calcium-depositing bacterial community on corrosion of various engineering metals, namely, brass alloy (BS), copper (Cu), stainless steel (SS) and mild steel (MS). Based on the corrosion behavior, Agrobacterium tumefaciens EN13, an aerobic bacterium is identified as calcium-depositing bacteria on engineering metals. The results of the study are supported with biochemical characterization, 16S rRNA gene sequencing, calcium quantification, weight loss, electrochemical (impedance and polarization) and surface analysis (XRD and FTIR) studies. The calcium quantification study showed carbonate precipitation in abiotic system/biotic system as 50 and 700 ppm, respectively. FTIR results too confirmed the accumulation of calcium deposits from the environment on the metal surface by EN13. Electrochemical studies too supported the corrosion mechanism by showing a significant increase in the charge transfer resistance (Rct) of abiotic system (44, 33.6, 45, 29.6 Ω cm2) than compared to biotic system (41, 10.1 29 and 25 Ω cm2). Hence, the outcome of the present study confirmed the enhanced bioaccumulation behavior of calcium by the strain, EN13.
Collapse
Affiliation(s)
- Jayaraman Narenkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| | - Kuppusamy Sathishkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| | - Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| | - Rajagopalan Gobinath
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi 110021 India
| | - Kadarkarai Murugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| |
Collapse
|
27
|
Barboza NR, Morais MMCA, Queiroz PS, Amorim SS, Guerra-Sá R, Leão VA. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil. Front Microbiol 2017; 8:1946. [PMID: 29062307 PMCID: PMC5640716 DOI: 10.3389/fmicb.2017.01946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/22/2017] [Indexed: 11/23/2022] Open
Abstract
Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn), is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II), up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.
Collapse
Affiliation(s)
- Natália R Barboza
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológica (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Pollyana S Queiroz
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológica (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Soraya S Amorim
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológica (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológica (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Versiane A Leão
- Laboratório de Bio&Hidrometalurgia, Departamento de Engenharia Metalúrgica e de Materiais, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
28
|
Indirect Manganese Removal by Stenotrophomonas sp. and Lysinibacillus sp. Isolated from Brazilian Mine Water. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925972. [PMID: 26697496 PMCID: PMC4678070 DOI: 10.1155/2015/925972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 11/17/2022]
Abstract
Manganese is a contaminant in the wastewaters produced by Brazilian mining operations, and the removal of the metal is notoriously difficult because of the high stability of the Mn(II) ion in aqueous solutions. To explore a biological approach for removing excessive amounts of aqueous Mn(II), we investigated the potential of Mn(II) oxidation by both consortium and bacterial isolates from a Brazilian manganese mine. A bacterial consortium was able to remove 99.7% of the Mn(II). A phylogenetic analysis of isolates demonstrated that the predominant microorganisms were members of Stenotrophomonas, Bacillus, and Lysinibacillus genera. Mn(II) removal rates between 58.5% and 70.9% were observed for Bacillus sp. and Stenotrophomonas sp. while the Lysinibacillus isolate 13P removes 82.7%. The catalytic oxidation of Mn(II) mediated by multicopper oxidase was not properly detected; however, in all of the experiments, a significant increase in the pH of the culture medium was detected. No aggregates inside the cells grown for a week were found by electronic microscopy. Nevertheless, an energy-dispersive X-ray spectroscopy of the isolates revealed the presence of manganese in Stenotrophomonas sp. and Lysinibacillus sp. grown in K medium. These results suggest that members of Stenotrophomonas and Lysinibacillus genera were able to remove Mn(II) by a nonenzymatic pathway.
Collapse
|
29
|
Nitzsche KS, Weigold P, Lösekann-Behrens T, Kappler A, Behrens S. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. CHEMOSPHERE 2015; 138:47-59. [PMID: 26037816 DOI: 10.1016/j.chemosphere.2015.05.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 05/04/2023]
Abstract
Household sand filters are used in rural areas of Vietnam to remove As, Fe, and Mn from groundwater for drinking water purposes. Currently, it is unknown what role microbial processes play in mineral oxide formation and As removal during water filtration. We performed most probable number counts to quantify the abundance of physiological groups of microorganisms capable of catalyzing Fe- and Mn-redox transformation processes in a household sand filter. We found up to 10(4) cells g(-1) dry sand of nitrate-reducing Fe(II)-oxidizing bacteria and Fe(III)-reducing bacteria, and no microaerophilic Fe(II)-oxidizing bacteria, but up to 10(6) cells g(-1) dry sand Mn-oxidizing bacteria. 16S rRNA gene amplicon sequencing confirmed MPN counts insofar as only low abundances of known taxa capable of performing Fe- and Mn-redox transformations were detected. Instead the microbial community on the sand filter was dominated by nitrifying microorganisms, e.g. Nitrospira, Nitrosomonadales, and an archaeal OTU affiliated to Candidatus Nitrososphaera. Quantitative PCR for Nitrospira and ammonia monooxygenase genes agreed with DNA sequencing results underlining the numerical importance of nitrifiers in the sand filter. Based on our analysis of the microbial community composition and previous studies on the solid phase chemistry of sand filters we conclude that abiotic Fe(II) oxidation processes prevail over biotic Fe(II) oxidation on the filter. Yet, Mn-oxidizing bacteria play an important role for Mn(II) oxidation and Mn(III/IV) oxide precipitation in a distinct layer of the sand filter. The formation of Mn(III/IV) oxides contributes to abiotic As(III) oxidation and immobilization of As(V) by sorption to Fe(III) (oxyhydr)oxides.
Collapse
Affiliation(s)
- Katja Sonja Nitzsche
- Geomicrobiology/Microbial Ecology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Pascal Weigold
- Geomicrobiology/Microbial Ecology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Tina Lösekann-Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, USA
| | - Andreas Kappler
- Geomicrobiology/Microbial Ecology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, USA.
| |
Collapse
|
30
|
Profiling microbial communities in manganese remediation systems treating coal mine drainage. Appl Environ Microbiol 2015; 81:2189-98. [PMID: 25595765 DOI: 10.1128/aem.03643-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known.
Collapse
|