1
|
Zheng J, Li X, Zhang G, Ren Y, Ren L. Research progress of vimentin in viral infections. Antiviral Res 2025; 236:106121. [PMID: 39978552 DOI: 10.1016/j.antiviral.2025.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Vimentin, a type III intermediate filament protein, has become a focal point in the research of viral infections. It participates in multiple crucial processes during the viral life cycle and the host's antiviral response. During viral entry, it may function as a receptor or co-receptor and interact with viral entry proteins, also influencing endocytic pathways. Furthermore, vimentin engages with replication complexes and modulates the intracellular environment in viral replication. Moreover, vimentin plays significant roles in immune responses and inflammatory reactions during viral infections. This review thoroughly analyzes the recent progress in understanding vimentin's functions during viral infections, covering aspects such as viral entry, replication, and the immune response to achieve a cohesive comprehension of the underlying mechanisms. The antiviral strategies based on vimentin are also discussed, aiming to promote the development of more effective preventive and treatment strategies for viral diseases.
Collapse
Affiliation(s)
- Jiawei Zheng
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
| | - Xue Li
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
| | - Guoqing Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
| | - Ying Ren
- Public Computer Education and Research Center, Jilin University, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Zhu W, Zeng S, Zhu S, Zhang Z, Zhao R, Qiu Q, Luo Z, Qin Y, Chen W, Li B, He Y, Yi L, Ding H, Zhao M, Chen J, Fu C, Fan S. Histone H2B lysine lactylation modulates the NF-κB response via KPNA2 during CSFV infection. Int J Biol Macromol 2025; 299:139973. [PMID: 39826749 DOI: 10.1016/j.ijbiomac.2025.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Histone lysine lactylation (Kla) has recently been reported to participate in various biological processes, regulating transcription, inflammation, and immune-related diseases. However, the mechanism of histone Kla in innate immunity and viral infection remains largely unknown. Here, we observed fluorescent Kla signals in all four histones (H2A, H2B, H3, and H4) in PK-15 cells. Immunoprecipitation analysis showed prominent histone Kla protein bands, with H2B being the most abundant. We generated the H2B K16R mutant plasmid and identified K16 as one of the Kla modification sites in H2B. Further exploration revealed increased global H2B Kla and H2BK16la levels upon classical swine fever virus (CSFV) infection. By employing the Kla agonist (L-lactate), inhibitor (oxamate), or siLDHA, we demonstrated that H2BK16la and pan Kla in PK-15 cells rely on the LDHA-lactate axis, which is also crucial for CSFV-induced H2BK16la and pan Kla levels. Moreover, our data proved the interaction between H2B and CSFV NS4A protein. Notably, H2B Kla can modulate CSFV proliferation. Mechanistically, H2BK16la and pan Kla activate the nuclear factor kappa B (NF-κB) pathway by mediating p65 nuclear translocation via karyopherin α2 (KPNA2), thereby inducing type III interferon (IFN-λ) expression and inhibiting CSFV replication. In conclusion, our study unveils the role of H2B Kla in regulating the NF-κB pathway during viral infection, presenting a novel mechanism. These findings significantly contribute to understanding the pathogenic mechanisms during viral infection and hold promise for the development of viral therapeutic strategies.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuaiqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhanhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruibo Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| | - Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
3
|
Zhao X, Hu Y, Zhao J, Liu Y, Ma X, Chen H, Xing Y. Role of protein Post-translational modifications in enterovirus infection. Front Microbiol 2024; 15:1341599. [PMID: 38596371 PMCID: PMC11002909 DOI: 10.3389/fmicb.2024.1341599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Jun Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yan Liu
- Department of Immunology, School of Medicine, Qinghai, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, School of Medicine, Qinghai University, Qinghai, China
| | - Hongru Chen
- Department of Public Health, School of Medicine, Qinghai University, Qinghai, China
| | - Yonghua Xing
- Department of Genetics, School of Medicine, Qinghai University, Qinghai, China
| |
Collapse
|
4
|
Zhao S, Miao C, Gao X, Li Z, Eriksson JE, Jiu Y. Vimentin cage - A double-edged sword in host anti-infection defense. Curr Opin Cell Biol 2024; 86:102317. [PMID: 38171142 DOI: 10.1016/j.ceb.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Vimentin, a type III intermediate filament, reorganizes into what is termed the 'vimentin cage' in response to various pathogenic infections. This cage-like structure provides an envelope to key components of the pathogen's life cycle. In viral infections, the vimentin cage primarily serves as a scaffold and organizer for the replication factory, promoting viral replication. However, it also occasionally contributes to antiviral functions. For bacterial infections, the cage mainly supports bacterial proliferation in most observed cases. These consistent structural alterations in vimentin, induced by a range of viruses and bacteria, highlight the vimentin cage's crucial role. Pathogen-specific factors add complexity to this interaction. In this review, we provide a thorough overview of the functions and mechanisms of the vimentin cage and speculate on vimentin's potential as a novel target for anti-pathogen strategies.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenglin Miao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuedi Gao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zhifang Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland.
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
5
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Li J, Zheng K, Shen H, Wu H, Wan C, Zhang R, Liu Z. Calpain-2 protein influences chikungunya virus replication and regulates vimentin rearrangement caused by chikungunya virus infection. Front Microbiol 2023; 14:1229576. [PMID: 37928675 PMCID: PMC10620729 DOI: 10.3389/fmicb.2023.1229576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Chikungunya fever (CHIF), a vector-borne disease transmitted mainly by Aedes albopictus and Aedes aegypti, is caused by Chikungunya virus (CHIKV) infection. To date, it is estimated that 39% of the world's population is at risk of infection for living in countries and regions where CHIKV is endemic. However, at present, the cellular receptors of CHIKV remains not clear, and there are no specific drugs and vaccines for CHIF. Here, the cytotoxicity of calpain-2 protein activity inhibitor III and specific siRNA was detected by MTT assays. The replication of CHIKV was detected by qPCR amplification and plaque assay. Western blot was used to determine the level of the calpain-2 protein and vimentin protein. Immunofluorescence was also operated for detecting the rearrangement of vimentin protein. Our results indicated that calpain-2 protein activity inhibitor III and specific siRNA might suppress CHIKV replication. Furthermore, CHIKV infection led to vimentin remodeling and formation of cage-like structures, which could be inhibited by the inhibitor III. In summary, we confirmed that calpain-2 protein influenced chikungunya virus replication and regulated vimentin rearrangement caused by chikungunya virus infection, which could be important for understanding the biological significance of CHIKV replication and the future development of antiviral strategies.
Collapse
Affiliation(s)
- Jia Li
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kang Zheng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Huilong Shen
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Hua Wu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Chengsong Wan
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Renli Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
7
|
Lai J, Li Z, Pan L, Huang Y, Zhou Z, Ma C, Guo J, Xu L. Research progress on pathogenic and therapeutic mechanisms of Enterovirus A71. Arch Virol 2023; 168:260. [PMID: 37773227 DOI: 10.1007/s00705-023-05882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/12/2023] [Indexed: 10/01/2023]
Abstract
In recent years, enterovirus A71 (EV-A71) infection has become a major global public health problem, especially for infants and young children. The results of epidemiological research show that EV-A71 infection can cause acute hand, foot, and mouth disease (HFMD) and complications of the nervous system in severe cases, including aseptic pediatric meningoencephalitis, acute flaccid paralysis, and even death. Many studies have demonstrated that EV-A71 infection may trigger a variety of intercellular and intracellular signaling pathways, which are interconnected to form a network that leads to the innate immune response, immune escape, inflammation, and apoptosis in the host. This article aims to provide an overview of the possible mechanisms underlying infection, signaling pathway activation, the immune response, immune evasion, apoptosis, and the inflammatory response caused by EV-A71 infection and an overview of potential therapeutic strategies against EV-A71 infection to better understand the pathogenesis of EV-A71 and to aid in the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Jianmei Lai
- Academy of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhishan Li
- Academy of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Lixin Pan
- The First People's Hospital of Foshan, Foshan, China
| | - Yunxia Huang
- The Sixth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zifei Zhou
- Academy of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Chunhong Ma
- Academy of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Guo
- Academy of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Lingqing Xu
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.
| |
Collapse
|
8
|
Zhao Y, Li L, Wang X, He S, Shi W, Chen S. Temporal Proteomic and Phosphoproteomic Analysis of EV-A71-Infected Human Cells. J Proteome Res 2022; 21:2367-2384. [DOI: 10.1021/acs.jproteome.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Xinhui Wang
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
9
|
Gong Z, Gao X, Yang Q, Lun J, Xiao H, Zhong J, Cao H. Phosphorylation of ERK-Dependent NF-κB Triggers NLRP3 Inflammasome Mediated by Vimentin in EV71-Infected Glioblastoma Cells. Molecules 2022; 27:molecules27134190. [PMID: 35807435 PMCID: PMC9268588 DOI: 10.3390/molecules27134190] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Enterovirus 71 (EV71) is a dominant pathogenic agent that may cause severe central nervous system (CNS) diseases among infants and young children in the Asia-pacific. The inflammasome is closely implicated in EV71-induced CNS injuries through a series of signaling pathways. However, the activation pathway of NLRP3 inflammasome involved in EV71-mediated CNS injuries remains poorly defined. In the studies, EV71 infection, ERK1/2 phosphorylation, and activation of NLRP3 are abolished in glioblastoma cells with low vimentin expression by CRISPR/Cas9-mediated knockdown. PD098059, an inhibitor of p-ERK, remarkably blocks the vimentin-mediated ERK1/2 phosphorylation in EV71-infected cells. Nuclear translocation of NF-κB p65 is dependent on p-ERK in a time-dependent manner. Moreover, NLRP3 activation and caspase-1 production are limited in EV71-infected cells upon the caffeic acid phenethyl ester (CAPE) administration, an inhibitor of NF-κB, which contributes to the inflammasome regulation. In conclusion, these results suggest that EV71-mediated NLRP3 inflammasome could be activated via the VIM-ERK-NF-κB pathway, and the treatment of the dephosphorylation of ERK and NF-κB inhibitors is beneficial to host defense in EV71-infected CNS.
Collapse
Affiliation(s)
- Zelong Gong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Xuefeng Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Qingqing Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Jingxian Lun
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Hansen Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Jiayu Zhong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
- Correspondence: ; Tel.: +020-61648723
| |
Collapse
|
10
|
Mandal SC, Weidmann M, Albalat A, Carrick E, Morro B, MacKenzie S. Polarized Trout Epithelial Cells Regulate Transepithelial Electrical Resistance, Gene Expression, and the Phosphoproteome in Response to Viral Infection. Front Immunol 2020; 11:1809. [PMID: 32922394 PMCID: PMC7456818 DOI: 10.3389/fimmu.2020.01809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
The burden of disease is a major challenge in aquaculture production. The fish gill characterized with a large surface area and short route to the bloodstream is a major environmental interface and a significant portal of entry for pathogens. To investigate gill responses to viral infection the salmonid gill cell line RTgill-W1 was stimulated with synthetic dsRNA and the salmonid alphavirus subtype 2 (SAV-2). Epithelial integrity in polarized cells can be measured as transepithelial electrical resistance (TEER) which is defined as the electrical resistance across a cell monolayer. TEER is a widely accepted quantitative measure of cellular integrity of a cell monolayer. TEER increased immediately after stimulation with the synthetic dsRNA, polyinosinic:polycytidylic acid (poly(I:C)). In parallel, tight junction and gene expression of innate immune activation markers was modulated in response to poly(I:C). The SAV-2 virus was found to replicate at a low level in RTgill-W1 cells where TEER was disturbed at an early stage of infection, however, gene expression related to tight junction regulation was not modulated. A strong poly(I:C)-driven antiviral response was observed including increases of Rig-like receptors (RLRs) and interferon stimulating genes (ISGs) mRNAs. At the level of signal transduction, poly(I:C) stimulation was accompanied by the phosphorylation of 671 proteins, of which 390 were activated solely in response to the presence of poly(I:C). According to motif analysis, kinases in this group included MAPKs, Ca2+/calmodulin-dependent kinase (CaMK) and cAMP-dependent protein kinase (PKA), all reported to be activated in response to viral infection in mammals. Results also highlighted an activation of the cytoskeletal organization that could be mediated by members of the integrin family. While further work is needed to validate these results, our data indicate that salmonid gill epithelia has the ability to mount a significant response to viral infection which might be important in disease progression. In vitro cell culture can facilitate both a deeper understanding of the anti-viral response in fish and open novel therapeutic avenues for fish health management in aquaculture.
Collapse
Affiliation(s)
- Shankar C Mandal
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
11
|
Cellular Vimentin Interacts with Foot-and-Mouth Disease Virus Nonstructural Protein 3A and Negatively Modulates Viral Replication. J Virol 2020; 94:JVI.00273-20. [PMID: 32493819 DOI: 10.1128/jvi.00273-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023] Open
Abstract
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids that is in most FMDVs examined to date, and it plays important roles in virus replication, virulence, and host range. To better understand the role of 3A during FMDV infection, we used coimmunoprecipitation followed by mass spectrometry to identify host proteins that interact with 3A in FMDV-infected cells. Here, we report that cellular vimentin is a host binding partner for 3A. The 3A-vimentin interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pull down, and immunofluorescence assays. Alanine-scanning mutagenesis indicated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin. Using reverse genetics, we demonstrate that mutations in 3A that disrupt the interaction between 3A and vimentin are also critical for virus growth. Overexpression of vimentin significantly suppressed the replication of FMDV, whereas knockdown of vimentin significantly enhanced FMDV replication. However, chemical disruption of the vimentin network by acrylamide resulted in a significant decrease in viral yield, suggesting that an intact vimentin network is needed for FMDV replication. These results indicate that vimentin interacts with FMDV 3A and negatively regulates FMDV replication and that the vimentin-3A interaction is essential for FMDV replication. This study provides information that should be helpful for understanding the molecular mechanism of FMDV replication.IMPORTANCE Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, host range, and virulence. To further understand the role of 3A during FMDV infection, identification of host cell factors that interact with FMDV 3A is needed. Here, we found that vimentin is a direct binding partner of FMDV 3A, and manipulation of vimentin has a negative effect on virus replication. We also demonstrated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin and that the 3A-vimentin interaction is critical for viral replication since the full-length cDNA clone harboring mutations in 3A, which were disrupt 3A-vimentin reactivity, could not produce viable virus progeny. This study provides information that not only provides us a better understanding of the mechanism of FMDV replication but also helps in the development of novel antiviral strategies in the future.
Collapse
|
12
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Wang W, Sun J, Wang N, Sun Z, Ma Q, Li J, Zhang M, Xu J. Enterovirus A71 capsid protein VP1 increases blood-brain barrier permeability and virus receptor vimentin on the brain endothelial cells. J Neurovirol 2020; 26:84-94. [PMID: 31512144 PMCID: PMC7040057 DOI: 10.1007/s13365-019-00800-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/01/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Enterovirus A71 (EV-A71) is the major cause of severe hand-foot-and-mouth diseases (HFMD), especially encephalitis and other nervous system diseases. EV-A71 capsid protein VP1 mediates virus attachment and is the important virulence factor in the EV-A71pathogenesis. In this study, we explored the roles of VP1 in the permeability of blood-brain barrier (BBB). Sera albumin, Evans blue, and dextran leaked into brain parenchyma of the 1-week-old C57BL/6J mice intracranially injected with VP1 recombinant protein. VP1 also increased the permeability of the brain endothelial cells monolayer, an in vitro BBB model. Tight junction protein claudin-5 was reduced in the brain tissues or brain endothelial cells treated with VP1. In contrast, VP1 increased the expression of virus receptor vimentin, which could be blocked with VP1 neutralization antibody. Vimentin expression in the VP1-treated brain endothelial cells was regulated by TGF-β/Smad-3 and NF-κB signal pathways. Moreover, vimentin over-expression was accompanied with compromised BBB. From these studies, we conclude that EV-A71 virus capsid protein VP1 disrupted BBB and increased virus receptor vimentin, which both may contribute to the virus entrance into brain and EV-A71 CNS infection.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiandong Sun
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wang
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Zhixiao Sun
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Qiyun Ma
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingshun Zhang
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, 210016, China.
- Department of Immunology, Nanjing Medical University, Nanjing, 210016, China.
| | - Juan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 210016, China.
| |
Collapse
|
14
|
Liu ZW, Zhuang ZC, Chen R, Wang XR, Zhang HL, Li SH, Wang ZY, Wen HL. Enterovirus 71 VP1 Protein Regulates Viral Replication in SH-SY5Y Cells via the mTOR Autophagy Signaling Pathway. Viruses 2019; 12:v12010011. [PMID: 31861844 PMCID: PMC7019657 DOI: 10.3390/v12010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Enterovirus 71 (EV71) is the main pathogen that causes severe hand, foot, and mouth disease with fatal neurological complications. However, its neurovirulence mechanism is still unclear. Candidate virulence sites were screened out at structural protein VP1, but the function of these candidate virulence sites remains unclear. Several studies have shown that autophagy is associated with viral replication. However, the relationship between VP1 and autophagy in human neurons has not been studied. Methods: A recombinant virus—SDLY107-VP1, obtained by replacing the VP1 full-length gene of the SDLY107 strain with the VP1 full-length gene of the attenuated strain SDJN2015-01—was constructed and tested for replication and virulence. We then tested the effect of the recombinant virus on autophagy in nerve cells. The effect of autophagy on virus replication was detected by western blot and plaque test. Finally, the changes of mTOR signaling molecules during EV71 infection and the effect of mTOR on virus replication at the RNA level were detected. Results: Viral recombination triggered virulence attenuation. The replication ability of recombinant virus SDLY107-VP1 was significantly weaker than that of the parent strain SDLY107. The SDLY107 strain could inhibit autophagic flux and led to accumulation of autophagosomes, while the SDLY107-VP1 strain could not cause autophagosome accumulation. The synthesis of EV71 RNA was inhibited by inhibiting mTOR. Conclusions: Replacement of VP1 weakened the replication ability of virulent strains and reduced the level of autophagy in nerve cells. This autophagy facilitates the replication of virulent strains in nerve cells. VP1 is an important neurovirulence determinant of EV71, which affects virus replication by regulating cell autophagy. mTOR is a key molecule in this type of autophagy.
Collapse
Affiliation(s)
- Zi-Wei Liu
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhi-Chao Zhuang
- Department of pathogenic microbiology, Tianjin Center for Disease Control and Prevention, Tianjin 300000, China;
| | - Rui Chen
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Xiao-Rui Wang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Hai-Lu Zhang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Shu-Han Li
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhi-Yu Wang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Hong-Ling Wen
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
- Correspondence:
| |
Collapse
|
15
|
Wang H, Yuan M, Wang S, Zhang L, Zhang R, Zou X, Wang X, Chen D, Wu Z. STAT3 Regulates the Type I IFN-Mediated Antiviral Response by Interfering with the Nuclear Entry of STAT1. Int J Mol Sci 2019; 20:ijms20194870. [PMID: 31575039 PMCID: PMC6801597 DOI: 10.3390/ijms20194870] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a multifunctional factor that regulates inflammation and immunity. Knowledge of its regulatory mechanisms is very limited. Here, we showed that enterovirus 71 (EV71) infection induced the phosphorylation of STAT3 and the expression of its downstream inflammatory regulators. Knockdown of STAT3 with siRNAs significantly restricted viral RNA and protein levels, and also reduced viral titers. With further investigation, we found that importin α family member Karyopherin-α1 (KPNA1) was employed by both STAT1 and STAT3 for their nuclear import. The phosphorylated and un-phosphorylated STAT3 competed with STAT1 for binding to the decreased KPNA1 post infection and repressed downstream ISG expression. STAT3 knockdown alleviated the repressed type I IFN-mediated antiviral response upon infection and led to decreased viral replication. Taken together, our data suggested the role of STAT3 in maintaining the balance of inflammation and antiviral responses in the central nervous system (CNS) upon infection.
Collapse
Affiliation(s)
- Huanru Wang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
| | - Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
| | - Shuaibo Wang
- Jinling College, Nanjing University, Nanjing 210089, China.
| | - Li Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
| | - Rui Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
| | - Xue Zou
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
| | - Xiaohui Wang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, China.
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
16
|
Enterovirus A71 VP1 Variation A289T Decreases the Central Nervous System Infectivity via Attenuation of Interactions between VP1 and Vimentin In Vitro and In Vivo. Viruses 2019; 11:v11050467. [PMID: 31121933 PMCID: PMC6563288 DOI: 10.3390/v11050467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Vimentin (VIM) is a surface receptor for enterovirus-A71, mediating the initial binding and subsequent increase in EV-A71 infectivity. The caspid protein VP1 variation, A289T, is reportedly closely associated with less severe central nervous system (CNS) infections in humans. However, it is unclear whether VIM is associated with a reduction in CNS infections of EV-A71 in the presence of A289T. We investigated whether VIM served as a receptor for EV-A71 in the presence of an A298T substitution in VP1. EV-A71-289A and EV-A71-289T were used to infect human rhabdomyosarcoma cells, control human brain microvascular endothelial cells (HBMECs), and VIM-knockout (KO) HBMECs and inoculated BALB/c mice, SV129 mice, and VIM-KO SV129 mice. Furthermore, we cloned VP1-289A-Flag and VP1-289T-Flag proteins for co-immunoprecipitation analysis. Analysis of viral function revealed that the capacity of viral attachment, replication, and protein synthesis and secretion decreased in HBMECs during an EV-A71-289A infection, the infectivity being higher than that of EV-A71-289T upon VIM-KO. Histopathological and immunohistochemical analyses of brain tissue revealed that cerebral cortical damage was more extensive in EV-A71-289A than in EV-A71-289T infections in control SV129 mice; however, no significant difference was observed upon VIM-KO. Co-immunoprecipitation analysis revealed an interaction between VP1 and VIM, which was attenuated in VP1 harboring A289T; however, this attenuation was reversed by VIM (1-58) peptide. The A289T variation of VP1 specifically decreased the virulence of EV-A71 in HBMECs, and the attenuated interaction between VP1 harboring the A289T variation and VIM essentially decreased the CNS infectivity of EV-A71 in vitro and vivo.
Collapse
|
17
|
Yang Y, Cong H, Du N, Han X, Song L, Zhang W, Li C, Tien P. Mitochondria Redistribution in Enterovirus A71 Infected Cells and Its Effect on Virus Replication. Virol Sin 2019; 34:397-411. [PMID: 31069716 DOI: 10.1007/s12250-019-00120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 10/26/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD) and it also causes severe neurologic complications in infected children. The interactions between some viruses and the host mitochondria are crucial for virus replication and pathogenicity. In this study, it was observed that EV-A71 infection resulted in a perinuclear redistribution of the mitochondria. The mitochondria rearrangement was found to require the microtubule network, the dynein complex and a low cytosolic calcium concentration. Subsequently, the EV-A71 non-structural protein 2BC was identified as the viral protein capable of inducing mitochondria clustering. The protein was found localized on mitochondria and interacted with the mitochondrial Rho GTPase 1 (RHOT1) that is a key protein required for attachment between the mitochondria and the motor proteins, which are responsible for the control of mitochondria movement. Additionally, suppressing mitochondria clustering by treating cells with nocodazole, EHNA, thapsigargin or A23187 consistently inhibited EV-A71 replication, indicating that mitochondria recruitment played a crucial role in the EV-A71 life cycle. This study identified a novel function of the EV-A71 2BC protein and provided a potential model for the regulation of mitochondrial motility in EV-A71 infection.
Collapse
Affiliation(s)
- Yang Yang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Haolong Cong
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, 010018, China
| | - Lei Song
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenliang Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunrui Li
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Po Tien
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of the Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses 2018; 10:v10040155. [PMID: 29597291 PMCID: PMC5923449 DOI: 10.3390/v10040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023] Open
Abstract
Enterovirus 71 (EV71) infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD). Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.
Collapse
|
20
|
The calmodulin antagonist W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride) inhibits DENV infection in Huh-7 cells. Virology 2016; 501:188-198. [PMID: 27940224 DOI: 10.1016/j.virol.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
Dengue virus (DENV) replicative cycle occurs in the endoplasmic reticulum where calcium ions play an important role in cell signaling. Calmodulin (CaM) is the primary sensor of intracellular Ca2+ levels in eukaryotic cells. In this paper, the effect of the calmodulin antagonist W-7 in DENV infection in Huh-7 cells was evaluated. W7 inhibited viral yield, NS1 secretion and viral RNA and protein synthesis. Moreover, luciferase activity, encoded by a DENV replicon, was also reduced. A decrease in the replicative complexes formation was clearly observed in W7 treated cells. Docking simulations suggest 2 possible mechanisms of action for W7: the direct inhibition of NS2B-NS3 activity and/or inhibition of the interaction between NS2A with Ca2+-CaM complex. This last possibility was supported by the in vitro interaction observed between recombinant NS2A and CaM. These results indicate that Ca2+-CaM plays an important role in DENV replication.
Collapse
|
21
|
Enterovirus 71 2B Induces Cell Apoptosis by Directly Inducing the Conformational Activation of the Proapoptotic Protein Bax. J Virol 2016; 90:9862-9877. [PMID: 27558414 DOI: 10.1128/jvi.01499-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
To survive and replicate within a host, many viruses have evolved strategies that target crucial components within the apoptotic cascade, leading to either inhibition or induction of cell apoptosis. Enterovirus 71 (EV71) infections have been demonstrated to impact the mitochondrial apoptotic pathway and induce apoptosis in many cell lines. However, the detailed mechanism of EV71-induced apoptosis remains to be elucidated. In this study, we report that EV71 2B protein (2B) localized to the mitochondria and induced cell apoptosis by interacting directly with and activating the proapoptotic protein Bax. 2B recruited Bax to the mitochondria and induced Bax conformational activation. In addition, mitochondria isolated from 2B-expressing cells that were treated with a recombinant Bax showed increased Bax interaction and cytochrome c (Cyt c) release. Importantly, apoptosis in cells with either EV71 infection or 2B expression was dramatically reduced in Bax knockdown cells but not in Bak knockdown cells, suggesting that Bax played a pivotal role in EV71- or 2B-induced apoptosis. Further studies indicate that a hydrophobic region of 18 amino acids (aa) in the C-terminal region of 2B (aa 63 to 80) was responsible for the location of 2B in the mitochondria. A hydrophilic region of 14 aa in the N-terminal region of 2B was functional in Bax interaction and its subsequent activation. Moreover, overexpression of the antiapoptotic protein Bcl-XL abrogates 2B-induced release of Cyt c and caspase activation. Therefore, this study provides direct evidence that EV71 2B induces cell apoptosis and impacts the mitochondrial apoptotic pathway by directly modulating the redistribution and activation of proapoptotic protein Bax. IMPORTANCE EV71 infections are usually accompanied by severe neurological complications. It has also been postulated that the induction of cell apoptosis resulting from tissue damage is a possible process of EV71-related pathogenesis. In this study, we report that EV71 2B protein (2B) localized to the mitochondria and induced cell apoptosis by interacting directly with and activating the proapoptotic protein Bax. This study provides evidence that EV71 induces cell apoptosis by modulating Bax activation and reveals important clues regarding the mechanism of Cyt c release and mitochondrial permeabilization during EV71 infection.
Collapse
|
22
|
Söderholm S, Kainov DE, Öhman T, Denisova OV, Schepens B, Kulesskiy E, Imanishi SY, Corthals G, Hintsanen P, Aittokallio T, Saelens X, Matikainen S, Nyman TA. Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human Macrophages. Mol Cell Proteomics 2016; 15:3203-3219. [PMID: 27486199 DOI: 10.1074/mcp.m116.057984] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses cause infections in the human respiratory tract and give rise to annual seasonal outbreaks, as well as more rarely dreaded pandemics. Influenza A viruses become quickly resistant to the virus-directed antiviral treatments, which are the current main treatment options. A promising alternative approach is to target host cell factors that are exploited by influenza viruses. To this end, we characterized the phosphoproteome of influenza A virus infected primary human macrophages to elucidate the intracellular signaling pathways and critical host factors activated upon influenza infection. We identified 1675 phosphoproteins, 4004 phosphopeptides and 4146 nonredundant phosphosites. The phosphorylation of 1113 proteins (66%) was regulated upon infection, highlighting the importance of such global phosphoproteomic profiling in primary cells. Notably, 285 of the identified phosphorylation sites have not been previously described in publicly available phosphorylation databases, despite many published large-scale phosphoproteome studies using human and mouse cell lines. Systematic bioinformatics analysis of the phosphoproteome data indicated that the phosphorylation of proteins involved in the ubiquitin/proteasome pathway (such as TRIM22 and TRIM25) and antiviral responses (such as MAVS) changed in infected macrophages. Proteins known to play roles in small GTPase-, mitogen-activated protein kinase-, and cyclin-dependent kinase- signaling were also regulated by phosphorylation upon infection. In particular, the influenza infection had a major influence on the phosphorylation profiles of a large number of cyclin-dependent kinase substrates. Functional studies using cyclin-dependent kinase inhibitors showed that the cyclin-dependent kinase activity is required for efficient viral replication and for activation of the host antiviral responses. In addition, we show that cyclin-dependent kinase inhibitors protect IAV-infected mice from death. In conclusion, we provide the first comprehensive phosphoproteome characterization of influenza A virus infection in primary human macrophages, and provide evidence that cyclin-dependent kinases represent potential therapeutic targets for more effective treatment of influenza infections.
Collapse
Affiliation(s)
- Sandra Söderholm
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; §Unit of Systems Toxicology, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Denis E Kainov
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Oxana V Denisova
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Bert Schepens
- ‖Medical Biotechnology Center, VIB, B-9052 Ghent (Zwijnaarde), Belgium; **Department of Biomedical Molecular Biology, B-9052 Ghent University, Ghent, Belgium
| | - Evgeny Kulesskiy
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Susumu Y Imanishi
- ‡‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Garry Corthals
- ‡‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Petteri Hintsanen
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Xavier Saelens
- ‖Medical Biotechnology Center, VIB, B-9052 Ghent (Zwijnaarde), Belgium; **Department of Biomedical Molecular Biology, B-9052 Ghent University, Ghent, Belgium
| | - Sampsa Matikainen
- §§Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuula A Nyman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; ¶¶Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
23
|
Liu HB, Yang GF, Liang SJ, Lin J. Bioinformatic analysis of non-VP1 capsid protein of coxsackievirus A6. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2016; 36:607-613. [PMID: 27465341 DOI: 10.1007/s11596-016-1633-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents.
Collapse
Affiliation(s)
- Hong-Bo Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Guang-Fei Yang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Si-Jia Liang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jun Lin
- College of Bio-technology, Guilin Medical University, Guilin, 541004, China
| |
Collapse
|
24
|
Shabtay O, Breitbart H. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization. Dev Biol 2016; 415:64-74. [PMID: 27178669 DOI: 10.1016/j.ydbio.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 02/01/2023]
Abstract
In order to interact with the egg and undergo acrosomal exocytosis or the acrosome reaction (AR), mammalian spermatozoa must undergo a series of biochemical changes in the female reproductive tract, collectively called capacitation. We showed that F-actin is formed during sperm capacitation and fast depolymerization occurs prior to the AR. We hypothesized that F-actin protects the sperm from undergoing spontaneous-AR (sAR) which decreases fertilization rate. We show that activation of the actin-severing protein gelsolin induces a significant increase in sAR. Moreover, inhibition of CaMKII or PLD during sperm capacitation, caused an increase in sAR and inhibition of F-actin formation. Spermine, which leads to PLD activation, was able to reverse the effects of CaMKII inhibition on sAR-increase and F-actin-decrease. Furthermore, the increase in sAR and the decrease in F-actin caused by the inactivation of the PLD-pathway, were reversed by activation of CaMKII using H2O2 or by inhibiting protein phosphatase 1 which enhance the phosphorylation and oxidation states of CaMKII. These results indicate that two distinct pathways lead to F-actin formation in the sperm capacitation process which prevents the occurrence of sAR.
Collapse
Affiliation(s)
- Ortal Shabtay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
25
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
26
|
Wang C, Zhou R, Zhang Z, Jin Y, Cardona CJ, Xing Z. Intrinsic apoptosis and proinflammatory cytokines regulated in human astrocytes infected with enterovirus 71. J Gen Virol 2015; 96:3010-3022. [PMID: 26296773 DOI: 10.1099/jgv.0.000235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Enterovirus 71 (EV71) has emerged as a clinically important neurotropic virus following poliovirus eradication. However, the mechanism of EV71-induced neurological manifestation remains largely unclear. In this study, we showed that human astrocytes were susceptible to EV71 and viral RNA was first detected at 12 h post-infection (p.i.), whilst viral proteins were detected at 36 h p.i. EV71-infected astrocytes underwent apoptosis, in which cytochrome c was released from mitochondria to the cytosol and caspase-9 was activated. Interestingly, caspase-2 and -8 were not cleaved or activated during the infection, whilst a selective inhibitor of caspase-9, Z-LEHD-FMK, blocked the cleavage of caspase-3 and -7, indicating that only the mitochondria-mediated intrinsic apoptotic pathway was activated in EV71-infected astrocytes. EV71 infection also induced proinflammatory cytokines, including IL-6, IL-8, CCL5 and IFN-γ-inducible protein (IP)-10 in astrocytes, which may play a critical role in EV71-induced neuroinflammation and neurological complications. By using inhibitors of mitogen-activated protein kinases (MAPKs), we demonstrated that the induction of the cytokines was mainly regulated by the MAPK p38 signalling pathway as a significant reduction of the cytokines was observed when treated with p38 inhibitors. This study demonstrated that human astrocytes were susceptible to EV71, and the infection led to intrinsic apoptosis and induction of p38-regulated proinflammatory cytokines. These findings further our understanding of the neuropathogenesis in severe cases of EV71 infection.
Collapse
Affiliation(s)
- Chunyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China.,Nanjing Children's Hospital, Nanjing, PR China
| | - Renmen Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China.,Nanjing Children's Hospital, Nanjing, PR China
| | - Zerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China
| | - Yu Jin
- The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China.,Nanjing Children's Hospital, Nanjing, PR China
| | - Carol J Cardona
- College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| | - Zheng Xing
- College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.,The State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, PR China
| |
Collapse
|
27
|
Razavinikoo H, Soleimanjahi H, Haqshenas G, Bamdad T, Teimoori A, Goodarzi Z. Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:393-7. [PMID: 26019803 PMCID: PMC4439455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/11/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family such as calcium/calmodulin-dependent kinase II, which plays a crucial role in replication and pathogenesis of the virus. The aim of this study was to expression bovine rotavirus NSP4 gene in HEK293 cell and evaluation of its biological effect related to activation of calcium/calmodulin-dependent kinase II in cell culture. MATERIALS AND METHODS MA104 cells was used as a sensitive cell for propagation of virus and defined as a positive control. The NSP4 gene was amplified and inserted into an expression vector, and introduced as a recombinant plasmid into HEK293T cells. Western blot analysis was performed as a confirmation test for both expression of NSP4 protein and activation of calcium/calmodulin-dependent kinase II. RESULTS Expression of NSP4 and activated form of calcium/calmodulin-dependent kinase II were demonstrated by western blotting. CONCLUSION It was shown that the expression of biologically active full- length NSP4 protein in HEK293T cells may be associated with some biological properties such as calcium calmodulin kinase II activation, which was indicator of rotaviruses replication and pathogenesis.
Collapse
Affiliation(s)
- Hadi Razavinikoo
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,*Corresponding author: Hoorieh Soleimanjahi. Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel: +98-21-82883561; Fax: +98-21-82883581;
| | - Gholamreza Haqshenas
- Department of Microbiology, Faculty of Medicine, Nursing & Health Sciences, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Goodarzi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Issac THK, Tan EL, Chu JJH. Proteomic profiling of chikungunya virus-infected human muscle cells: reveal the role of cytoskeleton network in CHIKV replication. J Proteomics 2014; 108:445-64. [PMID: 24933005 DOI: 10.1016/j.jprot.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Chikungunya virus (CHIKV) is an arthropod-borne, positive-sense, single-stranded RNA virus belonging to genus Alphavirus and family Togaviridae. The clinical manifestations developed upon CHIKV-infection include fever, myositis, arthralgia and maculopapular rash. Thus, the re-emergence of CHIKV has posed serious health threats worldwide. Due to the fact that myositis is induced upon CHIKV-infection, we sought to understand the dynamic proteomic regulation in SJCRH30, a human rhabdomyosarcoma cell line, to gain insights on CHIKV pathogenesis. Two-dimensional gel electrophoresis (2DE) in combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to profile differential cellular proteins expression in CHIKV-infected SJCRH30 cells. 2DE analysis on CHIKV-infected cells has revealed 44 protein spots. These spots are found to be involved in various biological pathways such as biomolecules synthesis and metabolism, cell signaling and cellular reorganization. siRNA-mediated gene silencing on selected genes has elucidated the biological significance of these gene-translated host proteins involved in CHIKV-infection. More importantly, the interaction of vimentin with non-structural protein (nsP3) of CHIKV was shown, suggesting the role played by vimentin during CHIKV replication by forming an anchorage network with the CHIKV replication complexes (RCs). BIOLOGICAL SIGNIFICANCE Chikungunya virus (CHIKV) is a re-emerging virus that has caused various disease outbreaks in Africa and Asia. The clinical symptoms of CHIKV-infection include fever, skin rash, recurrent joint paint, and myositis. Neuronal implications and death may be resulted from the severe viral infection. Up to date, there are no effective treatments and vaccines against CHIKV-infection. More importantly, little is known about the differential regulation of host proteins upon CHIKV infection, hence deciphering the viral-host cell interactions during viral infection provide critical information on our understanding on the mechanisms of virus infection and its dependency of host proteins for replication. In light of the muscle-related clinical manifestations of myositis resulting from CHIKV-infection, human rhabdomyosarcoma cells, SJCRH30 were utilized in this protein profiling study, in order to decipher the pathogenesis of CHIKV. This study has identified an arrays of host proteins that are differentially regulated upon CHIKV infection including that of the cytoskeletal protein, vimentin that plays significant role in aiding the replication of CHIKV within the host cells through 2DE assay. Immunofluorescence assay further shows that the novel interaction between cytoskeleton structure and CHIKV replication complex by forming an intercalating network around the replication complexes and facilitating various stages of the virus life cycle. This novel finding has inevitably led to a deeper understanding of CHIKV pathogenesis in revealing the importance of host proteins during CHIKV replication, as well as contributing to the development of specific antiviral strategies against this medically important viral pathogen.
Collapse
Affiliation(s)
- Too Horng Khit Issac
- Laboratory of Molecular RNA Virology and Antiviral Strategies. Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - Eng Lee Tan
- Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore, Singapore; Centre for Biomedical and Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies. Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597.
| |
Collapse
|