1
|
Icard P, Alifano M, Simula L. Citrate oscillations during cell cycle are a targetable vulnerability in cancer cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189313. [PMID: 40216092 DOI: 10.1016/j.bbcan.2025.189313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Cell cycle progression is timely interconnected with oscillations in cellular metabolism. Here, we first describe how these metabolic oscillations allow cycling cells to meet the bioenergetic needs specifically for each phase of the cell cycle. In parallel, we highlight how the cytosolic level of citrate is dynamically regulated during these different phases, being low in G1 phase, increasing in S phase, peaking in G2/M, and decreasing in mitosis. Of note, in cancer cells, a dysregulation of such citrate oscillation can support cell cycle progression by promoting a deregulated Warburg effect (aerobic glycolysis), activating oncogenic signaling pathways (such as PI3K/AKT), and promoting acetyl-CoA production via alternative routes, such as overconsumption of acetate. Then, we review how administration of sodium citrate (at high doses) arrests the cell cycle in G0/G1 or G2/M, inhibits glycolysis and PI3K/AKT, induces apoptosis, and significantly reduces tumor growth in various in vivo models. Last, we reason on the possibility to implement citrate administration to reinforce the effectiveness of cell cycle inhibitors to better cure cancer.
Collapse
Affiliation(s)
- Philippe Icard
- Université de Normandie, UNICAEN, Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France.
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France; Inserm U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Luca Simula
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris 75014, France
| |
Collapse
|
2
|
Xiao F, Wang Z, Qiao L, Zhang X, Wu N, Wang J, Yu X. Application of PARP inhibitors combined with immune checkpoint inhibitors in ovarian cancer. J Transl Med 2024; 22:778. [PMID: 39169400 PMCID: PMC11337781 DOI: 10.1186/s12967-024-05583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
The advent of polyadenosine diphosphate ribose polymerase inhibitors (PARPi) has brought about significant changes in the field of ovarian cancer treatment. However, in 2022, Rucaparib, Olaparib, and Niraparib, had their marketing approval revoked for third-line and subsequent therapies due to an increased potential for adverse events. Consequently, the exploration of new treatment modalities remains imperative. Recently, the integration of PARPi with immune checkpoint inhibitors (ICIs) has emerged as a potential remedy option within the context of ovarian cancer. This article offers a comprehensive examination of the mechanisms and applications of PARPi and ICIs in the treatment of ovarian cancer. It synthesizes the existing evidence supporting their combined use and discusses key considerations that merit attention in ongoing development efforts.
Collapse
Affiliation(s)
- Fen Xiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - ZhiBin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Qiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - NaYiYuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
3
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Boone I, Tuerlings M, Coutinho de Almeida R, Lehmann J, Ramos Y, Nelissen R, Slagboom E, de Keizer P, Meulenbelt I. Identified senescence endotypes in aged cartilage are reflected in the blood metabolome. GeroScience 2024; 46:2359-2369. [PMID: 37962736 PMCID: PMC10828277 DOI: 10.1007/s11357-023-01001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Heterogeneous accumulation of senescent cells expressing the senescence-associated secretory phenotype (SASP) affects tissue homeostasis which leads to diseases, such as osteoarthritis (OA). In this study, we set out to characterize heterogeneity of cellular senescence within aged articular cartilage and explored the presence of corresponding metabolic profiles in blood that could function as representative biomarkers. Hereto, we set out to perform cluster analyses, using a gene-set of 131 senescence genes (N = 57) in a previously established RNA sequencing dataset of aged articular cartilage and a generated metabolic dataset in overlapping blood samples. Using unsupervised hierarchical clustering and pathway analysis, we identified two robust cellular senescent endotypes. Endotype-1 was enriched for cell proliferating pathways, expressing forkhead box protein O4 (FOXO4), RB transcriptional corepressor like 2 (RBL2), and cyclin-dependent kinase inhibitor 1B (CDKN1B); the FOXO mediated cell cycle was identified as possible target for endotype-1 patients. Endotype-2 showed enriched inflammation-associated pathways, expressed by interleukin 6 (IL6), matrix metallopeptidase (MMP)1/3, and vascular endothelial growth factor (VEGF)C and SASP pathways were identified as possible targets for endotype-2 patients. Notably, plasma-based metabolic profiles in overlapping blood samples (N = 21) showed two corresponding metabolic clusters in blood. These non-invasive metabolic profiles could function as biomarkers for patient-tailored targeting of senescence in OA.
Collapse
Affiliation(s)
- Ilja Boone
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, Post-zone S-05-P, 2300 RC, Leiden, The Netherlands
| | - Margo Tuerlings
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, Post-zone S-05-P, 2300 RC, Leiden, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, Post-zone S-05-P, 2300 RC, Leiden, The Netherlands
| | - Johannes Lehmann
- Center for Molecular Medicine, Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yolande Ramos
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, Post-zone S-05-P, 2300 RC, Leiden, The Netherlands
| | - Rob Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, Post-zone S-05-P, 2300 RC, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Peter de Keizer
- Center for Molecular Medicine, Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Cleara Biotech B.V., Utrecht, The Netherlands
| | - Ingrid Meulenbelt
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, Post-zone S-05-P, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
5
|
Genet G, Genet N, Paila U, Cain SR, Cwiek A, Chavkin NW, Serbulea V, Figueras A, Cerdà P, McDonnell SP, Sankaranarayanan D, Huba M, Nelson EA, Riera-Mestre A, Hirschi KK. Induced Endothelial Cell Cycle Arrest Prevents Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia. Circulation 2024; 149:944-962. [PMID: 38126211 PMCID: PMC10954087 DOI: 10.1161/circulationaha.122.062952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known. METHODS We used BMP (bone morphogenetic protein) 9/10 blocking antibodies and endothelial-specific deletion of activin A receptor like type 1 (Alk1) to induce HHT in Fucci (fluorescent ubiquitination-based cell cycle indicator) 2 mice to assess endothelial cell cycle states in AVMs. We also assessed the therapeutic potential of inducing endothelial cell cycle G1 state in HHT to prevent AVMs by repurposing the Food and Drug Administration-approved CDK (cyclin-dependent kinase) 4/6 inhibitor (CDK4/6i) palbociclib. RESULTS We found that endothelial cell cycle state and associated gene expressions are dysregulated during the pathogenesis of vascular malformations in HHT. We also showed that palbociclib treatment prevented AVM development induced by BMP9/10 inhibition and Alk1 genetic deletion. Mechanistically, endothelial cell late G1 state induced by palbociclib modulates the expression of genes regulating arteriovenous identity, endothelial cell migration, metabolism, and VEGF-A (vascular endothelial growth factor A) and BMP9 signaling that collectively contribute to the prevention of vascular malformations. CONCLUSIONS This study provides new insights into molecular mechanisms leading to HHT by defining how endothelial cell cycle is dysregulated in AVMs because of BMP9/10 and Alk1 signaling deficiencies, and how restoration of endothelial cell cycle control may be used to treat AVMs in patients with HHT.
Collapse
Affiliation(s)
- Gael Genet
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Nafiisha Genet
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Umadevi Paila
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Shelby R Cain
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Aleksandra Cwiek
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Nicholas W Chavkin
- Robert M. Berne Cardiovascular Research Center (N.W.C., V.S., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center (N.W.C., V.S., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain (A.F.)
- Oncobell Program (A.F.), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pau Cerdà
- (P.C., A.R.-M.), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- HHT Unit, Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain (P.C., A.R.-M.)
| | - Stephanie P McDonnell
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Danya Sankaranarayanan
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Mahalia Huba
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Elizabeth A Nelson
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
| | - Antoni Riera-Mestre
- (P.C., A.R.-M.), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- HHT Unit, Internal Medicine Department, Hospital Universitari Bellvitge, Barcelona, Spain (P.C., A.R.-M.)
- Department of Clinical Science, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Spain (A.R.-M.)
| | - Karen K Hirschi
- Department of Cell Biology (G.G., N.G., U.P., S.R.C., A.C., S.P.M., D.S., M.H., E.A.N., K.K.H.), School of Medicine, University of Virginia, Charlottesville
- Robert M. Berne Cardiovascular Research Center (N.W.C., V.S., K.K.H.), School of Medicine, University of Virginia, Charlottesville
- Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (K.K.H.)
| |
Collapse
|
6
|
Zhou X, Ohgaki R, Jin C, Xu M, Okanishi H, Endou H, Kanai Y. Inhibition of amino acid transporter LAT1 in cancer cells suppresses G0/G1-S transition by downregulating cyclin D1 via p38 MAPK activation. J Pharmacol Sci 2024; 154:182-191. [PMID: 38395519 DOI: 10.1016/j.jphs.2024.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1, SLC7A5) is upregulated in various cancers and associated with disease progression. Nanvuranlat (Nanv; JPH203, KYT-0353), a selective LAT1 inhibitor, suppresses the uptake of large neutral amino acids required for rapid growth and proliferation of cancer cells. Previous studies have suggested that the inhibition of LAT1 by Nanv induces the cell cycle arrest at G0/G1 phase, although the underlying mechanisms remain unclear. Using pancreatic cancer cells arrested at the restriction check point (R) by serum deprivation, we found that the Nanv drastically suppresses the G0/G1-S transition after release. This blockade of the cell cycle progression was accompanied by a sustained activation of p38 mitogen-activated protein kinase (MAPK) and subsequent phosphorylation-dependent proteasomal degradation of cyclin D1. Isoform-specific knockdown of p38 MAPK revealed the predominant contribution of p38α. Proteasome inhibitors restored the cyclin D1 amount and released the cell cycle arrest caused by Nanv. The increased phosphorylation of p38 MAPK and the decrease of cyclin D1 were recapitulated in xenograft tumor models treated with Nanv. This study contributes to delineating the pharmacological activities of LAT1 inhibitors as anti-cancer agents and provides significant insights into the molecular basis of the amino acid-dependent cell cycle checkpoint at G0/G1 phase.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd., Yokohama, Kanagawa, 230-0046, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Malakar P, Singha D, Choudhury D, Shukla S. Glutamine regulates the cellular proliferation and cell cycle progression by modulating the mTOR mediated protein levels of β-TrCP. Cell Cycle 2023; 22:1937-1950. [PMID: 37771151 PMCID: PMC10599172 DOI: 10.1080/15384101.2023.2260166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
The amino acid glutamine plays an important role in cell growth and proliferation. Reliance on glutamine has long been considered a hallmark of highly proliferating cancer cells. Development of strategies for cancer therapy that primarily target glutamine metabolism has been an active area of research. Glutamine depletion is associated with growth arrest and apoptosis-induced cell death; however, the molecular mechanisms involved in this process are not clearly understood. Here, we show that glutamine depletion activates the energetic stress AMPK pathway and inhibits mTORC1 activity. Furthermore, inhibition of mTORC1 reduces the protein levels of β-TrCP, resulting in aberrant cell cycle progression and reduced proliferation. In agreement with the role of β-TrCP in glutamine metabolism, knockdown of β-TrCP resulted in proliferation and cell cycle defects similar to those observed for glutamine depletion. In summary, our results provide mechanistic insights into the role of glutamine metabolism in regulation of cell growth and proliferation via β-TrCP, uncovering a previously undescribed molecular process involved in glutamine metabolism.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Debopriyo Choudhury
- Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
8
|
Glutamine Starvation Affects Cell Cycle, Oxidative Homeostasis and Metabolism in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030683. [PMID: 36978930 PMCID: PMC10045305 DOI: 10.3390/antiox12030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer cells adjust their metabolism to meet energy demands. In particular, glutamine addiction represents a distinctive feature of several types of tumors, including colorectal cancer. In this study, four colorectal cancer cell lines (Caco-2, HCT116, HT29 and SW480) were cultured with or without glutamine. The growth and proliferation rate, colony-forming capacity, apoptosis, cell cycle, redox homeostasis and metabolomic analysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, high-performance liquid chromatography and gas chromatography/mass spectrometry techniques. The results show that glutamine represents an important metabolite for cell growth and that its deprivation reduces the proliferation of colorectal cancer cells. Glutamine depletion induces cell death and cell cycle arrest in the GO/G1 phase by modulating energy metabolism, the amino acid content and antioxidant defenses. Moreover, the combined glutamine starvation with the glycolysis inhibitor 2-deoxy-D-glucose exerted a stronger cytotoxic effect. This study offers a strong rationale for targeting glutamine metabolism alone or in combination with glucose metabolism to achieve a therapeutic benefit in the treatment of colon cancer.
Collapse
|
9
|
Das SK, Mishra S, Saha KD, Chandra D, Hara M, Mostafa AA, Bhaumik A. N-Rich, Polyphenolic Porous Organic Polymer and Its In Vitro Anticancer Activity on Colorectal Cancer. Molecules 2022; 27:7326. [PMID: 36364150 PMCID: PMC9657835 DOI: 10.3390/molecules27217326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/15/2023] Open
Abstract
N-rich organic materials bearing polyphenolic moieties in their building networks and nanoscale porosities are very demanding in the context of designing efficient biomaterials or drug carriers for the cancer treatment. Here, we report the synthesis of a new triazine-based secondary-amine- and imine-linked polyphenolic porous organic polymer material TrzTFPPOP and explored its potential for in vitro anticancer activity on the human colorectal carcinoma (HCT 116) cell line. This functionalized (-OH, -NH-, -C=N-) organic material displayed an exceptionally high BET surface area of 2140 m2 g-1 along with hierarchical porosity (micropores and mesopores), and it induced apoptotic changes leading to high efficiency in colon cancer cell destruction via p53-regulated DNA damage pathway. The IC30, IC50, and IC70 values obtained from the MTT assay are 1.24, 3.25, and 5.25 μg/mL, respectively.
Collapse
Affiliation(s)
- Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Debraj Chandra
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Amany A. Mostafa
- Nanomedicine & Tissue Engineering Laboratory, Department of Ceramic, National Research Centre, El Bohouth St., Dokki, Cairo 12622, Egypt
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Hatipoglu A, Menon D, Levy T, Frias MA, Foster DA. Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells. PLoS One 2022; 17:e0276579. [PMID: 36269753 PMCID: PMC9586366 DOI: 10.1371/journal.pone.0276579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is now considered a hallmark of cancer cells. KRas-driven cancer cells use glutaminolysis to generate the tricarboxylic acid cycle intermediate α-ketoglutarate via a transamination reaction between glutamate and oxaloacetate. We reported previously that exogenously supplied unsaturated fatty acids could be used to synthesize phosphatidic acid-a lipid second messenger that activates both mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTOR complex 2 (mTORC2). A key target of mTORC2 is Akt-a kinase that promotes survival and regulates cell metabolism. We report here that mono-unsaturated oleic acid stimulates the phosphorylation of ATP citrate lyase (ACLY) at the Akt phosphorylation site at S455 in an mTORC2 dependent manner. Inhibition of ACLY in KRas-driven cancer cells in the absence of serum resulted in loss of cell viability. We examined the impact of glutamine (Gln) deprivation in combination with inhibition of ACLY on the viability of KRas-driven cancer cells. While Gln deprivation was somewhat toxic to KRas-driven cancer cells by itself, addition of the ACLY inhibitor SB-204990 increased the loss of cell viability. However, the transaminase inhibitor aminooxyacetate was minimally toxic and the combination of SB-204990 and aminooxtacetate led to significant loss of cell viability and strong cleavage of poly-ADP ribose polymerase-indicating apoptotic cell death. This effect was not observed in MCF7 breast cancer cells that do not have a KRas mutation or in BJ-hTERT human fibroblasts which have no oncogenic mutation. These data reveal a synthetic lethality between inhibition of glutamate oxaloacetate transaminase and ACLY inhibition that is specific for KRas-driven cancer cells and the apparent metabolic reprogramming induced by activating mutations to KRas.
Collapse
Affiliation(s)
- Ahmet Hatipoglu
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Deepak Menon
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Talia Levy
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
| | - Maria A. Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Department of Biology and Health Promotion, St Francis College, Brooklyn, New York, New York, United States of America
| | - David A. Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Biology Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
12
|
Icard P, Simula L. Metabolic oscillations during cell-cycle progression. Trends Endocrinol Metab 2022; 33:447-450. [PMID: 35534337 DOI: 10.1016/j.tem.2022.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
We discuss how metabolism changes during different phases of the cell cycle to sustain biosynthesis and replication in normal and cancer cells. We also highlight how several master regulators of cell cycle, such as cyclin-cyclin-dependent kinases (cyc-CDK complexes) and E3 proteasome ligases, modulate key metabolic enzymes to support cell-cycle progression.
Collapse
Affiliation(s)
- Philippe Icard
- Université de Caen Normandie (UNICAEN), INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, Assistance Publique - Hopitaux de Paris (APHP), Paris, 75014, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, Paris, 75014, France
| |
Collapse
|
13
|
Chakraborty S, Utter MB, Frias MA, Foster DA. Cancer cells with defective RB and CDKN2A are resistant to the apoptotic effects of rapamycin. Cancer Lett 2021; 522:164-170. [PMID: 34563639 DOI: 10.1016/j.canlet.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Inhibition of mammalian target of rapamycin complex 1 (mTORC1) with rapamycin in the absence of transforming growth factor-β (TGFβ) signaling induces apoptosis in many cancer cell lines. In the presence of TGFβ, rapamycin induces G1 cell cycle arrest; however, in the absence of TGFβ, cells do not arrest in G1 and progress into S-phase where rapamycin is cytotoxic rather than cytostatic. However, we observed that DU145 prostate and NCI-H2228 lung cancer cells were resistant to the cytotoxic effect of rapamycin. Of interest, the rapamycin-resistant DU145 and NCI-H2228 cells have mutations in the RB and CDKN2A tumor suppressor genes. The gene products of RB and CDKN2A (pRb and p14ARF) suppress E2F family transcription factors that promote cell cycle progression from G1 into S. Restoration of wild type RB or inhibition of E2F activity in DU145 and NCI-H2228 cells led to rapamycin sensitivity. These data provide evidence that the combination of mutant RB and mutant CDKN2A in cancer cells leads to rapamycin resistance, which has implications for precision medicine approaches to anti-cancer therapies.
Collapse
Affiliation(s)
- Sohag Chakraborty
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Biochemistry Program, Graduate Center of the City University of New York, NY, New York, USA
| | - Matthew B Utter
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Biochemistry Program, Graduate Center of the City University of New York, NY, New York, USA
| | - Maria A Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Biochemistry Program, Graduate Center of the City University of New York, NY, New York, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Arginine Regulates TOR Signaling Pathway through SLC38A9 in Abalone Haliotis discus hannai. Cells 2021; 10:cells10102552. [PMID: 34685533 PMCID: PMC8534056 DOI: 10.3390/cells10102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Arginine plays an important role in the regulation of the target of the rapamycin (TOR) signaling pathway, and Solute Carrier Family 38 Member 9 (SLC38A9) was identified to participate in the amino acid-dependent activation of TOR in humans. However, the regulations of arginine on the TOR signaling pathway in abalone are still unclear. In this study, slc38a9 of abalone was cloned, and the slc38a9 was knocked down and overexpressed to explore its function in the regulation of the TOR signaling pathway. The results showed that knockdown of slc38a9 decreased the expression of tor, ribosomal s6 protein kinase (s6k) and eukaryotic translation initiation factor 4e (eif4e) and inhibited the activation of the TOR signaling pathway by arginine. Overexpression of slc38a9 up-regulated the expression of TOR-related genes. In addition, hemocytes of abalone were treated with 0, 0.2, 0.5, 1, 2 and 4 mmol/L of arginine, and abalones were fed diets with 1.17%, 1.68% and 3.43% of arginine, respectively, for 120 days. Supplementation of arginine (0.5–4 mmol/L) increased the expressions of slc38a9, tor, s6k and eif4e in hemocytes, and abalone fed with 1.68% of dietary arginine showed higher mRNA levels of slc38a9, tor, s6k and eif4e and phosphorylation levels of TOR, S6 and 4E-BP. In conclusion, the TOR signaling pathway of abalone can be regulated by arginine, and SLC38A9 plays an essential role in this regulation.
Collapse
|
15
|
Polat IH, Tarrado-Castellarnau M, Benito A, Hernandez-Carro C, Centelles J, Marin S, Cascante M. Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10091349. [PMID: 34572981 PMCID: PMC8472416 DOI: 10.3390/antiox10091349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Nucleotide pools need to be constantly replenished in cancer cells to support cell proliferation. The synthesis of nucleotides requires glutamine and 5-phosphoribosyl-1-pyrophosphate produced from ribose-5-phosphate via the oxidative branch of the pentose phosphate pathway (ox-PPP). Both PPP and glutamine also play a key role in maintaining the redox status of cancer cells. Enhanced glutamine metabolism and increased glucose 6-phosphate dehydrogenase (G6PD) expression have been related to a malignant phenotype in tumors. However, the association between G6PD overexpression and glutamine consumption in cancer cell proliferation is still incompletely understood. In this study, we demonstrated that both inhibition of G6PD and glutamine deprivation decrease the proliferation of colon cancer cells and induce cell cycle arrest and apoptosis. Moreover, we unveiled that glutamine deprivation induce an increase of G6PD expression that is mediated through the activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2). This crosstalk between G6PD and glutamine points out the potential of combined therapies targeting oxidative PPP enzymes and glutamine catabolism to combat colon cancer.
Collapse
Affiliation(s)
- Ibrahim H. Polat
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, CEDEX, 38700 La Tronche, France
| | - Míriam Tarrado-Castellarnau
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Adrian Benito
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Claudia Hernandez-Carro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Josep Centelles
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.)
| |
Collapse
|
16
|
In Silico Identification of Small Molecules as New Cdc25 Inhibitors through the Correlation between Chemosensitivity and Protein Expression Pattern. Int J Mol Sci 2021; 22:ijms22073714. [PMID: 33918281 PMCID: PMC8038176 DOI: 10.3390/ijms22073714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range. When J3955 was tested in cell-cycle perturbation experiments, it caused mitotic failure by G2/M-phase cell-cycle arrest. Finally, Western blotting analysis showed an increment of phosphorylated Cdk1 levels in cells exposed to J3955, indicating its specific influence in cellular pathways involving Cdc25 proteins.
Collapse
|
17
|
Yao DW, Ma J, Yang CL, Chen LL, He QY, Coleman DN, Wang TZ, Jiang XL, Luo J, Ma Y, Loor JJ. Phosphatase and tensin homolog (PTEN) suppresses triacylglycerol accumulation and monounsaturated fatty acid synthesis in goat mammary epithelial cells. J Dairy Sci 2021; 104:7283-7294. [PMID: 33741170 DOI: 10.3168/jds.2020-18784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a well-known tumor suppressor in nonruminants and regulates various cellular processes including growth through dephosphorylation of phosphoinositide substrates. Although studies with bovine mammary tissue suggested a role for PTEN during lactation, its potential role in lipid metabolism remains unknown. Objectives of the present study were to determine PTEN abundance in goat mammary tissue at 2 stages of lactation (n = 6 Xinong Saanen dairy goats per stage), and to use gene-silencing and adenoviral transfections in vitro with isolated goat mammary epithelial cells (GMEC) to evaluate the role of PTEN abundance of lipid metabolism-related genes. Abundance of PTEN decreased by 51.5% at peak lactation compared with the dry period. The PTEN was overexpressed in isolated GMEC through adenoviral transfection using an adenovirus system with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and silenced via targeted small interfering RNA (siRNA) transfection with a scrambled small interfering RNA as a negative control. Cell culture was performed for 48 h before RNA extraction, triacylglycerol (TAG) analysis, and fatty acid analysis. Overexpression of PTEN downregulated abundance of acetyl-coenzyme A carboxylase α (ACACA), fatty acid synthase (FASN), sterol regulatory element binding transcription factor1 (SREBF1), stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol acytransferase 1 (DGAT1), 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) coupled with an increase in patatin-like-phospholipase domain containing 2 (PNPLA2), hormone-sensitive lipase (LIPE), and carnitine palmitoyltransferase 1 β (CPT1B). Furthermore, overexpressing PTEN in vitro resulted in a significant decrease in TAG concentration and concentration of C16:1. In contrast, interference of PTEN led to an opposite effect on lipid metabolism in GMEC. These changes suggested a shift from lipogenesis and esterification to lipolysis and fatty acid oxidation. Collectively, PTEN seems to play a role in monounsaturated fatty acids synthesis and lipid accumulation in GMEC.
Collapse
Affiliation(s)
- D W Yao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381
| | - J Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381
| | - C L Yang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381
| | - L L Chen
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381
| | - Q Y He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - D N Coleman
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - T Z Wang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381
| | - X L Jiang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - Y Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, P. R. China 300381.
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
18
|
Hu J, Wang R, Liu Y, Zhou J, Shen K, Dai Y. Baicalein Represses Cervical Cancer Cell Growth, Cell Cycle Progression and Promotes Apoptosis via Blocking AKT/mTOR Pathway by the Regulation of circHIAT1/miR-19a-3p Axis. Onco Targets Ther 2021; 14:905-916. [PMID: 33603395 PMCID: PMC7881781 DOI: 10.2147/ott.s282790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Baicalein has a significant anti-cancerous function in the treatment of cervical cancer (CC). Its functional mechanism regarding circular RNA (circRNA) hippocampus abundant transcript 1 (circHIAT1) and microRNA-19a-3p (miR-19a-3p) was explored in this research. Methods CC cell viability and colony formation were determined using Cell Counting Kit-8 (CCK-8) and colony formation assay. Cell cycle progression and apoptosis were analyzed via flow cytometry. Protein markers of cell cycle, apoptosis and protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway were detected by Western blot. CircHIAT1 and miR-19a-3p levels were assayed through the quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between circHIAT1 and miR-19a-3p was validated by dual-luciferase reporter and RNA pull-down assays. In vivo experiment was performed by xenograft model. Results CC cell growth and cell cycle progression were repressed while apoptosis was enhanced by baicalein. MiR-19a-3p was downregulated in baicalein-treated CC cells and miR-19a-3p overexpression lightened the baicalein-induced CC progression inhibition. Moreover, circHIAT1 was found to be a sponge of miR-19a-3p in CC cells. Baicalein-induced cell growth inhibition, cell cycle arrest and apoptosis promotion were neutralized by knockdown of circHIAT1 via targeting miR-19a-3p. Baicalein acted on the circHIAT1/miR-19a-3p to inactivate AKT/mTOR pathway. Baicalein also reduced CC tumor growth in vivo via regulating the levels of circHIAT1 and miR-19a-3p. Conclusion These findings demonstrated that the inhibitory function of baicalein in CC progression was dependent on the repression of AKT/mTOR pathway by upregulating circHIAT1 to sponge miR-19a-3p, showing a specific mechanism for baicalein in CC.
Collapse
Affiliation(s)
- Jiaojiao Hu
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, People's Republic of China
| | - Runkun Wang
- Department of Oncology, The First People's Hospital of Guangshui, Guangshui, People's Republic of China
| | - Yi Liu
- Department of Traditional Chinese Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, People's Republic of China
| | - Jianbo Zhou
- Department of General Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, People's Republic of China
| | - Ka Shen
- Department of General Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, People's Republic of China
| | - Yun Dai
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, People's Republic of China
| |
Collapse
|
19
|
Zhao Y, Liu S, Li X, Xu Z, Hao L, Cui Z, Bi K, Zhang Y, Liu Z. Cross-talk of Signaling Pathways in the Pathogenesis of Allergic Asthma and Cataract. Protein Pept Lett 2021; 27:810-822. [PMID: 32031062 DOI: 10.2174/0929866527666200207113439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Allergic asthma is a chronic inflammatory disease, which involves many cellular and cellular components. Cataract is a condition that affects the transparency of the lens, which the opacity of the lens caused by any innate or acquired factor degrades its transparency or changes in color. Both of them belong to diseases induced by immune disorders or inflammation. We want to confirm the signaling pathways involved in the regulation of asthma and cataract simultaneously, and provide reference for the later related experiments. So we conducted a scoping review of many databases and searched for studies (Academic research published in Wiley, Springer and Bentham from 2000 to 2019) about the possible relationship between asthma and cataract. It was found that during the onset of asthma and cataract, Rho/Rock signaling pathway, Notch signaling pathway, Wnt/β-catenin signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, MAPK signaling pathway, TGF-β1/Smad signaling pathway and NF-κB signaling pathway are all active, so they may have a certain correlation in pathogenesis. Asthma may be associated with cataract through the eight signaling pathways, causing inflammation or immune imbalance based on allergy that can lead to cataract. According to these studies, we speculated that the three most likely signaling pathways are PI3K/AKT, MAPK and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Sumei Liu
- Department of Stomatology, No. 2 Hospital of Baoding, Baoding 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhenzhen Xu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Lifang Hao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Kewei Bi
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanfen Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China,Offices of Science and Technology, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| |
Collapse
|
20
|
Yan J, Xie Y, Si J, Gan L, Li H, Sun C, Di C, Zhang J, Huang G, Zhang X, Zhang H. Crosstalk of the Caspase Family and Mammalian Target of Rapamycin Signaling. Int J Mol Sci 2021; 22:E817. [PMID: 33467535 PMCID: PMC7830632 DOI: 10.3390/ijms22020817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cell can integrate the caspase family and mammalian target of rapamycin (mTOR) signaling in response to cellular stress triggered by environment. It is necessary here to elucidate the direct response and interaction mechanism between the two signaling pathways in regulating cell survival and determining cell fate under cellular stress. Members of the caspase family are crucial regulators of inflammation, endoplasmic reticulum stress response and apoptosis. mTOR signaling is known to mediate cell growth, nutrition and metabolism. For instance, over-nutrition can cause the hyperactivation of mTOR signaling, which is associated with diabetes. Nutrition deprivation can inhibit mTOR signaling via SH3 domain-binding protein 4. It is striking that Ras GTPase-activating protein 1 is found to mediate cell survival in a caspase-dependent manner against increasing cellular stress, which describes a new model of apoptosis. The components of mTOR signaling-raptor can be cleaved by caspases to control cell growth. In addition, mTOR is identified to coordinate the defense process of the immune system by suppressing the vitality of caspase-1 or regulating other interferon regulatory factors. The present review discusses the roles of the caspase family or mTOR pathway against cellular stress and generalizes their interplay mechanism in cell fate determination.
Collapse
Affiliation(s)
- Junfang Yan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hongyan Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guomin Huang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuetian Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
21
|
Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:13. [PMID: 33407720 PMCID: PMC7788901 DOI: 10.1186/s13046-020-01808-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Background Tumour-associated macrophages (TAMs) in the tumour microenvironment (TME) can promote the progression of hepatocellular carcinoma (HCC). Some tumours can be suppressed by targeting Wnt2b in tumour cells. However, the role of Wnt2b in HCC is still unknown. In particular, the role of Wnt2b-mediated signal activation in macrophage polarization in the HCC microenvironment, and the regulatory effect between Wnt and glycolysis in TAMs has not been described. Methods The expression of Wnt2b in TAMs was detected by qPCR and immunofluorescence. Wnt2b/β-catenin interference in HCC-TAMs was performed by lentivirus carrying targeted shRNA or TLR9 agonist. Markers related to macrophage polarization and the changes of key glycolytic enzymes expression were detected by flow cytometry and qPCR. ECAR was analysed by Seahorse analyser. MTT assay, wound healing assay, western blotting were used to evaluate the promoting effect of different HCC-TAMs on the proliferation, migration and EMT of HCC in vitro. Tumour cells and different HCC-TAMs were injected via subcutaneously into immunodeficient mice to assess the effects of CpG ODN, Wnt2b, or β-catenin on HCC-TAMs in tumour growth in vivo. Results Polarization-promoting factors derived from HCC cells upregulated the expression of Wnt2b in macrophages, which promoted the polarization of TAMs to M2-like macrophages by activating Wnt2b/β-catenin/c-Myc signalling. Furthermore, this process was associated with the activation of glycolysis in HCC-TAMs. These HCC-TAMs could promote the development of EMT, proliferation, and migration of HCC. In addition to silencing Wnt2b or β-catenin expression, TLR9 agonist CpG ODN downregulated the level of glycolysis and inhibited the M2 polarization of HCC-TAMs, reversing the tumour-promoting effects of TAMs in vitro and vivo. Conclusions As a potential target for HCC therapy, Wnt2b may play an important regulatory role for the functions of TAMs in the TME. Moreover, the TLR9 agonist CpG ODN might act as a Wnt2b signal inhibitor and can potentially be employed for HCC therapy by disturbing Wnt2b/β-catenin/c-Myc and inhibiting glycolysis in HCC-TAMs.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
22
|
Bürkel F, Jost T, Hecht M, Heinzerling L, Fietkau R, Distel L. Dual mTOR/DNA-PK Inhibitor CC-115 Induces Cell Death in Melanoma Cells and Has Radiosensitizing Potential. Int J Mol Sci 2020; 21:ijms21239321. [PMID: 33297429 PMCID: PMC7730287 DOI: 10.3390/ijms21239321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
CC-115 is a dual inhibitor of the mechanistic target of rapamycin (mTOR) kinase and the DNA-dependent protein kinase (DNA-PK) that is currently being studied in phase I/II clinical trials. DNA-PK is essential for the repair of DNA-double strand breaks (DSB). Radiotherapy is frequently used in the palliative treatment of metastatic melanoma patients and induces DSBs. Melanoma cell lines and healthy-donor skin fibroblast cell lines were treated with CC‑115 and ionizing irradiation (IR). Apoptosis, necrosis, and cell cycle distribution were analyzed. Colony forming assays were conducted to study radiosensitizing effects. Immunofluorescence microscopy was performed to determine the activity of homologous recombination (HR). In most of the malign cell lines, an increasing concentration of CC-115 resulted in increased cell death. Furthermore, strong cytotoxic effects were only observed in malignant cell lines. Regarding clonogenicity, all cell lines displayed decreased survival fractions during combined inhibitor and IR treatment and supra-additive effects of the combination were observable in 5 out of 9 melanoma cell lines. CC-115 showed radiosensitizing potential in 7 out of 9 melanoma cell lines, but not in healthy skin fibroblasts. Based on our data CC-115 treatment could be a promising approach for patients with metastatic melanoma, particularly in the combination with radiotherapy.
Collapse
Affiliation(s)
- Felix Bürkel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Tina Jost
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
- Correspondence: ; Tel.: +49-9131-85-32312
| |
Collapse
|
23
|
Hu G, Yu Y, Tang YJ, Wu C, Long F, Karner CM. The Amino Acid Sensor Eif2ak4/GCN2 Is Required for Proliferation of Osteoblast Progenitors in Mice. J Bone Miner Res 2020; 35:2004-2014. [PMID: 32453500 PMCID: PMC7688563 DOI: 10.1002/jbmr.4091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Skeletal stem/progenitor cells (SSPC) are critical regulators of bone homeostasis by providing a continuous supply of osteoblasts throughout life. In response to inductive signals, SSPC proliferate before osteoblast differentiation. Proliferation requires the duplication of all cellular components before cell division. This imposes a unique biosynthetic requirement for amino acids that can be used for biomass production. Thus, the ability to sense and respond to amino acid availability is likely a major determinant for proliferation. Using a cellular and genetic approach, we demonstrate the amino acid sensor GCN2 is required to support the robust proliferative capacity of SSPC during bone homeostasis. GCN2 ablation results in decreased postnatal bone mass due primarily to reduced osteoblast numbers. Decreased osteoblast numbers is likely attributed to reduced SSPC proliferation as loss of GCN2 specifically affected proliferation in cultured bone marrow stromal cells (BMSCs) without impacting osteoblast differentiation in vitro. Mechanistically, GCN2 regulates proliferation by increasing amino acid uptake downstream of the transcriptional effector ATF4. Collectively, these data suggest amino acid sensing through the GCN2/ATF4 pathway is indispensable for robust SSPC proliferation necessary for bone homeostasis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yilin Yu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Colleen Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
24
|
Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med 2020; 52:1496-1516. [PMID: 32943735 PMCID: PMC8080614 DOI: 10.1038/s12276-020-00504-8] [Citation(s) in RCA: 542] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
As knowledge of cell metabolism has advanced, glutamine has been considered an important amino acid that supplies carbon and nitrogen to fuel biosynthesis. A recent study provided a new perspective on mitochondrial glutamine metabolism, offering mechanistic insights into metabolic adaptation during tumor hypoxia, the emergence of drug resistance, and glutaminolysis-induced metabolic reprogramming and presenting metabolic strategies to target glutamine metabolism in cancer cells. In this review, we introduce the various biosynthetic and bioenergetic roles of glutamine based on the compartmentalization of glutamine metabolism to explain why cells exhibit metabolic reliance on glutamine. Additionally, we examined whether glutamine derivatives contribute to epigenetic regulation associated with tumorigenesis. In addition, in discussing glutamine transporters, we propose a metabolic target for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Hee Chan Yoo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
25
|
Uddin S, Melnyk N, Foster DA. Albumin promotes the progression of fibroblasts through late G 1 into S-phase in the absence of growth factors. Cell Cycle 2020; 19:2158-2167. [PMID: 32715871 DOI: 10.1080/15384101.2020.1795999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
G1 cell cycle progression is controlled largely by growth factors in early G1 indicating that it is appropriate to divide and by nutrients in late G1 indicating sufficient raw material for cell division. We previously mapped a late G1 cell cycle checkpoint for lipids upstream from a mammalian target of rapamycin complex 1 (mTORC1)-mediated checkpoint and downstream from a mid-G1 checkpoint known as the Restriction point. We therefore investigated a role for lipids in progression through late G1 into S-phase. Quiescent BJ-hTERT human fibroblasts were primed with 10% fetal bovine serum (FBS) for 3.5 h at which time, cells were treated with a mixture of lipids and carrier bovine serum albumin (BSA) along with [3 H]-thymidine deoxyribose ([3 H]-TdR) to monitor progression into S-phase. Surprisingly, BSA by itself was more effective than FBS in promoting progression to S-phase - the lipids had no impact on progression. While insulin strongly stimulated mTORC1 activity, it did not impact on [3 H]-TdR incorporation. Although BSA modestly elevated mTORC1 activity, rapamycin strongly inhibited BSA-induced progression to S-phase. BSA treatment promoted mitosis, but not progression through a second G1. Thus, after priming quiescent cells with FBS, albumin was sufficient to promote progression into S-phase. The BSA was not simply a source of amino acids in that amino acids were present in the culture media. We propose that the presence of albumin - the most abundant protein in serum - reflects a broader availability of essential amino acids needed for cell growth.
Collapse
Affiliation(s)
- Sharmeen Uddin
- Department of Biological Sciences, Hunter College of the City University of New York , New York, NY, USA.,Biology Program, Graduate Center of the City University of New York , New York, NY, USA
| | - Nataliya Melnyk
- Department of Biological Sciences, Hunter College of the City University of New York , New York, NY, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York , New York, NY, USA.,Biology Program, Graduate Center of the City University of New York , New York, NY, USA.,Biochemistry Program, Graduate Center of the City University of New York , New York, NY, USA.,Department of Pharmacology, Weill Cornell Medicine , New York, NY, USA
| |
Collapse
|
26
|
Long L, Hu X, Li X, Zhou D, Shi Y, Wang L, Zeng H, Yu X, Zhou W. The Anti-Breast Cancer Effect and Mechanism of Glimepiride-Metformin Adduct. Onco Targets Ther 2020; 13:3777-3788. [PMID: 32440146 PMCID: PMC7210042 DOI: 10.2147/ott.s240252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/02/2020] [Indexed: 02/05/2023] Open
Abstract
Background Compound adduct is a eutectic crystal formed by non-covalent bonds of two compounds or multiple compounds with water. Emerging evidence suggests that adduct could be different from the simple physical mixture of the individual compounds and has some new features. Recent studies reported that both glimepiride (Gli) and metformin (Met) may possess an anti-breast cancer effect besides anti-diabetic effect. In the current study, we synthesized glimepiride-metformin adduct (GMA) and examined its anti-breast cancer effect in vitro and in vivo to explore its potential in treatment of breast cancer in diabetic patients. Methods GMA was synthesized from Gli, Met and water at a molar molecular mass of 1:1:1 and identified by infrared spectroscopy. MTT assay, colony formation assay and wound healing assay were performed to examine the effects of GMA on cell viability and migration of human breast cancer cell lines CAL-148, MDA-MB-453, MDA-MB-231and MCF-7. The effect of GMA on cell cycle and apoptosis was examined by flow cytometry. The orthotopic implantation model was established to observe the inhibitory effect of GMA on tumor growth. The expression of Ki67 was detected by immunohistochemistry. RT-qPCR and Western blotting were performed to investigate mechanisms for the function of GMA. Results Both MTT and colony formation assays showed that GMA inhibited breast cancer cell viability, and the effect was greater than Gli alone, Met alone and the combination. In vivo study showed that GMA had an inhibitory effect on tumor growth of CAL-148 xenografts. Flow cytometry analysis indicated that GMA induced G1/S phase cell cycle arrest and apoptosis in breast cancer cells. RT-qPCR and Western blotting analyses showed that GMA activated AMPK, and up-regulated expression of p53 and p21, and down-regulated expression of cyclin D1 and CDK4. Conclusion GMA suppresses cell viability of breast cancer cells, and its effect is greater than Gli and Met alone or combination at the same concentration. GMA inhibits breast cancer cell growth in vivo. The antitumor effect of GMA may be related to the activation of AMPK resulting in up-regulation of p53 and p21 and down-regulation of cyclin D1 and CDK4.
Collapse
Affiliation(s)
- Liangyuan Long
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Xiangnan Hu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Xiaoli Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Duanfang Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Yun Shi
- West China Biopharm Research Institute, West China Hospital, Chengdu, Sichuan Province 610041, People's Republic of China
| | - Lingen Wang
- Department of General Surgery, Leping People's Hospital, Leping, Jiangxi Province 333300, People's Republic of China
| | - Hongfang Zeng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Xiaoping Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| | - Weiying Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, People's Republic of China.,The Key Laboratory of Biochemistry and Molecular Pharmacology in Chongqing, Chongqing 400016, People's Republic of China
| |
Collapse
|
27
|
Koch K, Hartmann R, Tsiampali J, Uhlmann C, Nickel AC, He X, Kamp MA, Sabel M, Barker RA, Steiger HJ, Hänggi D, Willbold D, Maciaczyk J, Kahlert UD. A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discov 2020; 6:20. [PMID: 32337072 PMCID: PMC7162917 DOI: 10.1038/s41420-020-0258-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer cells upregulate anabolic processes to maintain high rates of cellular turnover. Limiting the supply of macromolecular precursors by targeting enzymes involved in biosynthesis is a promising strategy in cancer therapy. Several tumors excessively metabolize glutamine to generate precursors for nonessential amino acids, nucleotides, and lipids, in a process called glutaminolysis. Here we show that pharmacological inhibition of glutaminase (GLS) eradicates glioblastoma stem-like cells (GSCs), a small cell subpopulation in glioblastoma (GBM) responsible for therapy resistance and tumor recurrence. Treatment with small molecule inhibitors compound 968 and CB839 effectively diminished cell growth and in vitro clonogenicity of GSC neurosphere cultures. However, our pharmaco-metabolic studies revealed that only CB839 inhibited GLS enzymatic activity thereby limiting the influx of glutamine derivates into the TCA cycle. Nevertheless, the effects of both inhibitors were highly GLS specific, since treatment sensitivity markedly correlated with GLS protein expression. Strikingly, we found GLS overexpressed in in vitro GSC models as compared with neural stem cells (NSC). Moreover, our study demonstrates the usefulness of in vitro pharmaco-metabolomics to score target specificity of compounds thereby refining drug development and risk assessment.
Collapse
Affiliation(s)
- Katharina Koch
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems (ICS-6) Structural Biochemistry and JuStruct: Juelich Center for Structural Biology, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Julia Tsiampali
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Constanze Uhlmann
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Ann-Christin Nickel
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Xiaoling He
- John van Geest Centre for Brain Repair and WT/MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Marcel A. Kamp
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Michael Sabel
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Roger A. Barker
- John van Geest Centre for Brain Repair and WT/MRC Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Hans-Jakob Steiger
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Daniel Hänggi
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry and JuStruct: Juelich Center for Structural Biology, Forschungszentrum Juelich, 52425 Juelich, Germany
- Institut für Physikalische Biologie, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Jaroslaw Maciaczyk
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
- Neurosurgery Department, University Hospital Bonn, 53127 Bonn, Germany
| | - Ulf D. Kahlert
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
- German Cancer Consortium (DKTK), Essen/Duesseldorf, Germany
| |
Collapse
|
28
|
McLean KJ, Jacobs-Lorena M. The response of Plasmodium falciparum to isoleucine withdrawal is dependent on the stage of progression through the intraerythrocytic cell cycle. Malar J 2020; 19:147. [PMID: 32268910 PMCID: PMC7140564 DOI: 10.1186/s12936-020-03220-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background A previous study reported that the malaria parasite Plasmodium falciparum enters an altered growth state upon extracellular withdrawal of the essential amino acid isoleucine. Parasites slowed transit through the cell cycle when deprived of isoleucine prior to the onset of S-phase. Methods This project was undertaken to study at higher resolution, how isoleucine withdrawal affects parasite growth. Parasites were followed at regular intervals across an extended isoleucine deprivation time course across the cell cycle using flow cytometry. Results These experiments revealed that isoleucine-deprived parasites never exit the cell cycle, but instead continuously grow at a markedly reduced pace. Moreover, slow growth occurs only if isoleucine is removed prior to the onset of schizogony. After S-phase commenced, the parasite is insensitive to isoleucine depletion and transits through the cell cycle at the normal pace. Conclusions The markedly different response of the parasite to isoleucine withdrawal before or after the onset of DNA replication is reminiscent of the nutrient-dependent G1 cell cycle checkpoints described in other organisms.
Collapse
Affiliation(s)
- Kyle Jarrod McLean
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
29
|
Hartl J, Kiefer P, Kaczmarczyk A, Mittelviefhaus M, Meyer F, Vonderach T, Hattendorf B, Jenal U, Vorholt JA. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat Metab 2020; 2:153-166. [PMID: 32090198 PMCID: PMC7035108 DOI: 10.1038/s42255-019-0166-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Cell cycle progression requires the coordination of cell growth, chromosome replication, and division. Consequently, a functional cell cycle must be coupled with metabolism. However, direct measurements of metabolome dynamics remained scarce, in particular in bacteria. Here, we describe an untargeted metabolomics approach with synchronized Caulobacter crescentus cells to monitor the relative abundance changes of ~400 putative metabolites as a function of the cell cycle. While the majority of metabolite pools remains homeostatic, ~14% respond to cell cycle progression. In particular, sulfur metabolism is redirected during the G1-S transition, and glutathione levels periodically change over the cell cycle with a peak in late S phase. A lack of glutathione perturbs cell size by uncoupling cell growth and division through dysregulation of KefB, a K+/H+ antiporter. Overall, we here describe the impact of the C. crescentus cell cycle progression on metabolism, and in turn relate glutathione and potassium homeostasis to timely cell division.
Collapse
Affiliation(s)
- Johannes Hartl
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland.
| | - Patrick Kiefer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | | | | | - Fabian Meyer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Thomas Vonderach
- ETH Zurich, Laboratory of Inorganic Chemistry, Zurich, Switzerland
| | - Bodo Hattendorf
- ETH Zurich, Laboratory of Inorganic Chemistry, Zurich, Switzerland
| | - Urs Jenal
- Biozentrum of the University of Basel, Basel, Switzerland
| | | |
Collapse
|
30
|
Wang Y, Sun J, Ni Q, Nie A, Gu Y, Wang S, Zhang W, Ning G, Wang W, Wang Q. Dual Effect of Raptor on Neonatal β-Cell Proliferation and Identity Maintenance. Diabetes 2019; 68:1950-1964. [PMID: 31345937 DOI: 10.2337/db19-0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022]
Abstract
Immature pancreatic β-cells are highly proliferative, and the expansion of β-cells during the early neonatal period largely determines functional β-cell mass; however, the mechanisms are poorly characterized. We generated Ngn3RapKO mice (ablation of Raptor, an essential component of mechanistic target of rapamycin [mTORC1] in Ngn3+ endocrine progenitor cells) and found that mTORC1 was dispensable for endocrine cell lineage formation but specifically regulated both proliferation and identity maintenance of neonatal β-cells. Ablation of Raptor in neonatal β-cells led to autonomous loss of cell identity, decelerated cell cycle progression, compromised proliferation, and caused neonatal diabetes as a result of inadequate establishment of functional β-cell mass at postnatal day 14. Completely different from mature β-cells, Raptor regulated G1/S and G2/M phase cell cycle transition, thus permitting a high proliferation rate in neonatal β-cells. Moreover, Ezh2 was identified as a critical downstream target of mTORC1 in neonatal β-cells, which was responsible for G2/M phase transition and proliferation. Our discovery of the dual effect of mTORC1 in immature β-cells has revealed a potential target for replenishing functional β-cell pools by promoting both expansion and functional maturation of newly formed immature β-cells.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Möller J, Bhat K, Riecken K, Pörtner R, Zeng AP, Jandt U. Process-induced cell cycle oscillations in CHO cultures: Online monitoring and model-based investigation. Biotechnol Bioeng 2019; 116:2931-2943. [PMID: 31342512 DOI: 10.1002/bit.27124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023]
Abstract
The influence of process strategies on the dynamics of cell population heterogeneities in mammalian cell culture is still not well understood. We recently found that the progression of cells through the cell cycle causes metabolic regulations with variable productivities in antibody-producing Chimese hamster ovary (CHO) cells. On the other hand, it is so far unknown how bulk cultivation conditions, for example, variable nutrient concentrations depending on process strategies, can influence cell cycle-derived population dynamics. In this study, process-induced cell cycle synchronization was assessed in repeated-batch and fed-batch cultures. An automated flow cytometry set-up was developed to measure the cell cycle distribution online, using antibody-producing CHO DP-12 cells transduced with the cell cycle-specific fluorescent ubiquitination-based cell cycle indicator (FUCCI) system. On the basis of the population-resolved model, feeding-induced partial self-synchronization was predicted and the results were evaluated experimentally. In the repeated-batch culture, stable cell cycle oscillations were confirmed with an oscillating G1 phase distribution between 41% and 72%. Furthermore, oscillations of the cell cycle distribution were simulated and determined in a (bolus) fed-batch process with up to 25 × 1 0 6 cells/ml. The cell cycle synchronization arose with pulse feeding only and ceased with continuous feeding. Both simulated and observed oscillations occurred at higher frequencies than those observable based on regular (e.g., daily) sample analysis, thus demonstrating the need for high-frequency online cell cycle analysis. In summary, we showed how experimental methods combined with simulations enable the improved assessment of the effects of process strategies on the dynamics of cell cycle-dependent population heterogeneities. This provides a novel approach to understand cell cycle regulations, control cell population dynamics, avoid inadvertently induced oscillations of cell cycle distributions and thus to improve process stability and efficiency.
Collapse
Affiliation(s)
- Johannes Möller
- Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Krathika Bhat
- Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Pörtner
- Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - An-Ping Zeng
- Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Uwe Jandt
- Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
32
|
Bernfeld E, Foster DA. Glutamine as an Essential Amino Acid for KRas-Driven Cancer Cells. Trends Endocrinol Metab 2019; 30:357-368. [PMID: 31040047 DOI: 10.1016/j.tem.2019.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Cancer cells consume glutamine, a nonessential amino acid (NEAA), at exceedingly high rates to fulfill their energetic and biosynthetic requirements for proliferation. Glutamine plays distinct roles from essential amino acids in cell cycle progression and in the activation of mammalian target of rapamycin (mTOR). Furthermore, the need of cancer cells for glutamine can be exploited therapeutically - especially those driven by KRas. In this review we explore several distinct cellular roles for glutamine that contribute to glutamine addiction in KRas-driven cancer cells and discuss opportunities for therapeutic intervention created by glutamine addiction.
Collapse
Affiliation(s)
- Elyssa Bernfeld
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Biochemistry PhD Program, The Graduate Center, City University of New York, New York, NY, USA; Current address: Oncology R&D Group, Pfizer Worldwide Research and Development, 401 N. Middletown Road, Pearl River, NY, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Biochemistry PhD Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Phospholipase D and the Mitogen Phosphatidic Acid in Human Disease: Inhibitors of PLD at the Crossroads of Phospholipid Biology and Cancer. Handb Exp Pharmacol 2019; 259:89-113. [PMID: 31541319 DOI: 10.1007/164_2019_216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are key building blocks of biological membranes and are involved in complex signaling processes such as metabolism, proliferation, migration, and apoptosis. Extracellular signaling by growth factors, stress, and nutrients is transmitted through receptors that activate lipid-modifying enzymes such as the phospholipases, sphingosine kinase, or phosphoinositide 3-kinase, which then modify phospholipids, sphingolipids, and phosphoinositides. One such important enzyme is phospholipase D (PLD), which cleaves phosphatidylcholine to yield phosphatidic acid and choline. PLD isoforms have dual role in cells. The first involves maintaining cell membrane integrity and cell signaling, including cell proliferation, migration, cytoskeletal alterations, and invasion through the PLD product PA, and the second involves protein-protein interactions with a variety of binding partners. Increased evidence of elevated PLD expression and activity linked to many pathological conditions, including cancer, neurological and inflammatory diseases, and infection, has motivated the development of dual- and isoform-specific PLD inhibitors. Many of these inhibitors are reported to be efficacious and safe in cells and mouse disease models, suggesting the potential for PLD inhibitors as therapeutics for cancer and other diseases. Current knowledge and ongoing research of PLD signaling networks will help to evolve inhibitors with increased efficacy and safety for clinical studies.
Collapse
|
34
|
Glen KE, Cheeseman EA, Stacey AJ, Thomas RJ. A mechanistic model of erythroblast growth inhibition providing a framework for optimisation of cell therapy manufacturing. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Xiao F, Wang C, Yin H, Yu J, Chen S, Fang J, Guo F. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2018; 7:63679-63689. [PMID: 27579768 PMCID: PMC5325395 DOI: 10.18632/oncotarget.11626] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/08/2016] [Indexed: 01/02/2023] Open
Abstract
Substantial studies on fatty acid synthase (FASN) have focused on its role in regulating lipid metabolism and researchers have a great interest in treating cancer with dietary manipulation of amino acids. In the current study, we found that leucine deprivation caused the FASN-dependent anticancer effect. Here we showed that leucine deprivation inhibited cell proliferation and induced apoptosis of MDA-MB-231 and MCF-7 breast cancer cells. In an in vivo tumor xenograft model, the leucine-free diet suppressed the growth of human breast cancer tumors and triggered widespread apoptosis of the cancer cells. Further study indicated that leucine deprivation decreased expression of lipogenic gene FASN in vitro and in vivo. Over-expression of FASN or supplementation of palmitic acid (the product of FASN action) blocked the effects of leucine deprivation on cell proliferation and apoptosis in vitro and in vivo. Moreover, leucine deprivation suppressed the FASN expression via regulating general control non-derepressible (GCN)2 and sterol regulatory element-binding protein 1C (SREBP1C). Taken together, our study represents proof of principle that anticancer effects can be obtained with strategies to deprive tumors of leucine via suppressing FASN expression, which provides important insights in prevention of breast cancer via metabolic intervention.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunxia Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongkun Yin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
10-Gingerol as an inducer of apoptosis through HTR1A in cumulus cells: In-vitro and in-silico studies. J Taibah Univ Med Sci 2017; 12:397-406. [PMID: 31435270 PMCID: PMC6695051 DOI: 10.1016/j.jtumed.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Cumulus cells play a crucial role as essential mediators in the maturation of ova. Ginger contains 10-gingerol, which induces apoptosis in colon cancer cells. Based on this hypothesis, this study aimed to determine whether 10-gingerol is able to induce apoptosis in normal cells, namely, cumulus cells. Methods This study used an in vitro analysis by culturing Cumulus cells in M199 containing 10-gingerol in various concentrations (12, 16, and 20 μM) and later detected early apoptotic activity using an Annexin V-FITC detection kit. Result The in vitro data revealed that the number of apoptosis cells increased along with the period of incubation as follows: 12 μM (63.71% ± 2.192%); 16 μM (74.51% ± 4.596%); and 20 μM (78.795% ± 1.435%). The substance 10-gingerol induces apoptosis in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT-1. Conclusions These findings indicate that further examination is warranted for 10-gingerol as a contraception agent.
Collapse
Key Words
- 10-Gingerol
- ARG, arginine
- Apoptosis
- Cumulus cells
- FOXO, forkhead box
- GLU, glutamine
- GLY, glycine
- GSK3B, glycogen synthase kinase-3β
- HTR1A
- HTR1A, 5-hydroxytryptamine receptor 1 A
- ILE, ileusine
- ILK, integrin-linked kinase
- In silico
- In vitro
- LYS, lysine
- MDM2, murine double minute clone 2
- MET, methionine
- NO, nitric oxide
- NOS3, nitric oxide synthase 3
- PTEN, phosphatase and tensin homologue delete on chromosome ten
- RICTOR, rapamycin-insensitive companion of mTOR
- TYR, tyrosine
- eNOS, endothelial nitric oxide synthase
- mTOR, mammalian target of rapamycin
- mTORC1, mTOR complex 1
- mTORC2, mTOR complex 2
Collapse
|
37
|
Fuge G, Hong Y, Riecken K, Zeng AP, Jandt U. CHO cells engineered for fluorescence read out of cell cycle and growth rate in real time. Biotechnol Prog 2017; 33:1408-1417. [DOI: 10.1002/btpr.2491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Grischa Fuge
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| | - Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation; University Medical Centre (UMC) Hamburg-Eppendorf; Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| | - Uwe Jandt
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
38
|
Yang Z, Li Y, Gao J, Cao Z, Jiang Q, Liu J. pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus. Colloids Surf B Biointerfaces 2017; 153:111-122. [DOI: 10.1016/j.colsurfb.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
|
39
|
Menon D, Salloum D, Bernfeld E, Gorodetsky E, Akselrod A, Frias MA, Sudderth J, Chen PH, DeBerardinis R, Foster DA. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J Biol Chem 2017; 292:6303-6311. [PMID: 28223357 DOI: 10.1074/jbc.m116.772988] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Indexed: 11/06/2022] Open
Abstract
mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA.
Collapse
Affiliation(s)
- Deepak Menon
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Darin Salloum
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Elyssa Bernfeld
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Elizabeth Gorodetsky
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Alla Akselrod
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Maria A Frias
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Jessica Sudderth
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Pei-Hsuan Chen
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Ralph DeBerardinis
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, .,the Biochemistry Program and.,the Biology Program, Graduate Center of the City University of New York, New York, New York 10016.,the Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
40
|
Marroquin-Guzman M, Sun G, Wilson RA. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation. PLoS Genet 2017; 13:e1006557. [PMID: 28072818 PMCID: PMC5266329 DOI: 10.1371/journal.pgen.1006557] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/25/2017] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.
Collapse
Affiliation(s)
- Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Guangchao Sun
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
41
|
Papagiannakis A, Niebel B, Wit EC, Heinemann M. Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle. Mol Cell 2016; 65:285-295. [PMID: 27989441 DOI: 10.1016/j.molcel.2016.11.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders.
Collapse
Affiliation(s)
- Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bastian Niebel
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ernst C Wit
- Probability and Statistics, Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
42
|
Patel D, Salloum D, Saqcena M, Chatterjee A, Mroz V, Ohh M, Foster DA. A Late G1 Lipid Checkpoint That Is Dysregulated in Clear Cell Renal Carcinoma Cells. J Biol Chem 2016; 292:936-944. [PMID: 27956548 DOI: 10.1074/jbc.m116.757864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Lipids are important nutrients that proliferating cells require to maintain energy homeostasis as well as to build plasma membranes for newly synthesized cells. Previously, we identified nutrient-sensing checkpoints that exist in the latter part of the G1 phase of the cell cycle that are dependent upon essential amino acids, Gln, and finally, a checkpoint mediated by mammalian target of rapamycin (mTOR), which integrates signals from both nutrients and growth factors. In this study, we have identified and temporally mapped a lipid-mediated G1 checkpoint. This checkpoint is located after the Gln checkpoint and before the mTOR-mediated cell cycle checkpoint. Intriguingly, clear cell renal cell carcinoma cells (ccRCC) have a dysregulated lipid-mediated checkpoint due in part to defective phosphatase and tensin homologue (PTEN). When deprived of lipids, instead of arresting in G1, these cells continue to cycle and utilize lipid droplets as a source of lipids. Lipid droplets have been known to maintain endoplasmic reticulum homeostasis and prevent cytotoxic endoplasmic reticulum stress in ccRCC. Dysregulation of the lipid-mediated checkpoint forces these cells to utilize lipid droplets, which could potentially lead to therapeutic opportunities that exploit this property of ccRCC.
Collapse
Affiliation(s)
- Deven Patel
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Darin Salloum
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Mahesh Saqcena
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Amrita Chatterjee
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Victoria Mroz
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Michael Ohh
- the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, .,the Biochemistry Program and.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016.,the Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, and
| |
Collapse
|
43
|
van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, Harvey K, Beith JM, Selinger CI, O'Toole SA, Rasko JEJ, Holst J. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 2016; 35:3201-8. [PMID: 26455325 PMCID: PMC4914826 DOI: 10.1038/onc.2015.381] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022]
Abstract
Alanine, serine, cysteine-preferring transporter 2 (ASCT2; SLC1A5) mediates uptake of glutamine, a conditionally essential amino acid in rapidly proliferating tumour cells. Uptake of glutamine and subsequent glutaminolysis is critical for activation of the mTORC1 nutrient-sensing pathway, which regulates cell growth and protein translation in cancer cells. This is of particular interest in breast cancer, as glutamine dependence is increased in high-risk breast cancer subtypes. Pharmacological inhibitors of ASCT2-mediated transport significantly reduced glutamine uptake in human breast cancer cell lines, leading to the suppression of mTORC1 signalling, cell growth and cell cycle progression. Notably, these effects were subtype-dependent, with ASCT2 transport critical only for triple-negative (TN) basal-like breast cancer cell growth compared with minimal effects in luminal breast cancer cells. Both stable and inducible shRNA-mediated ASCT2 knockdown confirmed that inhibiting ASCT2 function was sufficient to prevent cellular proliferation and induce rapid cell death in TN basal-like breast cancer cells, but not in luminal cells. Using a bioluminescent orthotopic xenograft mouse model, ASCT2 expression was then shown to be necessary for both successful engraftment and growth of HCC1806 TN breast cancer cells in vivo. Lower tumoral expression of ASCT2 conferred a significant survival advantage in xenografted mice. These responses remained intact in primary breast cancers, where gene expression analysis showed high expression of ASCT2 and glutamine metabolism-related genes, including GLUL and GLS, in a cohort of 90 TN breast cancer patients, as well as correlations with the transcriptional regulators, MYC and ATF4. This study provides preclinical evidence for the feasibility of novel therapies exploiting ASCT2 transporter activity in breast cancer, particularly in the high-risk basal-like subgroup of TN breast cancer where there is not only high expression of ASCT2, but also a marked reliance on its activity for sustained cellular proliferation.
Collapse
Affiliation(s)
- M van Geldermalsen
- Origins of Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Q Wang
- Origins of Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - R Nagarajah
- Origins of Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A D Marshall
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - A Thoeng
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - D Gao
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Bioinformatics Laboratory, Centenary Institute, Camperdown, New South Wales, Australia
| | - W Ritchie
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Bioinformatics Laboratory, Centenary Institute, Camperdown, New South Wales, Australia
| | - Y Feng
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - C G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - N Deng
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - K Harvey
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - J M Beith
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - C I Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - S A O'Toole
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - J E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - J Holst
- Origins of Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Associate, Origins of Cancer Program, Centenary Institute, Locked Bag 6, Newtown, New South Wales 2042, Australia. E-mail:
| |
Collapse
|
44
|
New insight on obesity and adipose-derived stem cells using comprehensive metabolomics. Biochem J 2016; 473:2187-203. [PMID: 27208167 DOI: 10.1042/bcj20160241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
Abstract
Obesity affects the functional capability of adipose-derived stem cells (ASCs) and their effective use in regenerative medicine through mechanisms that are still poorly understood. In the present study we used a multiplatform [LC/MS, GC/MS and capillary electrophoresis/MS (CE/MS)], metabolomics, untargeted approach to investigate the metabolic alteration underlying the inequalities observed in obesity-derived ASCs. The metabolic fingerprint (metabolites within the cells) and footprint (metabolites secreted in the culture medium), from obesity- and non-obesity-derived ASCs of humans or mice, were characterized to provide valuable information. Metabolites associated with glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and the polyol pathway were increased in the footprint of obesity-derived human ASCs, indicating alterations in carbohydrate metabolism, whereas, from the murine model, deep differences in lipid and amino acid catabolism were highlighted. Therefore, new insights on the ASCs' metabolome were provided that enhance our understanding of the processes underlying ASCs' stemness capacity and its relationship with obesity, in different cell models.
Collapse
|
45
|
Patel D, Menon D, Bernfeld E, Mroz V, Kalan S, Loayza D, Foster DA. Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells. J Biol Chem 2016; 291:9322-9. [PMID: 26921316 DOI: 10.1074/jbc.m115.710145] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/27/2022] Open
Abstract
During G1-phase of the cell cycle, normal cells respond first to growth factors that indicate that it is appropriate to divide and then later in G1 to the presence of nutrients that indicate sufficient raw material to generate two daughter cells. Dividing cells rely on the "conditionally essential" amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates and as a nitrogen source for nucleotide biosynthesis. We previously reported that while non-transformed cells arrest in the latter portion of G1 upon Q deprivation, mutant KRas-driven cancer cells bypass the G1 checkpoint, and instead, arrest in S-phase. In this study, we report that the arrest of KRas-driven cancer cells in S-phase upon Q deprivation is due to the lack of deoxynucleotides needed for DNA synthesis. The lack of deoxynucleotides causes replicative stress leading to activation of the ataxia telangiectasia and Rad3-related protein (ATR)-mediated DNA damage pathway, which arrests cells in S-phase. The key metabolite generated from Q utilization was aspartate, which is generated from a transaminase reaction whereby Q-derived glutamate is converted to α-ketoglutarate with the concomitant conversion of oxaloacetate to aspartate. Aspartate is a critical metabolite for both purine and pyrimidine nucleotide biosynthesis. This study identifies the molecular basis for the S-phase arrest caused by Q deprivation in KRas-driven cancer cells that arrest in S-phase in response to Q deprivation. Given that arresting cells in S-phase sensitizes cells to apoptotic insult, this study suggests novel therapeutic approaches to KRas-driven cancers.
Collapse
Affiliation(s)
- Deven Patel
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and
| | - Deepak Menon
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and
| | - Elyssa Bernfeld
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and
| | - Victoria Mroz
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Sampada Kalan
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biology Program, Graduate Center of the City University of New York, New York, New York 10016, and
| | - Diego Loayza
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and Biology Program, Graduate Center of the City University of New York, New York, New York 10016, and
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and Biology Program, Graduate Center of the City University of New York, New York, New York 10016, and Department of Pharmacology, Weill Cornell College of Medicine, New York, New York 10021
| |
Collapse
|
46
|
Mukhopadhyay S, Saqcena M, Foster DA. Synthetic lethality in KRas-driven cancer cells created by glutamine deprivation. Oncoscience 2015; 2:807-8. [PMID: 26682255 PMCID: PMC4671930 DOI: 10.18632/oncoscience.253] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/12/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Suman Mukhopadhyay
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Department of Pharmacology, Weill-Cornell Medical College, New York, NY, USA
| | - Mahesh Saqcena
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Department of Pharmacology, Weill-Cornell Medical College, New York, NY, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA; Department of Pharmacology, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
47
|
Yuan L, Sheng X, Willson AK, Roque DR, Stine JE, Guo H, Jones HM, Zhou C, Bae-Jump VL. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr Relat Cancer 2015; 22:577-91. [PMID: 26045471 PMCID: PMC4500469 DOI: 10.1530/erc-15-0192] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lingqin Yuan
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiugui Sheng
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam K Willson
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dario R Roque
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica E Stine
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hui Guo
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hannah M Jones
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chunxiao Zhou
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria L Bae-Jump
- Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Gynecologic OncologyShanDong Tumor Hospital and Cancer Institute, Jinan University, Jinan 250117, People's Republic of ChinaDivision of Gynecologic OncologyUniversity of North Carolina at Chapel Hill, CB #7572, Physicians Office Building Rm #B105, Chapel Hill, North Carolina 27599, USALineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Saqcena M, Patel D, Menon D, Mukhopadhyay S, Foster DA. Apoptotic effects of high-dose rapamycin occur in S-phase of the cell cycle. Cell Cycle 2015; 14:2285-92. [PMID: 25945415 DOI: 10.1080/15384101.2015.1046653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mutations in genes encoding regulators of mTOR, the mammalian target of rapamycin, commonly provide survival signals in cancer cells. Rapamycin and analogs of rapamycin have been used with limited success in clinical trials to target mTOR-dependent survival signals in a variety of human cancers. Suppression of mTOR predominantly causes G1 cell cycle arrest, which likely contributes to the ineffectiveness of rapamycin-based therapeutic strategies. While rapamycin causes the accumulation of cells in G1, its effect in other cell cycle phases remains largely unexplored. We report here that when synchronized MDA-MB-231 breast cancer cells are allowed to progress into S-phase from G1, rapamycin activates the apoptotic machinery with a concomitant increase in cell death. In Calu-1 lung cancer cells, rapamycin induced a feedback increase in Akt phosphorylation at Ser473 in S-phase that mitigated rapamycin-induced apoptosis. However, sensitivity to rapamycin in S-phase could be reestablished if Akt phosphorylation was suppressed. We recently reported that glutamine (Gln) deprivation causes K-Ras mutant cancer cells to aberrantly arrest primarily in S-phase. Consistent with observed sensitivity of S-phase cells to rapamycin, interfering with Gln utilization sensitized both MDA-MB-231 and Calu-1 K-Ras mutant cancer cells to the apoptotic effect of rapamycin. Importantly, rapamycin induced substantially higher levels of cell death upon Gln depletion than that observed in cancer cells that were allowed to progress through S-phase after being synchronized in G1. We postulate that exploiting metabolic vulnerabilities in cancer cells such as S-phase arrest observed with K-Ras-driven cancer cells deprived of Gln, could be of great therapeutic potential.
Collapse
Key Words
- 4E-BP1, eIF4E binding protein-1
- GOT, glutamate-oxaloacetate-transaminase
- Gln, glutamine
- PARP, poly-ADP-ribose polymerase
- PI3K, phosphatidylinositol-3-kinase
- S6K, S6 kinase
- TGF-β, transforming growth factor-β.
- cell cycle
- eIF4E, eukaryotic initiation factor 4E
- glutamine
- mTOR
- mTOR, mammalian target of rapamycin
- mTORC1/2, mTOR complex 1/2
- rapamycin
- synthetic lethality
Collapse
Affiliation(s)
- Mahesh Saqcena
- a Department of Biological Sciences ; Hunter College of the City University of New York ; New York , NY USA
| | | | | | | | | |
Collapse
|
49
|
Sobol A, Galluzzo P, Liang S, Rambo B, Skucha S, Weber MJ, Alani S, Bocchetta M. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells. J Cell Physiol 2015; 230:1064-74. [PMID: 25283437 PMCID: PMC4445069 DOI: 10.1002/jcp.24835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/22/2014] [Indexed: 02/02/2023]
Abstract
Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Sobol
- Department of Pathology, Oncology Institute, Loyola University Chicago Medical Center, Maywood, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Warnes G. Flow cytometric assays for the study of autophagy. Methods 2015; 82:21-8. [PMID: 25846398 DOI: 10.1016/j.ymeth.2015.03.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022] Open
Abstract
The use of flow cytometry to study the autophagic process has recently led to the development of numerous assays measuring various aspects of the autophagic process. These include the detection of the autophagy marker, the microtubule associated protein LC3B, cell cycle analysis of LC3B expression, increase in lysosomal mass, as well as organelle specific autophagy and the measurement of mitochondrial function. We employed a range of autophagy inducing agents to determine the degree of LC3B up-regulation and corresponding cell cycle distribution, increase in lysosomal mass and mitochondrial dysfunction, as well as the relative preference for the specific type of microautophagy or organelle phagy. A variety of autophagy inducing agents were compared these included rapamycin, chloroquine, various nutrient starvation treatments on two cell types, Jurkat T-cell leukaemia and K562 erythromyeloid leukaemia cell lines. Given that numerous autophagy inducing agents cause cell cycle arrest, the cell cycle phase distribution was investigated and LC3B antigen was shown to increase as cells progressed through the cell cycle. LysoTracker dyes have been previously employed to investigate the autophagic process and here the LysoTracker signal increased in autophagic cells in relation to controls. Organelle autophagy of mitochondria and Endoplasmic Reticulum (ER), termed mitophagy and ER phagy was determined flow cytometrically by the employment of organelle mass probes, MitoTracker Green (MTG) and ER Tracker Green (ERTG). A modification of the cell cycle analysis width and area analysis employed for DNA content determinations was developed to show changes in organelle mass on a linear scale. Relative changes in linear scaled median fluorescence intensity (MFI) was compared to control cells to determine the degree and type of organelle phagy induced by a range of autophagy inducing agents and treatments. These flow cytometric organelle phagy and lysosome mass assays can be used by researchers to study the autophagic process further in terms of cell and mitochondrial functionality over time in a cell dependent manner as an adjunct to LC3B measurements.
Collapse
Affiliation(s)
- G Warnes
- Flow Cytometry Core Facility, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary London University, 4 Newark Street, London E1 2AT, United Kingdom.
| |
Collapse
|